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Computing strategies for multi-population 
genomic evaluation
Andrés Legarra1* , David González‑Diéguez1,2  and Zulma G. Vitezica1  

Abstract 

Background: Multiple breed evaluation using genomic prediction includes the use of data from multiple popula‑
tions, or from parental breeds and crosses, and is expected to lead to better genomic predictions. Increased complex‑
ity comes from the need to fit non‑additive effects such as dominance and/or genotype‑by‑environment interactions. 
In these models, marker effects (and breeding values) are modelled as correlated between breeds, which leads to 
multiple trait formulations that are based either on markers [single nucleotide polymorphism best linear unbiased 
prediction (SNP‑BLUP)] or on individuals [genomic(G)BLUP)]. As an alternative, we propose the use of generalized least 
squares (GLS) followed by backsolving of marker effects using selection index (SI) theory.

Results: All investigated options have advantages and inconveniences. The SNP‑BLUP yields marker effects directly, 
which are useful for indirect prediction and for planned matings, but is very large in number of equations and is struc‑
tured in dense and sparse blocks that do not allow for simple solving. GBLUP uses a multiple trait formulation and is 
very general, but results in many equations that are not used, which increase memory needs, and is also structured 
in dense and sparse blocks. An alternative formulation of GBLUP is more compact but requires tailored programming. 
The alternative of solving by GLS + SI is the least consuming, both in number of operations and in memory, and it 
uses only single dense blocks. However, it requires dedicated programming. Computational complexity problems 
are exacerbated when more than additive effects are fitted, e.g. dominance effects or genotype x environment 
interactions.

Conclusions: As multi‑breed predictions become more frequent and non‑additive effects are more often included, 
standard equations for genomic prediction based on Henderson’s mixed model equations become less practical 
and may need to be replaced by more efficient (although less general) approaches such as the GLS + SI approach 
proposed here.
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Background
For genomic prediction in livestock and crops, marker 
effects are often modelled as different but correlated effects 
across populations [1, 2]. This results in a multiple trait set-
ting, in which each environment or population is modelled 
as a different trait. As individuals are present in a single 
environment, there is no covariance between other ran-
dom effects (such as residual or permanent environmental 

effects). This leads to particular structures of the incidence 
matrices that make general computational strategies less 
efficient. In this work, we discuss some of these strategies, 
show that general strategies such as standard individual-
based multiple trait genomic best linear unbiased predic-
tion (GBLUP) leads to high computational redundancy, 
and we highlight that the old method of generalized least 
squares (GLS) followed by selection index (SI) [3, 4] is a 
competing strategy in terms of efficiency. The motiva-
tion for the comparison of these strategies was the need 
to obtain estimates of marker effects in a computation-
ally efficient manner, for their use in planning assortative 
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matings in a two-way breeding scheme [5], using data from 
two purebred populations and a crossbred population, for a 
total of ~ 50K animals and genotypes at ~ 50K single nucle-
otide polymorphisms (SNPs). Here, we are concerned with 
medium-sized data sets, but with very complex models, 
where genetic evaluation can be done by exact (non-itera-
tive) methods, i.e. by numerical inversion. This is a popular 
strategy for genomic evaluation in crops and in some popu-
lations of monogastric livestock.

Methods
For our argumentation, and following the example of [5], 
we assume additive ( a ) and dominant ( d ) SNP effects that 
are correlated across the different populations. In princi-
ple, the model can be extended to higher-order effects 
such as epistasis. The dominance effects have an a priori 
mean of 0 because genomic inbreeding is included in the 
model as a covariate [6]. For the example, we consider 
three populations but any number of populations can be 
accommodated. For each population i (i = {1, 2, 3}) , we 
have a single trait vector of phenotypes, yi , with the fol-
lowing linear model:

where βi contains the fixed effects specific to population 
i (e.g., a mean and an inbreeding depression covariate), 
ai and di are additive and dominance SNP effects, respec-
tively, specific to population i , with incidence matrices 
coded, e.g., as Zi = {−1, 0, 1} and Wi = {0, 1, 0} . Other 
codings are possible, such as in terms of breeding values 
and dominance deviations to achieve orthogonality [7]. 
The covariance structure, written using the Kronecker 
product ⨂, is:

for G0a =




σ 2
a1 σa12 σa13

σa21 σ 2
a2 σa23

σa31 σa32 σ 2
a3



 , the covariance matrix of 

additive marker effects, with inverse G−1
0a =




g110a g120a g130a
g210a g220a g230a
g310a g320a g330a





.

