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Abstract 

Background: Scales are linear combinations of variables with coefficients that add up to zero and have a similar 
meaning to “contrast” in the analysis of variance. Scales are necessary in order to incorporate genomic information 
into relationship matrices for genomic selection. Statistical and biological parameterizations using scales under differ‑
ent assumptions have been proposed to construct alternative genomic relationship matrices. Except for the natural 
and orthogonal interactions approach (NOIA) method, current methods to construct relationship matrices assume 
Hardy–Weinberg equilibrium (HWE). The objective of this paper is to apply vector algebra to center and scale relation‑
ship matrices under non‑HWE conditions, including orthogonalization by the Gram‑Schmidt process.

Theory and methods: Vector space algebra provides an evaluation of current orthogonality between additive 
and dominance vectors of additive and dominance scales for each marker. Three alternative methods to center and 
scale additive and dominance relationship matrices based on the Gram‑Schmidt process (GSP‑A, GSP‑D, and GSP‑N) 
are proposed. GSP‑A removes additive‑dominance co‑variation by first fitting the additive and then the dominance 
scales. GSP‑D fits scales in the opposite order. We show that GSP‑A is algebraically the same as the NOIA model. GSP‑N 
orthonormalizes the additive and dominance scales that result from GSP‑A. An example with genotype information 
on 32,645 single nucleotide polymorphisms from 903 Large‑White × Landrace crossbred pigs is used to construct 
existing and newly proposed additive and dominance relationship matrices.

Results: An exact test for departures from HWE showed that a majority of loci were not in HWE in crossbred pigs. All 
methods, except the one that assumes HWE, performed well to attain an average of diagonal elements equal to one 
and an average of off diagonal elements equal to zero. Variance component estimation for a recorded quantitative 
phenotype showed that orthogonal methods (NOIA, GSP‑A, GSP‑N) can adjust for the additive‑dominance co‑varia‑
tion when estimating the additive genetic variance, whereas GSP‑D does it when estimating dominance components. 
However, different methods to orthogonalize relationship matrices resulted in different proportions of additive and 
dominance components of variance.

Conclusions: Vector space methodology can be applied to measure orthogonality between vectors of additive and 
dominance scales and to construct alternative orthogonal models such as GSP‑A, GSP‑D and an orthonormal model 
such as GSP‑N. Under non‑HWE conditions, GSP‑A is algebraically the same as the previously developed NOIA model.
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Background
Currently, massive single nucleotide polymorphism 
(SNP) genotyping of animals allows genomic predic-
tion [1] with increased accuracy and response to selec-
tion compared to pedigree-based prediction of estimated 
breeding values. A commonly used technique is genomic 
best linear unbiased prediction (GBLUP) of breeding val-
ues, which incorporates a marker-based additive genomic 
relationship matrix ( G-matrix) instead of a relationship 
matrix based on pedigree [2]. There are two alternative 
parameterizations when constructing a genomic rela-
tionship matrix: statistical and biological. The statistical 
or classical parameterization describes breeding values 
in terms of the average substitution effect of a locus at 
the population level [3]. The classical parameterization 
is widely used in breeding value estimation for farm ani-
mals because it provides information on the impact of a 
progenitor on the expected performance of its offspring. 
The alternative is the biological parameterization in 
which the effects of a locus are given in terms of geno-
typic values, which is more intuitive and practical when 
analyzing variability in natural populations. The distinc-
tion between these two alternatives has been previously 
acknowledged [4] and implemented in the construction 
of the G matrix for the statistical [2, 5] and biological [6] 
parameterizations. Most current applications assume 
that populations are in Hardy–Weinberg equilibrium 
(HWE). Conditions for HWE are: a very large breeding 
population, random mating, no change in allele frequen-
cies due to mutation, and absence of migration and selec-
tion. The HWE conditions are usually assumed in the 
construction of the G matrix for simplicity and because 
departures from those conditions may not be important, 
in particular if dominance effects are not considered. 
However, some populations of commercial animals (e.g. 
pigs and poultry) result from crosses between distant 
populations, for which HWE does not apply. Recently, 
Vitezica et al. [7] proposed the construction of genomic 
relationship matrices with orthogonality between addi-
tive and dominance scales based on the NOIA (natural 
and orthogonal interactions approach) method of Alva-
rez-Castro and Carlborg [8]. Orthogonality means that 
additive and dominance effects are uncorrelated. The 
NOIA method does not require the assumption of HWE. 
The numerator of G matrices in VanRaden and NOIA are 
equivalent but the denominators (scaling) are different 
[9]. Varona et al. [10] reviewed methodology for the con-
struction of relationship matrices that incorporate non-
additive effects.

Vector spaces are mathematical objects that abstractly 
capture the geometry and algebra of linear equations. 
Some techniques of the algebra of vector spaces, such 

as the Gram-Schmidt process, have not been applied to 
the construction of relationship matrices. The objective 
of this paper is to present and characterize methods to 
construct orthogonal additive ( G ) and dominance ( D ) 
genomic relationship matrices using vector space alge-
bra (Gram-Schmidt process) without requiring HWE. A 
comparison of the newly proposed methods to construct 
G and D matrices to existing methods is carried out using 
a dataset of Large-White × Landrace crossbred pigs.

Theory and methods
Scaling and centering the genomic relationship matrix
In the statistical parameterization, breeding values are 
modeled using the average of allele substitution effects at 
genotyped loci, rather than genotypic values. This param-
eterization requires the assumption of HWE. In 1941, 
Fisher already pointed out that computation of breeding 
values must assume random mating [11]. Later and along 
the same line, Falconer stated: “The concept of breeding 
value is shown to have no useful meaning when mating is 
not random” [12]. Therefore, the statistical parameteriza-
tion will not be considered further and only the biological 
parameterization will be addressed in the next sections.

The statistical model for genomic prediction with addi-
tive and dominance effects in the biological parameteri-
zation [6, 13] is:

where yi is the phenotypic record of the i-th individual; 
µ is the population mean; m is the number of markers; 
aj and dj are the additive and dominance effects of the j
-th marker; zij is 1, 0, and − 1 for the i-th individual with 
genotype at the j-th marker AA , Aa and aa ; sij is 0, 1, and 
0 for the i-th individual with genotype at the j-th marker 
AA , Aa and aa ; respectively; and ei is the error. In matrix 
notation, Model (1) is:

where y is a vector of phenotypes, µ is the mean; Za and 
Sd are matrices with n rows (number of individuals) and 
m columns (number of markers) with values as defined 
above for zij and sij relating information on each individ-
ual genotype with additive and dominance effects; a and 
d are vectors of additive and dominance effects, respec-
tively; and e is a vector of errors. The additive and domi-
nance covariance matrices associated with the random 
additive and dominance effects in this model are:

(1)yi = µ+

m
∑

j=1

zijaj +

m
∑

j=1

sijdj + ei,

y = 1µ+ Zaa + Sdd + e,
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where G and D are additive and dominance genomic rela-
tionship matrices; σ 2

a  and σ 2
d  are the additive and domi-

nance variance, respectively; Ha and Hd are matrices 
with n rows and m columns for additive and dominance 
scales. These scales are used to center all markers so the 
mean contributed by each marker is zero. SCa and SCd 
are used for scaling additive and dominance relationship 
matrices. Different assumptions and methods to center 
and scale relationships lead to alternative G and D matri-
ces. First, we present several existing models to construct 
additive and dominance relationships matrices. Second, 
we propose methods to test for the lack of orthogonal-
ity between the additive and dominance scales. Third, we 
show a general method from vector space algebra, the 
Gram-Schmidt process, to generate alternative orthogo-
nal models. Last, we present the results obtained by 
applying these methods to a dataset consisting of cross-
bred animals.

