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Abstract 

Background: If not accounted for, genotype x environment (G×E) interactions can decrease the accuracy of genetic 
evaluations and the efficiency of breeding schemes. These interactions are reflected by genetic correlations between 
countries lower than 1. In countries that are characterized by a heterogeneity of production systems, they are also 
likely to exist within country, especially when production systems are diverse, as is the case in South Africa. We 
illustrate several alternative approaches to assess the existence of G×E interactions for production traits and age at 
first calving in Holsteins in South Africa. Data from 257,836 first lactation cows were used. First, phenotypes that were 
collected in different regions were considered as separate traits and various multivariate animal models were fitted to 
calculate the estimates of heritability for each region and the genetic correlations between them. Second, a random 
regression approach using long-term averages of climatic variables at the herd level in a reaction norm model, was 
used as an alternative way to account for G×E interactions. Genetic parameter estimates and goodness-of-fit meas-
ures were compared.

Results: Genetic correlations between regions as low as 0.80 or even lower were found for production traits, which 
reflect strong G×E interactions within South Africa that can be linked to the production systems (pasture vs total 
mixed ration). A random regression model including average rainfall during several decades in the herd surroundings 
gave the best goodness-of-fit for production traits. This can be related to a preference for total mixed ration on farms 
with limited rainfall. For age at first calving, the best model was based on a random regression on maximum relative 
humidity and maximum temperature in summer.

Conclusions: Our results indicate that G×E interactions can be accounted for when genetic evaluations of produc-
tion traits are performed in South Africa, by either considering production records in different regions as different 
correlated traits or using a reaction norm model based on herd management characteristics. From a statistical point 
of view, climatic variables such as average rainfall over a long period can be included in a random regression model as 
proxies of herd production systems and climate.
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Background
South Africa is a large country (1,219,600   km2), with 
a wide variety of climatic conditions that range from a 
typical Mediterranean climate with winter rainfall in 
the southwestern corner of the country to a temperate 
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climate in the interior plateau, a subtropical climate in 
the east and a small area in the northwest with a desert 
climate, all with summer rainfall. With an average rainfall 
of only 464 mm, it is a relatively dry country. Most of the 
country has warm, sunny days and cool nights. Winters 
in South Africa occur between June and August [1, 2].

The total number of dairy cattle in South Africa is esti-
mated at about 1.37 million [3] with a majority of Hol-
stein cows. These cows are kept under a total mixed 
ration (TMR) or under a pasture-based production sys-
tem or a combination of both, depending on the geo-
graphical region [4]. Currently between 65 and 75% of 
the milk production is based on pasture. However, many 
of these pasture-based systems increasingly incorporate 
additional feeding such as concentrates or forage crops as 
hay or silage [5].

In South Africa, breeding values for production traits 
are computed three times a year [6]. Currently, no con-
sideration is given to the different production environ-
ments or climatic conditions when bulls are evaluated. In 
most national genetic evaluations, local genotype x envi-
ronment (G×E) interactions are considered as negligible 
for production traits in dairy cattle [7]. However, if these 
interactions are present but ignored [8], they can sub-
stantially decrease the accuracy of the estimated breed-
ing values (EBV) of bulls, generate biases according to 
the production environment of their daughters, and ulti-
mately decrease the efficiency of selection at the farmer 
or country level, i.e. the lower true reliability of the 
genetic evaluations will reflect negatively on the genetic 
gain because bull selection for a particular environment 
is based on inadequate information.

G×E interactions in dairy cattle are most often stud-
ied by defining phenotypic expressions in various envi-
ronments as separate traits [9–15] (say, N traits for N 
environments) and by estimating the genetic correla-
tions between these N separate traits. An estimate that 
is significantly different from 1 is interpreted as a signa-
ture of a G×E interaction. This is, in particular, the basic 
assumption underlying the multiple across-country eval-
uations (MACE) that are routinely calculated by Inter-
bull [10] for national dairy cattle traits. A drawback of 
the MACE approaches is that the number of (co)variance 
genetic components (CGC) to be estimated increases 
quadratically with N. For MACE of milk production 
in the Holstein breed, this represents 435 CGC for 29 
countries [10], which requires significant postprocess-
ing in order to obtain results that are both realistic and 
consistent.