yi = Xiβi + Ziai +Widi + ei,

Var




a1
a2
a3



 = G0a ⊗ I =




Iσ 2

a1 Iσa12 Iσa13
Iσa21 Iσ 2

a2 Iσa23
Iσa31 Iσa32 Iσ 2

a3



,

for G0d =




σ 2

d1
σd12 σd13

σd21 σ 2

d2
σd23

σd31 σd32 σ 2

d3



 , with inverse 

G
−1

0d =





g11
0d g12

0d g13
0d

g21
0d g22

0d g23
0d

g31
0d g32

0d g33
0d



.

Based on this notation, several equivalent estimators 
are derived in the following. We assume that variance 
components are known and that all individuals have 
a single record. Note that, by construction, we have a 
highly parameterized model, which in the GBLUP case 
has (many) more unknowns than records. I.e., each 
individual has an unknown additive and a dominance 
effect for each population but only one record in only 
one of the populations.

SNP‑BLUP
This model is parameterized in terms of SNP effects 
across the different populations, resulting in the follow-
ing structure of the left-hand side (LHS) of the mixed 
model equations (MME) (for clarity, only the random 
effects part is shown):

Var




d1
d2
d3



 = G0d ⊗ I =




Iσ 2

d1 Iσd12 Iσd13
Iσd21 Iσ 2

d2 Iσd23
Iσd31 Iσd32 Iσ 2

d3



,

Var




e1
e2
e3




= R =




Iσ 2

e1
0 0

0 Iσ 2

e2
0

0 0 Iσ 2

e3



,

Var




y1
y2
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′
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′

3

Z2σa21Z
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′

2
Z2σa23Z

′

3

Z3σa31Z
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′
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′

3





+




W1σ

2

d1
W
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′
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′
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′
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′
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′
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′
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+
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0 0
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e2
0

0 0 Iσ 2

e3





= GA +GD + R
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This LHS is composed of several dense blocks of the 
form Z′

1Z1σ
−2
e1 + Ig110a , several sparse blocks of the form 

Ig120a , and several zero blocks. This makes the use of 
current “state of the art” sparse matrix software ineffi-
cient, because most gains due to sparsity are lost. As a 
result, it may be more efficient to work with full stor-
age, i.e. dense matrices. However, the size of the equa-
tions is rather large, i.e. 6m , where m is the number of 
SNPs. For instance, an analysis with 50  K SNP panels 
would involve MME of size 300 K and the inversion of 
the LHS would consume O(6m)3 operations. The size of 
these equations are, however, invariant to the number 
of records n.

GBLUP using a standard multiple trait formulation
There are two possible implementations of GBLUP. The 

first considers three additive values and three dominance 
values per individual (one for each population). For each 
random effect, the MME use a single matrix that is arbi-
trarily scaled across all populations (the scale is arbitrary 
because there is no meaningful scaling factor that yields 
coherent “relationships” across the three populations). 
For instance, a possible matrix for the additive effect is:





. . .

Z
′

1Z1σ
−2
e1 + Ig110a Ig120a Ig130a Z

′

1W1σ
−2
e1 0 0

Ig210a Z
′

2Z2σ
−2
e2 + Ig220a Ig230a 0 Z

′

2W2σ
−2
e2 0

Ig310a Ig320a Z
′

3Z3σ
−2
e3 + Ig330a 0 0 Z

′

3W3σ
−2
e3

W
′

1Z1σ
−2
e1 0 0 W

′

1W1σ
−2
e1 + Ig11

0d Ig12
0d Ig13

0d

0 W
′

2Z2σ
−2
e2 0 Ig21

0d W
′

2W2σ
−2
e2 + Ig22

0d Ig23
0d

0 0 W
′

3Z3σ
−2
e3 Ig31

0d Ig32
0d W

′

3W3σ
−2
e3 + Ig33

0d





G∗
A =




Z1Z

′

1 Z1Z
′

2 Z1Z
′

3

Z2Z
′

1 Z2Z
′

2 Z2Z
′

3

Z3Z
′

1 Z3Z
′

2 Z3Z
′

3





with 
�
G∗
A

�−1
=




G
∗(11)
A G

∗(12)
A G

∗(13)
A

G
∗(21)
A G

∗(22)
A G

∗(23)
A

G
∗(31)
A G

∗(32)
A G

∗(33)
A



.