Hardy–Weinberg equilibrium parameterization
Assuming Model (1), the population is segregating for 
the three genotypes AA(j) , Aa(j) and aa(j) at the j-th 
locus, with alleles A(j) and a(j) and corresponding fre-
quencies p(j) and q(j) . The genotypic values under an 
additive-dominance model of the three genotypes are 
a(j) , d(j) and −a(j) , respectively. VanRaden [2] proposed 
centering of additive marker effects by subtracting the 
mean additive effect, resulting in the additive genetic val-
ues: 

(

2− 2p(j)

)

a(j) , 
(

1− 2p(j)

)

a(j) , 
(

−2p(j)

)

a(j) , for 
individuals with genotypes AA(j) , Aa(j) and aa(j) , respec-
tively. Therefore, the scales at the column corresponding 
to the j-th marker in Ha are:

Assuming HWE, Su et al. [6] and Vitezica et al. [5] pro-
posed centering of dominance marker effects by sub-
tracting the mean dominance effect, resulting in 
(

−2p(j)q(j)

)

d(j) , 
(

1− 2p(j)q(j)

)

d(j) , and 
(

−2p(j)q(j)

)

d(j) for individuals with genotypes AA(j) , 
Aa(j) and aa(j) , respectively. Therefore, the scales at the 
column corresponding to the j-th marker in Hd are:

Cov(a) =
HaH

′

a

SCa
σ 2
a = Gσ 2

a ,

Cov(d) =
HdH

′

d

SCd
σ 2
d = Dσ 2

d ,

(2)
uhwAA(j)

=

(

2− 2p(j)

)

,uhwAa(j)
=

(

1− 2p(j)

)

, and

uhwaa(j)
=

(

−2p(j)

)

Assuming HWE, VanRaden [2] scaled the additive rela-
tionship matrix constructed with scales of Eq.  (2) by 
∑m

j=1

(

2p(j)q(j)

)

 , while Su et al. [6], and Vitezica et al. [5] 
proposed scaling the dominance relationship matrix 
under the assumption of HWE and constructed with 
scales in Eq. (3) by 

∑m
j=1

(

2p(j)q(j)

)(

1− 2p(j)q(j)

)

 . This 
approach has two problems. The first one is that it results 
in functional rather than statistical values associated with 
locus genotypes, which can be used to derive genotypic 
values of the individual but not breeding values that pre-
dict performance of progeny, as discussed before. Sec-
ond, centering of the dominance incidence matrix is not 
necessarily achieved when the population is not in HWE. 
For example, the mean for the j-th marker for the cen-
tered dominance matrix is equal to pAA(j)

(

−2p(j)q(j)

)

+

pAa(j)

(

1− 2p(j)q(j)

)

+ paa(j)

(

−2p(j)q(j)

)

 , where pAA(j) , 
pAa(j) , and paa(j) are the frequencies of AA , Aa and aa 
genotypes at the j-th marker, respectively. It reduces to 
pAa(j) − 2p(j)q(j) and is not equal to 0 if the population is 
not in HWE. For example, an F1 cross may have an excess 
of heterozygotes compared to HWE frequencies.

Non‑Hardy–Weinberg equilibrium parameterization
Here, we propose a non-HWE parameterization using 
functional marker effects based on the mean and the var-
iance of additive and dominance genotypic values. Thus, 
multiplying genotypic frequencies by their correspond-
ing values and summing, the additive mean for the j-th 
marker is:

Similarly, the variance of the additive genotypic effects 
is obtained by multiplying genotypic frequencies by the 
square of their corresponding values, summing, and sub-
tracting the square of the mean:

After some algebra, the additive variance becomes 

VA(j)
= a2j

[

pAA(j) + paa(j) −
(

pAA(j) − paa(j)

)2
]

 . The 

additive variance contributed by the m markers is then:

(3)

vhwAA(j)
=

(

−2p(j)q(j)

)

, vhwAa(j)
=

(

1− 2p(j)q(j)

)

, and

vhwaa(j)
=

(

−2p(j)q(j)

)

µA(j)
= a(j)pAA(j) − a(j)paa(j) .

VA(j)
= a2j pAA(j) + a2j paa(j) − µ2

A(j)
.

(4)

VA =

m
∑

j=1

[

pAA(j) + paa(j) −
(

pAA(j) − paa(j)

)2
]

a2j
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When subtracting the additive mean from the geno-
typic values, the centered genotypic values for individuals 
with genotypes AA , Aa and aa at the j-th marker in 
absence of HWE are 

(

1−

(

pAA(j) − paa(j)

))

a(j),
(

−

(

pAA(j) − paa(j)

))

a(j) , and 
(

−1−

(

pAA(j) − paa(j)

))

a(j) . Therefore, in the absence of HWE, the scales at the 
column corresponding to the j-th marker in Ha are:

Note that these centered scales reduce to those of Van-
Raden [2] because p(j) = pAA(j) +

1
2
pAa(j).

However, the scaling of the additive relationships can 
be based on Eq. (4), which is different from the classical 
scaling of matrix G in, e.g., VanRaden [2], which is 
∑m

j=1

(

2p(j)q(j)

)

.
The dominance genotypic effects for the j-th marker 

without the assumption of HWE are as first given by 
Alvarez-Castro and Carlborg [8]: −pAa(j)d(j) , (

1− pAa(j)

)

d(j) , and −pAa(j)d(j) for individuals with gen-
otypes AA , Aa and aa , respectively. In the absence of 
HWE, the scales at the column corresponding to the j-th 
marker in Hd are:

The variance contributed by the j-th marker is:

Summing over loci, VD =
∑m

j=1

[

pAa(j) − p2Aa(j)

]

d2
(j)

 , 
which renders the scaling of the dominance relationship 
matrix with 

m
∑

j=1

[

pAa(j) − p2Aa(j)

]

 . Under HWE, the vari-

ance of the dominance effects reduces to 
VD(j)

=

[

2p(j)q(j)

(

1− 2p(j)q(j)

)]

d2
(j)

. which is as given 
by Su et  al. [6]. The resulting additive and dominance 
scales might be correlated (non-orthogonal), which 
makes estimation and interpretation of the results more 
difficult.

(5)

uNO−HW
AA(j)

= 1−

(

pAA(j) − paa(j)

)

,

uNO−HW
Aa(j)

= −

(

pAA(j) − paa(j)

)

, and

uNO−HW
aa(j)

= −1−

(

pAA(j) − paa(j)

)

(6)
vNO−hw
AA(j)

= −pAa(j) , v
NO−hw
Aa(j)

=

(

1− pAa(j)

)

, and

vNO−hw
aa(j)

= −pAa(j)

VD(j)
=

[

pAA(j)p
2
Aa(j)

+ pAa(j)

(

1− pAa(j)

)2

+ paa(j)p
2
Aa(j)

]

d2(j)

=

[

pAa(j) − p2Aa(j)

]

d2(j).

Orthogonal parameterization based on the NOIA method
Based on Cockerham [14], an orthogonal decomposi-
tion of additive and dominance variance components 
was proposed by Alvarez-Castro and Carlborg [8] and 
termed the natural and orthogonal interactions approach 
(NOIA). The requirements for the orthogonal partition 
of variance are:

where uNOIAg(j)
 and vNOIAg(j)

 are the additive and dominance 
scales for the g-th genotype ( g = AA,Aa, aa ) at the j-th 
marker. Requirements (7) and (8) force a comparison of 
deviations around the mean for additive and dominance 
scales. Requirement (9) forces the additive and domi-
nance scales to be uncorrelated (orthogonal).

Vitezica et  al. [7] implemented the orthogonalization 
of NOIA to construct additive and dominance relation-
ships. Thus, the proposed orthogonal scales of Alva-
rez-Castro and Carlborg [8] and Vitezica et  al. [7] for 
individuals with genotypes AA , Aa , and aa are:

After some algebra, scales for the additive component 
in the absence of HWE become the same as for the NOIA 
method:

(7)

m
∑

j=1

pAA(j)u
NOIA
AA(j))

+ pAa(j)u
NOIA
Aa(j)

+ paa(j)u
NOIA
aa(j)

= 0,

(8)

m
∑

j=1

pAA(j)v
NOIA
AA(j)

+ pAa(j)v
NOIA
Aa(j)

+ paa(j)v
NOIA
aa(j)

= 0,

(9)

m
∑

j=1

pAA(j)u
NOIA
AA(j)

vNOIAAA(j)
+ pAa(j)u

NOIA
Aa(j)

vNOIAAa(j)

+ paa(j)u
NOIA
aa(j)

vNOIAaa(j)
= 0,

(10)

uNOIAAA(j)
= −

(

−pAa(j) − 2paa(j)

)

,

uNOIAAa(j)
= −

(

1− pAa(j) − 2paa(j)

)

,

uNOIAaa(j)
= −

(

2− pAa(j) − 2paa(j)

)

uNO−HW
AA(j)

= 1−

(

pAA(j) − paa(j)

)

= −

(

−pAa(j) − 2paa(j)

)

,

uNO−HW
Aa(j)

= −

(

pAA(j) − paa(j)

)

= −

(

1− pAa(j) − 2paa(j)

)

,

uNO−HW
aa(j)

= −1−

(

pAA(j) − paa(j)

)

= −

(

2− pAa(j) − 2paa(j)

)

.
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They also reduce to the VanRaden scales, as shown by 
Joshi et al. [9].

The dominance scales in the NOIA method are:

Equations  (10) and (11) satisfy conditions of orthogo-
nality of Eqs.  (7), (8), and (9). Vitezica et  al. [7] imple-
mented orthogonalization of the NOIA approach by 
scaling the G and D matrices by tr

(

HaH
′

a

)

/n and 
tr
(

HdH
′

d

)

/n , respectively, where Ha and Hd include the 
scales for individuals according to their genotypes in 
Eqs.  (10) and (11), respectively. Therefore, after scaling, 
genomic and dominance relationship matrices become:

Vector space algebra for orthogonal parameterization 
using the Gram‑Schmidt process
We propose to use algebra of vector spaces to construct 
genomic and dominance relationship matrices. The 
Gram-Schmidt process takes several non-orthogonal lin-
early independent functions to construct an orthogonal 
basis over an arbitrary weighting function [15]. First, we 
will use vector space algebra to measure orthogonality 
between the additive and dominance scales.

Vectors space algebra to measure orthogonality
Define vector spaces for additive ( ⇀uj ) and dominance ( ⇀v j) 
for the j-th marker with dimensions equal to the number 
of individuals. The elements of ⇀uj and ⇀v j are the scales to 

(11)

vNOIAAA(j)
=

−

(

2pAa(j)paa(j)

)

(

pAA(j) + paa(j)

)

−

(

pAA(j) − paa(j)

)2
,

vNOIAAa(j)
=

(

4pAA(j)paa(j)

)

(

pAA(j) + paa(j)

)

−

(

pAA(j) − paa(j)

)2
,

vNOIAaa(j)
=

−

(

2pAA(j)pAa(j)

)

(

pAA(j) + paa(j)

)

−

(

pAA(j) − paa(j)

)2

(12)G =
HaH

′

a

tr
(

HaH
′

a

)

/n
,

(13)D =
HdH

′

d

tr
(

HdH
′

d

)

/n
.

center the additive and dominance relationship matrices, 
respectively. Then, Ha and Hd can be constructed as:

The vector spaces for the additive scale, ⇀uj, at the j-th 
marker for individuals with genotypes AA , Aa and aa 
under non-HWE conditions based on Eq. (5) are:

The elements of ⇀v j are dominance scales for individuals 
with genotypes AA , Aa and aa under non-HWE condi-
tions from Eq. (6):

For a given marker, the set of vectors, ⇀uj and ⇀v j , form 
a basis since both vectors span the vector space and the 
vectors in the set are linearly independent. However, the 
set of vectors in this basis is not necessarily orthogonal. 
In this setting, Alvarez-Castro and Carlborg [8] showed 
that orthogonality is only achieved when either the two 
homozygotes are at the same frequency or there is not 
any heterozygote. The angle, θj , between the two vectors, 
⇀
uj and ⇀v j , provides a measure of the degree of orthogo-
nality. From the definition of inner product (p 519 in 
[15]), cos θj for the j-th marker is given by:

where 
〈

⇀
uj ,

⇀
v j

〉

 is the inner product of the vectors ⇀uj and 
⇀
v j and has an expected value equal to:

Ha =

[

⇀
u1

⇀
u2 . . .

⇀
uj

⇀
uj+1 . . .

⇀
um

]

,

Hd =

[

⇀
v1

⇀
v2 . . .

⇀
v j

⇀
v j+1 . . .

⇀
vm

]

.

uAA(j) = 1−

(

pAA(j) − paa(j)

)

uAa(j) = −

(

pAA(j) − paa(j)

)

,

uaa(j) = −1−

(

pAA(j) − paa(j)

)

.

vAA(j) = −pAa(j) ,

vAa(j) =
(

1− pAa(j)

)

,

vaa(j) = −pAa(j) .

cos θj =

〈

⇀
uj ,

⇀
v j

〉

∥

∥

∥

⇀
uj

∥

∥

∥

∥

∥

∥

⇀
v j

∥

∥

∥

,
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and

Taking arc cos in the above formula renders θj in radi-
ans. For θj = 90°, the two vectors are orthogonal. For 
θj ≠ 90°, the two vectors are non-orthogonal, with the 
level of dependency being larger for values of θj near 0° 
or 180°.

Construction of orthogonal G and D matrices using 
the Gram‑Schmidt process
The Gram-Schmidt process can be used to construct an 
orthogonal basis of the additive and dominance scales for 
each marker. The basic idea behind orthogonalization by 
the Gram-Schmidt process is that the first vector is kept 
unchanged, whereas the common component to both 
vectors is removed in the second vector. We explored 
three alternatives for applying the Gram-Schmidt process 
in the context of genomic relationship matrices. The first, 
GSP-A, initiates the process with ⇀u (additive), whereas 
the second, GSP-D, initiates the process with ⇀v (domi-
nance). In the third alternative, GSP-N, additive and 
dominance vector of scales are forced to be of length 1 
after using the scales from GSP-A. Conditions of orthog-
onality from Eqs. (7), (8), and (9) for GSP-A and GSP-D 
are verified in Appendix 1.

GSP‑A Gram‑Schmidt process The goal of the process is 
to obtain orthogonal vectors ⇀τ A and ⇀τD for the additive 
and dominance scales, respectively. The Gram-Schmidt 
process for GSP-A is:

�

⇀
uj ,

⇀
v j

�

= n







pAA(j)

�

1−

�

pAA(j) − paa(j)

���

−pAa(j)

�

− pAa(j)

�

pAA(j) − paa(j)

��

1− pAa(j)

�

+paa(j)

�

−1−

�

pAA(j) − paa(j)

���

−pAa(j)

�







= n
�

−pAa(j)

��

pAA(j) − paa(j)

�

.