Note that the cost of inversion of G∗
A is O

(
n3
)
 . Note 

also that, in order to describe covariances between 
individuals, G∗

A must be multiplied by the SNP effect 
variance (e.g. σ 2

a1 ), rather than by the population vari-
ance, which is why we prefer not to refer to G∗

A as con-
taining “relationships”. A similar matrix G∗

D is defined 
for dominance effects. The two matrices G∗

A and G∗
D 

are used in a multiple trait formulation with missing 
records for each trait, using the Kronecker factoriza-
tion. This results in the following structure of LHS, as 
for multiple trait analysis (for clarity, only a portion of 
the structure is shown, for additive effects for two of 
the three populations):

A similar pattern results for the dominance effects. 
There are also corresponding cross-products of inci-
dence matrices in the additive x dominance blocks, e.g. 
Iσ−2

e1  . Thus, the LHS are composed of a dense formu-
lation where each row has two times three blocks of 
size n , leading to 6n equations (and inversion cost of 
O(6n)3 ). To our knowledge, this is the formulation used 
by standard BLUP/REML software programs (blupf90, 
Wombat, ASREML) with elements stored in memory. 
Note that these MME require GA and GD to be full 
rank, which is often not the case (because of the pres-
ence of clones, or as a result of “centering” the Z and W 





. . .
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A g120a G

∗(32)
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∗(33)
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G
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A g210a G

∗(12)
A g210a G

∗(13)
A g210a G

∗(11)
A g220a G

∗(12)
A g220a G

∗(13)
A g220a

G
∗(21)
A g210a G

∗(22)
A g210a G

∗(23)
A g210a G

∗(12)
A g210a Iσ−2

e2 +G
∗(22)
A g220a G

∗(23)
A g220a

G
∗(31)
A g210a G

∗(32)
A g210a G

∗(33)
A g210a G

∗(13)
A g210a G

∗(23)
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∗(33)
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.
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matrices, or because n > m ). Matrices GA and GD may, 
therefore, require some “blending”.

GBLUP using a compact formulation
The second option for the formulation of GBLUP, which 
requires much less memory, directly uses the inverses of 
the covariance matrices GA and GD (again, assuming that 
they are, or have been made, invertible), rather than the 
Kronecker factorization of covariances, e.g.:

and then it uses the following LHS structure:

which is of size 2n , but is still considerably dense.
None of the above alternatives (SNP-BLUP or either 

GBLUP) are very satisfying since they all involve large 
matrices of size > n or > m , and only SNP-BLUP directly 
leads to estimates of SNP effects, which are required to 
predict newly genotyped animals (without re-running the 
evaluation) or to arrange assortative matings.

GLS and selection index formulation
An alternative is to use GLS followed by SI theory, as 
shown by Henderson [3, 4]. First, we estimate the fixed 
effects by GLS:

after which SNP effects are estimated through covari-
ances as:

G
−1

A
=




Z1σ

2

a1
Z

′

1
Z1σa12Z

′

2
Z1σa13Z

′

3

Z2σa21Z
′

1
Z2σ

2

a2
Z

′

2
Z2σa23Z

′

3

Z3σa31Z
′

1
Z3σa32Z

′

2
Z3σ

2

a3
Z

′

3




−1

=




G
(11)
A

G
(12)
A

G
(13)
A

G
(21)
A

G
(22)
A

G
(23)
A

G
(31)
A

G
(32)
A

G
(33)
A



,





. . .