∥

∥

∥

⇀
uj

∥

∥

∥
=

√

n

[

pAA(j)

[

1−

(

pAA(j) − paa(j)

)]2

+

[

pAa(j)

[

−

(

pAA(j) − paa(j)

)]2

+ paa(j)

[

−1−

(

pAA(j) − paa(j)

)]2
]

=

√

n

[

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2
]

,

∥

∥

∥

⇀
v j

∥

∥

∥
=

√

n
[

pAA(j) [−pAa(j) ]
2 + pAa(j) [1− pAa(j) ]

2 + paa(j) [−pAa(j) ]
2
]

=

√

n
[

pAa(j)

[

1− pAa(j)

]]

⇀
τ A(j) =

⇀
u(j).

Therefore, the elements of ⇀τ A(j) are the additive scales 
from Eq. (5) for the individuals depending on their geno-
type, AA , Aa , or aa:

For the dominance scales,

where proj⇀
τ A(j)

(

⇀
v(j)

)

=

〈

⇀
τ A(j)

,
⇀
v (j)

〉

〈

⇀
τ A(j)

,
⇀
τ A(j)

〉

⇀
τ A(j) ,,

with 
〈

⇀
τ A(j) ,

⇀
v(j)

〉

= n
(

−pAa(j)

)(

pAA(j) − paa(j)

)

and, 
〈

⇀
τ A(j) ,

⇀
τ A(j)

〉

= n

[

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2
]

.

Substituting 
〈

⇀
τ A(j) ,

⇀
v(j)

〉

 and 
〈

⇀
τ A(j) ,

⇀
τ A(j)

〉

 into the 
above equation yields:

Therefore, the elements of the orthogonal basis for the 
dominance vector, ⇀τD(j) , for the three genotypes are:

(14)

τA(j) (AA) = 1−

(

pAA(j) − paa(j)

)

,

τA(j) (Aa) = −

(

pAA(j) − paa(j)

)

,

τA(j) (aa) = −1−

(

pAA(j) − paa(j)

)

⇀
τD(j) =

⇀
v(j) − proj⇀

τ A(j)

(

⇀
v(j)

)

,

⇀
τD(j) =

⇀
v(j) −

(

−pAa(j)

)(

pAA(j) − paa(j)

)

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2

⇀
τ A(j) .
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As shown in Appendix 2, the elements for centering the 
three genotypes from Eq.  (15) are algebraically identical 
to those derived under the NOIA method:

The first part of the Gram-Schmidt process leads to an 
orthogonal basis of additive and dominance scales for 
each marker. The scaling of additive relationship matrix 
is as shown in Eq 4. For the dominance component, the 
variance contributed by the j-th marker is:

After substituting 
[

4pAA(j)paa(j) + pAA(j) + paa(j)−
(

pAA(j) + paa(j)

)2
]

 

by its value: pAA(j) + paa(j)−
[(

pAA(j) − paa(j)

)]2

 , the 
above equation reduces to:

(15)

τD(j) (AA) = −pAa(j) −
−pAa(j)

(

pAA(j) − paa(j)

)

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2

[

1−

(

pAA(j) − paa(j)

)]

,

τD(j) (Aa) =
(

1− pAa(j)

)

−
−pAa(j)

(

pAA(j) − paa(j)

)

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2

[

−

(

pAA(j) − paa(j)

)]

,

τD(j) (aa) = −pAa(j) −
−pAa(j)

(

pAA(j) − paa(j)

)

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2

[

−1−

(

pAA(j) − paa(j)

)]

τD(j) (AA) =
−

(

2pAa(j)paa(j)

)

(

pAA(j) + paa(j)

)

−

(

pAA(j) − paa(j)

)2
,

τD(j) (Aa) =

(

4pAA(j)paa(j)

)

(

pAA(j) + paa(j)

)

−

(

pAA(j) − paa(j)

)2
,

τD(j) (aa) =
−

(

2pAA(j)pAa(j)

)

(

pAA(j) + paa(j)

)

−

(

pAA(j) − paa(j)

)2
.

VD(j)
=pAA(j)τ

2
D(j)

(AA)d2(j) + pAa(j)τ
2
D(j)

(Aa)d2(j) + paa(j)τ
2
D(j)

(aa)d2(j)

=
4pAA(j)pAa(j)paa(j)

(

pAa(j)paa(j) + 4pAA(j)paa(j) + pAA(j)pAa(j)

)

[

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2
]2

d2(j)

=

4pAA(j)pAa(j)paa(j)

[

4pAA(j)paa(j) + pAA(j) + paa(j) −
(

pAA(j) + paa(j)

)2
]

[

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2
]2

d2(j).

The only difference between GSP-A and the NOIA 
orthogonalization is in the scaling of the G and D matrices. 
The scaling in Eqs.  (12) and (13) of Vitezica et  al. [7] was 
based on the realized trace of HaH

′

a or HdH
′

d . In GSP-A, the 
expected values of those expressions are used for the scaling:

For very large n , the left and the right-hand sides of the 
above equations will be the same and also, the relation-
ship matrices constructed using either method.

VD(j)=
=

4pAA(j)pAa(j)paa(j)

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2
d2(j).

E





tr
�

HaH
′

a

�

n



 =

m
�

j=1

�

pAA(j) + paa(j) −
�

pAA(j) − paa(j)

�2
�

,

E





tr
�

HdH
′

d

�

n



 =

m
�

j=1







4pAA(j)pAa(j)paa(j)

pAA(j) + paa(j) −
��

pAA(j) − paa(j)

��2






.
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GSP‑D Gram‑Schmidt process The Gram-Schmidt pro-
cess for GSP-D is initiated with the vector for the domi-
nance effects and then the common part of the additive 
and dominance effects is removed when constructing an 
orthogonal basis:

Therefore, dominance scales for the three genotypes in 
⇀
τD(j) using Eq. 6 are:

⇀
τD(j) =

⇀
v(j).

with 
〈

τD(j) ,
⇀
u(j)

〉

= n
(

−pAa(j)

)(

pAA(j) − paa(j)

)

,

and 
〈

⇀
τD(j) ,

⇀
τD(j)

〉

= npAa(j)

[

1− pAa(j)

]

.

Substituting the above equations into Eq. (17) yields:

Therefore, the elements of ⇀τ A(j) for the three genotypes 
are:

The additive variance contributed for the m markers is:

GSP‑N Gram‑Schmidt process The first step of the 
GSP-N process leads to an orthogonal basis of additive 
and dominance scales based on GSP-A. The next and final 
step of the GSP-N process is to obtain an orthonormal 
basis for additive and dominance scales by dividing ⇀τ A(j) 

⇀
τ A(j) =

⇀
u(j) −

(

−pAa(j)

)(

pAA(j) − paa(j)

)

pAa(j)

[

1− pAa(j)

]

⇀
τD(j).

(18)

τA(j) (AA) =
[

1−

(

pAA(j) − paa(j)

)]

−
−pAa(j)

(

pAA(j) − paa(j)

)

pAa(j)

[

1− pAa(j)

]

(

−pAa(j)

)

=

[

1−

(

pAA(j) − paa(j)

)]

+
−pAa(j)

(

pAA(j) − paa(j)

)

[

1− pAa(j)

] =
2paa(j)

[

1− pAa(j)

]

(19)
τA(j) (Aa) =

[

−

(

pAA(j) − paa(j)

)]

−
−pAa(j)

(

pAA(j) − paa(j)

)

pAa(j)

[

1− pAa(j)

]

(

1− pAa(j)

)

=−

(

pAA(j) − paa(j)

)

+

(

pAA(j) − paa(j)

)

= 0

(20)

τA(j) (aa) =
[

−1−

(

pAA(j) − paa(j)

)]

−
−pAa(j)

(

pAA(j) − paa(j)

)

pAa(j)

[

1− pAa(j)

]

(

−pAa(j)

)

=

[

−1−

(

pAA(j) − paa(j)

)]

+
−pAa(j)

(

pAA(j) − paa(j)

)

[

1− pAa(j)

] =
−2pAA(j)

[

1− pAa(j)

]

VA(j)
=

m
�

j=1







4pAA(j)p
2
aa(j)

+ 4paa(j)p
2
AA(j)

�

1− pAa(j)

�2






a2(j)

=

m
�

j=1





4pAA(j)paa(j)
�

pAA(j) + paa(j)

�



a2(j).

The scaling for D is the same as for the scaling in the 
non-Hardy–Weinberg parameterization, ∑m

j=1

[

pAa(j) − p2Aa(j)

]

.
The additive scales are obtained as

where proj⇀
τ D(j)

(

⇀
u(j)

)

=

⇀
τ D(j)

,
⇀
u (j)

⇀
τ D(j)

,
⇀
τ D(j)

⇀
τD(j),

(16)

τD(j) (AA) = −pAa(j) ,

τD(j) (Aa) =
(

1− pAa(j)

)

,

τD(j) (aa) = −pAa(j) .

(17)
⇀
τ A(j) =

⇀
u(j) − proj⇀

τ D(j)

(

⇀
u(j)

)

,
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and ⇀τD(j) by the norm of each vector. The length of result-
ing vectors in GSP-N is unity, which implies that all mark-
ers contribute equally when constructing the genomic 
relationship matrices. Using the scales for ⇀τ A(j) and ⇀τD(j) 
as described in Eqs. (14) and (15), the norm of the additive 
and dominance vectors are obtained as follows:

Then, matrices Ha and Hd become:

The resulting relationship matrices still need to be 
scaled, which can be easily done by dividing G and D by 
[

tr
(

HaH
′

a

)

n

]

 and 

[

tr
(

HdH
′

d

)

n

]

, respectively.

Animals and data
A dataset comprising five trials (PHGC17, PHGC21, 
PHGC23, PHGC24, and PHGC25) aimed at investigat-
ing the genetic basis of resistance to porcine reproductive 
and respiratory syndrome virus (PRRSV) after natural 
infection was used for variance component estimation. 

∥

∥

∥

⇀
τ A(j)

∥

∥

∥
=

√

n

[

pAA(j) + paa(j) −
[(

pAA(j) − paa(j)

)]2
]

.

∥

∥

∥

⇀
τD(j)

∥

∥

∥
=

√

√

√

√

√

√

n
4pAA(j)p

2
Aa(j)

p2aa(j)
+ 16p2AA(j)

pAa(j)p
2
aa(j)

+ 4p2AA(j)
p2Aa(j)

paa(j)
[

pAA(j) + paa(j) −
[

pAA(j) − paa(j)

]2
]

=

√

√

√

√

√

n
4pAA(j)pAa(j)paa(j)

pAA(j) + paa(j) −
[

pAA(j) − paa(j)

]2
.

Ha =





⇀
τ A1

�

�

�

⇀
τ A1

�

�

�

⇀
τ A2

�

�

�

⇀
τ A2

�

�

�

. . . ..

⇀
τ Aj

�

�

�

⇀
τ Aj

�

�

�

⇀
τ Aj+1

�

�

�

⇀
τ Aj+1

�

�

�

. . . ..

⇀
τ Am

�

�

�

⇀
τ Am

�

�

�



,

Hd =





⇀
τD1

�

�

�

⇀
τD1

�

�

�

⇀
τD2

�

�

�

⇀
τD2

�

�

�

. . . ..

⇀
τDj

�

�

�

⇀
τDj

�

�

�

⇀
τDj+1

�

�

�

⇀
τDj+1

�

�

�

. . . ..

⇀
τDm

�

�

�

⇀
τDm

�

�

�



.

function. The LOESS function sets a low-degree polyno-
mial at each point using weighted least squares and gives 
more weight to observations that are near the point for 
which response is being estimated and less weight to 
observations further away. This fitting was necessary to 
account for the natural variation in the concentration of 
viremia due to sampling and the methodology used to 
measure viremia in serum. The area under the curve for 
viremia for each individual, which will be referred to as 
viral load (VL), was the phenotype used for estimating 

variance components.
A tissue sample obtained from each pig was used for 

SNP genotyping. DNA extraction and genotyping was 
carried out using the Infinium HD Assay Ultra protocol 
(Illumina Inc.) and the Illumina Porcine SNP60 BeadChip 
[16]. In total, 32,645 single nucleotide polymorphisms 
were used to construct relationship matrices. Details are 
in Gomez-Raya et al. [17].

Construction of G and D matrices and variance component 
estimation
An exact test for HWE conditions was carried out for all 
SNPs in the dataset. This test was performed using the 
Hardy–Weinberg package in the R language (https ://
cran.r-proje ct.org/web/packa ges/Hardy Weinb erg/Hardy 
Weinb erg.pdf ).

Construction of the G and D matrices was performed 
using the six methods described in the previous sections. 
The Kullback–Leibler divergence [18] was used to quan-
tify the divergence between G and D . The Kullback–Lei-
bler divergence [18] from Q to P was computed as:

where µP and µQ are vectors of the means of the n indi-
viduals in the P and Q matrices, respectively. P represents 
a normal multivariate distribution. Multivariate normal 
distribution Q represents an approximation to P . The 
Kullback–Leibler divergence is the average difference of 
the number of bits required for encoding samples of P 

DKL(P�Q ) = 0.5

[

trace
(

Q−1P
)

+
(

µQ − µP

)′

Q−1
(

µQ − µP

)

− n+ ln
|Q|

|P|

]

,

Right after weaning, 903 Landrace × Large White bar-
rows were moved to farms with a history of PRRSV infec-
tions. Blood was drawn weekly and curves of viremia over 
time were constructed using a LOESS (LOcal regrESSion) 

https://cran.r-project.org/web/packages/HardyWeinberg/HardyWeinberg.pdf
https://cran.r-project.org/web/packages/HardyWeinberg/HardyWeinberg.pdf
https://cran.r-project.org/web/packages/HardyWeinberg/HardyWeinberg.pdf
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using a code optimized for Q rather than one optimized 
for P . The unit of Kullback–Leibler divergence is the nat-
ural unit of information (nats) [19]. Values of DKL(P||Q) 
equal to zero means that P and Q are the same distribu-
tions. The Kullback–Leibler divergence is not a true met-
ric since it is not symmetrical and it does not obey the 
triangle inequality. Thus, Kullback–Leibler’s divergence 
from P to Q is different to divergence from Q to P . Asym-
metrical DKL(P||Q) > DKL(Q||P) implies that more infor-
mation is needed to approximate P with Q than the other 
way around. In our analysis, P and Q were either two 
additive or dominance relationship matrices as derived 
for the six methods investigated in this paper.

The statistical model to analyze VL included the fixed 
effects of the mean and trial. Random variables were 
the additive and the dominance scales of the biological 
parameterization, as described in the Theory and meth-
ods section. Heritability ( h2 ) was estimated as the ratio 
of the estimate of additive genomic variance over the 
sum of estimates of the variance of each random com-
ponent. The proportion of dominance variance ( d2 ) was 
estimated by dividing the estimate of the dominance vari-
ance component by the sum of the estimates of all ran-
dom components in the model. The mixed linear models 
were fitted using ASReml [20], with G and D matrices as 
described in the previous sections.

Results
A genome-wide Fisher´s exact test for Hardy–Weinberg 
departures was performed using all SNPs jointly for all 
five trials. A Manhattan plot showed that disequilib-
rium is common in the Landrace × Large-White crosses, 
although the location of SNPs that were in disequilibrium 
did not appear to be random (Fig. 1). There was an aver-
age excess of 4.7% of heterozygotes across the genome. 
Thus, these data are appropriate for investigating the 
properties and comparison of alternative genomic and 
dominance relationships matrices with departures from 
HWE.