Iσ−2
e1 +G

(11)
A G

(12)
A G

(13)
A Iσ−2

e1 0 0

G
(21)
A Iσ−2

e2 +G
(22)
A G

(23)
A 0 Iσ−2

e2 0

G
(31)
A G

(32)
A Iσ−2

e3 +G
(33)

A 0 0 Iσ−2
e3

Iσ−2
e1 0 0 Iσ−2

e1 +G
(11)
D G

(12)
D G

(13)
D

0 Iσ−2
e2 0 G

(21)
D Iσ−2

e2 +G
(22)
D G

(23)
D

0 0 Iσ−2
e3 G

(31)
D G

(32)
D Iσ−2

e3 +G
(33)
D





,

β̂ =

(
X

′

V−1X
)−1

X
′

V−1y,

â = C
′

aV
−1

(
y − Xβ̂

)
,

where Ca = Cov
(
y, a′

)
 and Cd = Cov

(
y,d

′
)
 . Construct-

ing V is actually easy, because it is just a sum of matrices. 
Provided V is invertible, and using a single inversion, we 
can solve for β first and then backsolve for a and d . In the 
multi-population case, this may be computationally sim-
pler than the SNP-BLUP and GBLUP strategies because 
V is smaller (of size n ) than several of the G matrices or 
LHS matrices in the SNP-BLUP and GBLUP formula-
tions. Moreover, V is invertible by construction, while GA 
and GD may not be full rank and may need some “blend-
ing”. Several authors [8–10] have already pointed out that 
the GLS formulation is computationally more compact 
when MME are non-sparse and requires, in principle, 
fewer computations.

Therefore, to estimate SNP effects for multi-population 
evaluation, we propose the following algorithm based on 

GLS and SI. Assume that there are n1 , n2 , and n3 records 
for each population:

1. Read data, build X , Z and W.
2. Create empty V of the right size ( n = n1 + n2 + n3).
3. Add residual variances to V.
4. Add contributions from populations 1, 2, 3 and a , d , e 

to V.
5. Invert V (with associated cost O(n3)).
6. Solve for fixed effects: β̂ =

(
X

′
V−1X

)−1

X
′
V−1y.

7. Solve for random effects using covariances as 
described in the following. This can be done in steps 
( Z1 , then Z2 , etc.), specifically:

d̂ = C
′

dV
−1

(
y − Xβ̂

)
.

â = C
′

aV
−1

(
y − Xβ̂

)

d̂ = C
′

dV
−1

(
y − Xβ̂

)
.
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To compute â we need C′

a = Cov

(
a, y

′
)
 the covariance 

of a with y , which is:

The algorithm to compute â then is:

 7a. Build yc = V−1
(
y − Xβ̂

)
.

 7b. Then v =




v1

v2

v3



 =




Z

′

1 0 0

0 Z
′

2 0

0 0 Z
′

3








yc1
yc2
yc3



=




Z

′

1y
c
1

Z
′

2y
c
2

Z
′

3y
c

3



.

And finally 




�a1
�a2
�a3




=




Iσ 2

a1
Iσa12 Iσa13

Iσa21 Iσ 2

a2
Iσa23

Iσa31 Iσa32 Iσ 2

a3








v1
v2
v3



.

=




v1σ

2

a1
+ v2σa12 + v3σa13

v1σa21 + v2σ
2

a2
+ v3σa23

v1σa31 + v2σa32 + v3σa3





We then proceed similarly for d.
Useful by-products of the inversion-based (as opposed 

to iterative) computation of BLUP are reliabilities ran-
dom effect predictions, which are usually obtained from 
prediction error variances. Prediction error variances of 
estimates of SNP effects can also be used in genome-wide 
association studies to assess significance of SNP effects. 
For the particular case of GLS + SI, individual reliabilities 
can be obtained from the inverses V−1 and 

(
X

′
V−1X

)−1

 
and from the covariances of y with the different random 
effects [4]. Efficient algorithms for REML based on the 
GLS formulation also exist [10, 11].

Iterative methods for genetic evaluation
In contrast to the exact inversion methods described 
above, most genetic evaluation software used for live-
stock use iterative methods that do not invert matrices or 
even set up MME explicitly, e.g. [12]. Iterative methods 
have two inconveniences compared to exact inversion 
methods: (1) convergence may be slow and is a priori 
unpredictable, and (2) other information such as reliabili-
ties from the inverses of the MME is lost. For the types of 
multi-population models considered here, convergence 
of iterative methods is not always good, because there are 
many more effects than records and, for a given number 
of records, the condition number of the MME worsens 
with each extra effect.

C
′

a =




Iσ 2

a1
Iσa12 Iσa13

Iσa21 Iσ 2

a2
Iσa23

Iσa31 Iσa32 Iσ 2

a3








Z

′

1
0 0

0 Z
′

2
0

0 0 Z
′

3





=




Z

′

1
σ 2

a1
Z

′

2
σa12 Z

′

3
σa13

Z
′

1
σa21 Z

′

2
σ
2

a2
Z

′

3
σa23

Z
′

1
σa31 Z

′

2
σa32 Z

′

3
σ
2

a3



.

We are not aware of iterative methods that use the 
GLS + SI formulation. However, in principle, it is possible 
to solve 

(
X

′
V−1X

)
β̂ = X

′
V−1y without inversion or 

even storage of matrices, by first solving V� = y (so 
� = V−1y) and VM = X (so M = V−1X) , and then (
X

′
M
)
β̂ = X

′
� . To estimate SNP effects using SI, it is 

useful to note that yc = �−Mβ̂.

Discussion
Henderson’s formulation of MME allowed the use of lin-
ear methods for genetic evaluation as opposed to, say, 
likelihoods in pedigrees [13]. The two key discoveries 
of the MME and of the fast (and sparse) construction of 
the inverse of the pedigree-based numerator relation-
ship matrix led to computational efficiency, not only for 
estimation of breeding values, but also for estimation of 
variance components, in which most algorithms use pre-
dictions of random effects and elements from the inverse 
of the MME.

However, sparsity of the MME is only partly retained 
when using dense marker genotypes, as these invariably 
lead to dense cross-products, either as incidence matri-
ces ( Z′Z ) or as covariance matrices (ZZ′ ). In addition, 
the latter (ZZ′ ) need to be inverted for their inclusion in 
MME. Within the framework of the use of linear models 
for genetic evaluation, the use of any computing strat-
egy, including GBLUP, SNP-BLUP, and GLS + SI, is now 
mostly a matter of convenience for the user (availability 
of software) and for the programmer (general and/or 
easy formulations are preferred to complex ones). Com-
putationally, the efficiency of the approach depends on 
the number of records and on the number of markers. In 
our particular problem of multi-breed prediction, gener-
ally, SNP-BLUP is computationally easier when n > m 
(more records than markers), GLS + SI is easier when 
m > n (more markers than records), and GBLUP is easier 
when m > n and the model is notoriously complex to fit 
(e.g. random regressions on time or temperature, corre-
lated animal effects, etc.).

SNP-BLUP models are interesting because they yield 
estimates of marker effects. These allow so-called “indi-
rect” predictions (e.g. for young genotyped animals with 
no own record) to be calculated as the sum of SNP effect 
estimates weighted by gene content at SNPs. Dominance 
(or higher order interaction) effect estimates allow mat-
ings that maximize performance to be optimized. GBLUP 
or GLS + SI also allow estimates of marker effects to be 
obtained using covariances as explained before.

Compared to SNP-BLUP and GBLUP, an advantage of 
GLS + SI is the ability to fit increasingly complex models 
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without increasing the dimensions of the GLS. Examples 
are genotype-by-genotype and genotype-by-environment 
interactions [14, 15], which are of interest, respectively, 
for planned matings and breeding for target environmen-
tal conditions.

The focus of this note was medium-sized populations 
of up to ~ 100K individuals and/or genotyped markers. 
In these populations, it is possible to fit rather com-
plex models while maintaining the favorable features 
of exact methods, including shorter computing time, 
computed reliabilities, maximum likelihood algorithms, 
and even genome-wide associations studies. For very 
large data sets, iteration on data [12, 16–19] are good 
options, as they do not require cross-products to be 
explicitly computed (or only partially) or inversion of 
the MME.

Conclusions
We have shown that for multi-breed prediction, Hen-
derson’s MME (either in terms of marker effects or of 
individual animal effects—SNP-BLUP and GBLUP, 
respectively) do not necessarily lead to the most com-
putationally efficient approach, although it is a very 
flexible one. If most individuals are genotyped, then 
other more parsimonious alternatives could be consid-
ered in addition to GBLUP or SNP-BLUP. The use of 
GLS combined with SI is one of these.
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