A first look at the performance of relationship matri-
ces of the six methods revealed that all except the HW 
approach performed well to attain an average of diagonal 
elements equal to one and an average off diagonal ele-
ments equal to zero (Table 1). The average of the diagonal 
elements of the G matrix of the HW approach was 0.94 
(Table 1). All eigenvalues were positive for all six meth-
ods used to construct genomic relationship matrices.

Kullback–Leibler’s divergence for pairs of combina-
tions of either G or D matrices is in Table 2. Divergence 
from G (GSP-D) to G created by other methods was 
larger than the divergence between other pairs of G 
matrices. It was also slightly asymmetrical, meaning that 
more information is needed to approximate G from 

GSP-D using G from the other methods than the other 
way around. For the dominance relationship matrices, 
the Kullback–Leibler divergence using HW relationship 
distribution is strongly asymmetrical since relationship 
matrices NOIA, GSP-A, GSP-D, or GSP-N require a 
much larger number of bits when using a code optimized 
for HW than the other way around. This could be attrib-
uted again to the increase in heterozygosity in the cross-
breds, resulting in the scales in D from the HW method 
not being actually centered to zero. Divergence from G 
(or D ) matrices in NOIA and GSP-A methods to G (or D ) 
created by other methods were very similar because they 
are equivalent. The only difference between these two 
methods is that NOIA uses tr

(

HaH
′

a

)

/n and 
tr
(

HdH
′

d

)

/n as the denominators of the G and D , 
whereas GSP-A uses just the expected values of these 
expressions.

The methodology of the algebra of vector spaces allows 
to investigate orthogonality between additive and domi-
nance vectors. An angle of 90° between the two vectors 
implies that the elements of the additive and dominance 
scales are orthogonal. Figure  2 shows a density plot 
of the estimates of the angle, θ , between additive and 
dominance vectors for all markers. Results show that a 
majority of markers had an angle between the additive 
and dominance vectors that was close to 90°. In Fig.  3, 
the –log10 (p-value) of Fisher’s exact test for departures 
from HWE is plotted against the allele frequency and the 
angle between additive and dominance vectors for each 
marker when using NO-HW method to construct G and 
D matrices. Markers with intermediate allele frequencies 
tended to show significant departures from HWE and 
tended to have vectors of additive and dominance scales 
that were orthogonal.

Table  3 shows variance component estimates when 
using the six alternative methods to construct G and D 
matrices. The statistical analysis yielded a highly signifi-
cant trial effect, which is attributable to the uncontrolled 
conditions in each trial. The NO-HW method tended to 
have lower estimates of the additive and dominance vari-
ance components than HW method, which is consistent 
with the HW method being upwards biased. Comparing 
estimates from the orthogonal methods, it can be sum-
marized that (a) NOIA and GSP-A resulted in nearly 
identical estimates for both additive and dominance vari-
ance components, as expected; (b) GSP-D resulted in a 
larger estimate of the dominance variance component 
than any of the other methods, which was contrary to 
estimates from the NOIA and GSP-A methods; and (c) 
GSP-N resulted in an estimate of zero for dominance 
variance.
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Fig. 1 Manhattan plot for departures from Hardy–Weinberg equilibrium in the crossbred population using the Fisher´s exact test

Table 1 Average elements of the genomic ( G ) and dominance ( D ) relationship matrix using biological parameterization 
when  assuming Hardy–Weinberg equilibrium (HW), non-Hardy–Weinberg equilibrium (NO-HW), orthogonal NOIA 
(NOIA), or the Gram- Schmidt process for additive (GSP-A), dominance (GSP-D), and orthonormal additive (GSP-N) scales

Relationship matrix

HW NO‑HW NOIA GSP‑A GSP‑D GSP‑N

Average diagonal of G 0.942 0.994 1.000 0.999 0.994 1.000

Average off‑diagonal of G − 0.001 − 0.001 − 0.001 − 0.001 − 0.001 − 0.001

Range of eigenvalues of G 0.000–74.34 0.000–78.45 0.000–78.92 − 0.000 to 78.45 0.001–69.97 0.000–72.17

Average diagonal of D 1.003 0.994 1.000 0.994 1.000 1.000

Average off‑diagonal of D 0.012 − 0.001 − 0.001 − 0.001 − 0.001 − 0.001
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Discussion
Most studies in genetics applied to animal breeding or 
human genetics assume that the populations under study 
are in HWE. Advances in molecular technologies in 
recent years have allowed for a renewed interest in the 
impact of HWE assumptions in genetic analyses [21]. 
Modern animal breeding now relies on genomic predic-
tion [1]. One of the most widely used methods of 
genomic prediction is GBLUP, which consists in replac-
ing the traditional pedigree-based relationship matrix by 
a genomic relationship matrix that incorporates genotype 
information on SNPs. This requires genotype contribu-
tions for each SNP to be centered and scaled for both G 
and D matrices. The first attempt to construct G matrices 
from marker genotypes was by VanRaden [2], whose 
method did not consider dominance and assumed HWE 
for the scaling of the relationship matrix. Later on, a dis-
tinction between genomic relationships constructed 
using biological and statistical parameterization methods 
was proposed [5, 6], which also assumed HWE. A new 
method, NOIA, developed by Alvarez-Castro and Carl-
borg [8] and applied to the construction of genomic rela-
tionship by Vitezica et al. [7] uses an orthogonal partition 
of additive and dominance effects, and does not require 
the assumption of HWE. In this paper, we show that vec-
tor space algebra can be helpful in the construction of 
relationships matrices and in the evaluation of the level of 
departures from orthogonality between additive and 

dominance vectors of scales. We showed that in our data, 
vectors of additive and dominance scales constructed 
using HW-NO are often orthogonal ( θ = 90°). We also 
show that markers at intermediate frequencies tend to 
have significant departures from HWE and their vectors 
of additive and dominant scales are orthogonal. This is 
because the numerator of cos θj is 
n
(

−pAa(j)

)(

pAA(j) − paa(j)

)

 , which becomes zero 
(orthogonality) at intermediate frequencies 
( pAA(j) = paa(j)).

We show in this paper that centering and scaling the 
G matrix using the NOIA method coincides with the 
GSP-A method, which is based on orthogonalization by 
the Gram-Schmidt process. The Gram-Schmidt process 

Table 2 Kullback–Leibler’s divergence for the genomic ( DKL(G1||G2)) and dominance ( DKL(D1||D2)) relationship matrices 
based on different parameterizations

Values in the upper diagonal are DKL(G1||G2))(or DKL(D1||D2)) , while values in the lower diagonal are DKL(G2||G1))(or DKL(D2||D1) ). Parametrizations of relationship 
matrices are: Hardy–Weinberg equilibrium (HW), non‑Hardy–Weinberg equilibrium (NO‑HW), natural and orthogonal interactions approach (NOIA), and Gram‑ 
Schmidt process for additive (GSP‑A), dominance (GSP‑D) and orthonormal additive (GSP‑N)

G2 G1

HW NO‑HW NOIA GSP‑A GSP‑D GSP‑N

HW 0.00 0.90 0.82 0.69 23.58 3.69

NO‑HW 0.81 0.00 0.17 0.18 21.71 2.36

NOIA 0.86 0.32 0.00 0.03 21.51 2.50

GSP‑A 0.72 0.32 0.03 0.00 21.66 2.54

GSP‑D 31.22 26.67 26.11 26.56 0.00 27.88

GSP‑N 4.17 2.58 2.61 2.68 24.69 0.00

D2 D1

HW NO‑HW NOIA GSP‑A GSP‑D GSP‑N

HW 0.00 1938720.00 928502.90 930729.70 1938720.00 324210.90

NO‑HW 7.19 0.00 20.30 20.24 0.00 27.38

NOIA 26.55 19.69 0.00 0.05 19.69 6.17

GSP‑A 26.23 19.39 0.05 0.00 19.39 6.13

GSP‑D 7.19 0.00 20.30 20.24 0.00 27.38

GSP‑N 35.63 30.74 7.03 7.06 30.74 0.00

Fig. 2 Density of the angle between additive and dominance 
components across the genome of the crossbred population. The 
blue vertical bar shows the angle of orthogonality
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converts vectors into an orthogonal system. This is done 
by taking one of the vectors and finding the projection 
of the next vector that is orthogonal to the former vec-
tor. We also showed that algebraically, GSP-A, and con-
sequently, NOIA only centers and scales by accounting 
for the lack of HWE. However, orthogonality is achieved 
in the construction of the D matrix after removing the 
variation that is common to the G and D matrices. Thus, 
the proposed applications of the Gram-Schmidt process 
are equivalent to removing the additive–dominance co-
variation from the other relationship matrix by linear 
regression.

Another alternative to deal with additive-dominance 
co-variation is inclusion of a covariance term between 
additive and dominance effects. This was explored 
by Xiang et  al. [22] based on an equivalent statistical 
model, as proposed by Fernandez et al. [23]. More work 
is needed to compare this model with models that use 
NOIA or GSP-A to construct G and D matrices.

One of the most common situations where HWE does 
not hold is in crossbred populations. Lo et  al. [24] first 
described how to use data on crossbreds and their cor-
responding purebreds to estimate breeding values and 
variance components. In their model, each individual has 
two breeding values; one for purebred performance and 
one for crossbred performance. Ibañez-Escriche et  al. 
[25] first implemented a crossbred model that incorpo-
rates genomic information. More recently, Vitezica et al. 
[26] showed how additive and dominance components 
can be implemented in genomic prediction using pure-
bred and crossbred performance to estimate breeding 
values for purebred animals and their crosses. Our analy-
ses differ from those of Vitezica et al. [26] in that we do 
not use SNP genotype information on purebreds and 
just incorporate SNP genotype information from cross-
breds into genomic relationship matrices, as an exam-
ple with extreme departures from HWE (as expected 
and observed in our analyses). We did not differentiate 
between allele substitution effects according to the breed 
origin of the alleles either. In the analysis of crossbred 
data, the method of Vitezica et al. [26] is more appropri-
ate if the goal is to estimate breeding values of purebreds, 
and SNP genotype information is available on the pure-
bred parents. Nevertheless, their method also assumes 
HWE within each of the purebred parental populations, 
which may affect estimates of variance components.

We observed that roughly between 15 and 25% of all 
the variation for viral load following PRRSV infection is 
of genetic origin. Different methods to center and scale 
relationship matrices provided a different answer to the 
relative proportion of additive and dominance variation. 
HW, NO-HW, and GSP-D obtained a much higher esti-
mate of dominance variance than of additive variance, 
whereas NOIA, GSP-A, and GSP-N resulted in the oppo-
site. This is expected because of the way GSP-A, NOIA, 
and GSP-N are constructed, i.e. by removing common 

Fig. 3 Relationship of the angle between additive and dominance 
components with allele frequency and with –log10(p‑value) of the 
Fisher´s exact test for departures from Hardy–Weinberg equilibrium

Table 3 Estimates of variance components for viral load for the crossbred dataset, using genomic relationship matrices 
constructed with  alternative biological parameterizations: Hardy–Weinberg equilibrium (HW), non-Hardy–Weinberg 
equilibrium (NO-HW), natural and  orthogonal interactions approach (NOIA) and  Gram- Schmidt process for  additive 
(GSP-A), dominance (GSP-D) and orthonormal additive (GSP-N)

h
2 : heritability × 100; d2 : dominance × 100; heritability and dominance are the additive or dominance variance divided by the sum of all variance components; VA : 

Additive variance; VD : dominance variance; VRESIDUAL residual variance; VPHENOTYPIC = VA + VD + VRESIDUAL

Parameters HW NO‑HW NOIA GSP‑A GSP‑D GSP‑N

h
2 4.30 4.01 16.08 16.16 0.00 15.86

d
2 20.35 20.44 1.79 1.80 25.11 0.00

VA 58.68 54.63 220.47 221.82 0.0032 217.10

VD 277.90 278.31 24.57 24.71 340.86 0.000

VRESIDUAL 1029.28 1028.70 1125.84 1125.84 1016.80 1152.07

VPHENOTYPIC 1365.86 1361.64 1370.88 1372.37 1357.66 1369.17
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additive-dominance covariance in the centering of the 
dominance relationship matrix.

Fisher was the first to separate genetic variance into 
additive, dominance, and epistatic components using the 
least squares principle [27]. Later on, Cockerham par-
titioned the epistatic variance into additive × additive, 
additive × dominance, dominance × additive, and domi-
nance × dominance interaction components [14]. Cock-
erham also showed how to scale additive and dominance 
components using a regression model under the assump-
tion of HWE [14]. He stated “This particular set of scales 
(among the many others mathematically possible) was 
chosen for its utility. The scales pertaining to the mar-
ginal comparisons of each locus were chosen to separate 
the marginal variance into the additive (linear) and domi-
nance (quadratic) portions that were long ago shown to 
be useful for expressing simply the correlation between 
parent and offspring and between other relatives”. Con-
cerning hybrids, Stuber and Cockerham showed that a 
proper partitioning can be done in the parental popula-
tions, with each being assumed to be in HWE [28]. The 
NOIA model extends these scales to the situation in 
which the population is not in HWE [8]. Certainly, NOIA 
(or GSP-A) reflects better the linear regression nature, 
for example, of parent–offspring than GSP-D does. Also, 
it is more appropriate to predict response to selection. 
However, different scales in GSP-A (or NOIA or GSP-N) 
versus GSP-D yield different partitions of additive and 
dominance variance components, which deserves fur-
ther investigation to address which of the partitions is 
of interest and for which purpose. In addition, method 
GSP-N standardized the length of the additive and domi-
nance vectors to one, which implies that all markers 
weigh equally when constructing genomic relationship 
matrices, regardless of their frequencies (and/or marker 
locations). More work is needed to understand the impli-
cations and properties of alternative G and D matrices 
constructed using vector space algebra.

Conclusions
Vector space theory provides techniques that can be use-
ful for the construction of relationship matrices in pop-
ulations that are not in HWE. It can provide a measure 
of the degree of departures from orthogonality between 
additive and dominance components. It can also be 
applied to construct orthogonal or orthonormal relation-
ship matrices, such as based on GSP-A, GSP-D, or GSP-
N. The GSP-A method coincides with the NOIA method. 
With the GSP-N method, all markers contribute equally 
when constructing relationship matrices. Alternative 
orthogonal models to construct relationship matrices 
result in different estimates of additive and dominance 
variances, which requires further research.
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Appendices
Appendix 1

Verification of orthogonalization using the Gram‑Schmidt 
process
In this Appendix, the conditions (7), (8), and (9) for 
orthogonalization of the Gram-Schmidt process are veri-
fied for both GSP-A and GSP-D.

Orthogonalization GSP‑A
The three requirements for the orthogonal partition of 
variance components are:

(A1)

m
∑

j=1

pAA(j)τD(j) (AA)+ pAa(j)τD(j) (Aa)+ paa(j)τD(j) (aa) = 0,

(A2)

m
∑

j=1

pAA(j)τA(j) (AA)+ pAa(j)τA(j) (Aa)+ paa(j)τA(j) (aa) = 0,
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(A3)

m
∑

j=1

pAA(j)τA(j) (AA)τD(j) (AA)+ pAa(j)τA(j) (Aa)τD(j) (Aa)

+ paa(j) τA(j) (aa)τD(j) (aa) = 0

where m is the number of markers; τA(j) (k) and τD(j) (k) 
are the additive and dominance scales for the k-th geno-
type ( AA , Aa , aa ) of the j-th marker, respectively. Let 
βj = pAA(j) + paa(j) −

[(

pAA(j) − paa(j)

)]2

 . Substituting 
τD(j) (k) for their values in Eq. (15) into Eq. (A1) yields:

Substituting τA(j) (k) for their values in Eq. (14) into Eq. 
(A2) yields:

Substituting τA(j) (k) and τD(j) (k) for their values in 
Eqs. (14) and (15) into Eq. (A3) yields:

=

m
�

j=1

pAA(j)



−pAa(j) −
−pAa(j)

�

pAA(j) − paa(j)

�

βj

�

1−

�

pAA(j) − paa(j)

��





+ pAa(j)



1− pAa(j) −
−pAa(j)

�

pAA(j) − paa(j)

�

βj

�

−

�

pAA(j) − paa(j)

��





+ paa(j)



−pAa(j) −
−pAa(j)

�

pAA(j) − paa(j)

�

βj

�

−1−

�

pAA(j) − paa(j)

��





=

m
�

j=1

−pAa(j) + pAa(j) −
−pAa(j)

�

pAA(j) − paa(j)

�2

βj
+

−pAa(j)

�

pAA(j) − paa(j)

�2

βj
= 0.

m
∑

j=1

pAA(j)

[

1−

(

pAA(j) − paa(j)

)]

+ pAa(j)

[

−

(

pAA(j) − paa(j)

)]

+ paa(j)

[

−1−

(

pAA(j) − paa(j)

)]

=

m
∑

j=1

(

pAA(j) − paa(j)

)

+

(

pAA(j) + pAa(j) + paa(j)

)[

−

(

pAA(j) − paa(j)

)]

= 0.

m
�

j=1

pAA(j)

�

1−

�

pAA(j) − paa(j)

��



−pAa(j) −
−pAa(j))

�

pAA(j) − paa(j)

�

βj

�

1−

�

pAA(j) − paa(j)

��





+ pAa(j)

�

−

�

pAA(j) − paa(j)

��



1− pAa(j) −
−pAa(j)

�

pAA(j) − paa(j)

�

βj

�

−

�

pAA(j) − paa(j)

��





+ paa(j)

�

−1−

�

pAA(j) − paa(j)

��



−pAa(j) −
−pAa(j)

�

pAA(j) − paa(j)

�

βj

�

−1−

�

pAA(j) − paa(j)

��



.
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Let 

Then, the above equation becomes:

�j = −
−pAa(j)

(

pAA(j) − paa(j)

)

βj
.

m
∑

j=1

pAA(j)

[

1−

(

pAA(j) − paa(j)

)][

−pAa(j) + �j

[

1−

(

pAA(j) − paa(j)

)]]

+ pAa(j)

[

−

(

pAA(j) − paa(j)

)][

1− pAa(j) + �j

[

−

(

pAA(j) − paa(j)

)]]

+ paa(j)

[

−1−

(

pAA(j) − paa

)][

−pAa(j) + �j

[

−1−

(

pAA(j) − paa(j)

)]]

=

m
∑

j=1

pAA(j)

[

−pAa(j) + �j

[

1−

(

pAA(j) − paa(j)

)]]

− paa

[

−pAa(j) + �j

[

− 1−

(

pAA(j) − paa(j)

)

]]

+ pAA(j)

[

−

(

pAA(j) − paa(j)

)][

−pAa(j) + �j

[

1−

(

pAA(j) − paa(j)

)

]]

+ pAa(j)

[

−

(

pAA(j) − paa(j)

)][

1− pAa(j) + �j

[

−

(

pAA(j) − paa(j)

)

]]

+ paa(j)

[

−

(

pAA(j) − paa(j)

)][

−pAa(j) + �j

[

− 1−

(

pAA(j) − paa(j)

)

]]

=

m
∑

j=1

−pAa(j)

(

pAA(j) − paa(j)

)

+ pAA(j)�j

[

1−

(

pAA(j) − paa(j)

)]

− paa(j)�j

[

−1−

(

pAA(j) − paa(j)

)]

+ pAa(j)

(

−

(

pAA(j) − paa(j)

))

+

(

pAA(j) + pAa(j) + paa(j)

)(

−pAa(j)

)(

−

(

pAA(j) − paa(j)

))

+

(

pAA(j) + pAa(j) + paa(j)

)(

pAA(j) − paa(j)

)2

�j −

(

pAA(j) + pAa(j) + paa(j)

)(

pAA(j) − paa(j)

)2

�j

=

m
∑

j=1

−pAa(j)

(

pAA(j) − paa(j)

)

+ �j

(

pAA(j) + paa(j)

)

− �j

[

(

pAA(j) − paa(j)

)2
]

=

m
∑

j=1

−pAa(j)

(

pAA(j) − paa(j)

)

−
−pAa(j)

(

pAA(j) − paa(j)

)

βj

[

pAA(j) + paa(j) −
(

pAA(j) − paa(j)

)2
]

=

m
∑

j=1

−pAa(j)

(

pAA(j) − paa(j)

)

+ pAa(j)

(

pAA(j) − paa(j)

)

= 0.

Orthogonalization GSP‑D
Substituting τD(j) (k) for their values in Eq.  (16) into Eq. 
(A1) yields:
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Substituting τA(j) (k) for their values in Eqs.  (18), (19) 
and (20) into Eq. A2 yields:

Substituting τA(j) (k) and τD(j) (k) for their values in 
Eqs. (6), (18), (19) and (20) into Eq. (A3) yields:

Appendix 2

Equivalence of NOIA and GSP‑A
In this appendix, the equivalence for centering between 
the NOIA and GSP-A is shown. This will be accom-
plished by reducing the formulae obtained by the Gram-
Schmidt process to the formulae of NOIA method for 
each of the three genotypes:

Genotypes AA
Let β = τA, τA = pAA + paa − [(pAA − paa)]

2,
Equation  (15) for individuals with genotypes AA 

becomes:

which is the same Eq.  (11) for genotypes AA as in the 
NOIA method.

m
∑

j=1

pAA(j)

(

−pAa(j)

)

+ pAa(j)

(

1− pAa(j)

)

+ paa(j)

(

−pAa(j)

)

=

m
∑

j=1

−pAa(j)

(

pAA(j) + pAa(j) + paa(j)

)

+ pAa(j) = 0.

m
∑

j=1

pAA(j)

2paa(j)

pAA(j) + paa(j)
+ paa(j)

−2pAA(j)

pAA(j) + paa(j)
= 0.

m
∑

j=1

pAA(j)

2paa(j)

pAA(j) + paa(j)

(

−pAa(j)

)

+ paa(j)

−2pAA(j)

pAA(j) + paa(j)

(

−pAa(j)

)

= 0.

τD(AA) =− pAa −
−pAa(pAA − paa)

β
[1− (pAA − paa)]

=− pAa +
pAa

[

(pAA − paa)− (pAA − paa)
2
]

β

=− pAa +
pAa

[

(pAA + paa)− (pAA − paa)
2 − 2paa

]

β

=− pAa +
pAa[β − 2paa]

β

=
−pAaβ + pAa[β − 2paa]

β

=
−2pAapaa

pAA + paa − [(pAA − paa)]
2
,

Genotypes Aa
Equation  (15) for individuals with genotypes Aa 
becomes:

which is the same Eq.  (11) for genotypes Aa as in the 
NOIA method.

Genotypes aa
Equation (15) for individuals with genotypes aa becomes:

which is the same Eq.  (11) for genotypesaa as in the 
NOIA method.
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