An intermediate option is to consider only n (< N) 
underlying traits, in which case the number of GCG 
increases quadratically only with n. Particular strate-
gies have been proposed to find an optimum number n 

of underlying traits in international genetic evaluations, 
such as rank reduction [16, 17] and principal compo-
nents and factor analyses [18, 19].

At the national level, G×E interactions also exist (e.g., 
[11–13]), and a particular approach to reveal them con-
sists in adding an interaction term to the traditional 
quantitative genetic model. For example, a random 
regression mixed linear model can be built including a 
reaction norm function of a continuous variable [11, 20, 
21], such as a climatic or herd management variable, to 
reflect the fact that the observed phenotype is the result 
of a genetic component which differs according to the 
local environmental conditions [22]. Other strategies 
consist in constructing structural models in which envi-
ronmental and genetic variables are used to describe and 
measure similarities (e.g., between geographical regions). 
In fact, when modelling G×E interactions, there is a con-
tinuum between the two extreme alternatives to describe 
the link between the genetic component and the envi-
ronment of the animal, i.e. “one trait stands for one envi-
ronment” up to “the genetic component is a continuous 
function of environmental parameters”.

The purpose of this study was to illustrate the wide 
range of potential genetic evaluation models along this 
continuum in the particular context of G×E interac-
tions in South African Holstein cows for production 
traits and age at first calving. The same phenotypes will 
be described as separate traits in different regions, or by 
including in the model a reaction norm involving climatic 
characteristics of the herds averaged over a long period. 
For simplicity, only first lactation records are considered 
in this study, to focus more easily on the detection of 
potential G×E interactions. This is in contrast with the 
current genetic evaluation model in South Africa, which 
is based on a 3-lactation fixed regression test-day model 
[6, 23].

Methods
Data from 378,782 first lactation Holstein cows 
recorded over a period of 30  years (1982–2012) were 
used in the analysis. The traits analyzed were first lacta-
tion milk, fat and protein yields (corrected to a 305-day 
equivalent) and age at first calving (AFC) in months. 
Only herds in the seven major administrative regions 
(provinces) with dairy production were considered. 
Cows were required to have a known sire and an age at 
first calving between 20 and 40 months. Contemporary 
groups were defined within herd and included at least 
20 cows that were the progeny of sires with at least 20 
recorded daughters each in the complete data set. After 
editing, records from 257,836 first lactation cows from 
702 herds were first grouped into four regions accord-
ing to global climatic characteristics: Western Cape 
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(1), Eastern Cape (2), Free State, Gauteng, North West 
and Limpopo (3), Kwazulu-Natal (4). Table  1 shows 
the number of observations and average performances 
in each region. The data of 10 global climatic variables 
(yearly rainfall, maximum and minimum temperature, 
maximum and minimum relative humidity, solar radia-
tion, evapotranspiration, maximum temperature in 
summer, maximum humidity in summer and maximum 
solar radiation in summer) from the closest weather 
station, based on the GPS position of the herd, were 
averaged over a period of 50  years and added to each 
herd. To this list, it would have been interesting to add 
a composite climatic variable such as the average or 
extreme daily temperature-humidity index (THI) [24] 
but this was not possible as only yearly averages of tem-
perature and humidity were available. Overall, these 
variables are used to reflect the long-term climatic 
characteristics of the herds and not temporary events 
such as a heat wave or a period of drought. Table 2 pre-
sents the average and standard deviation of each cli-
matic variable in the four groups of regions. For all the 
herds, the feeding system that is categorized in three 

possibilities (pasture-based, total mixed ration (TMR) 
or a mixture between the two) had to be known.

In a first set of analyses, three linear models (summa-
rized in Table 3) were fitted and analyzed using restricted 
maximum likelihood, as implemented in the Wombat 
software [25] The fixed effects included were the same for 
all analyses: herd-year, calving season (quarter) and age at 
first calving in months (except for the analyses consider-
ing age at first calving as the trait under study).

The first model was a univariate model: the phenotype 
was considered for the whole population as a unique trait 
with homogenous variance parameters across environ-
ments. This is basically the same assumption as in the 
current fixed regression test-day model used to estimate 
breeding values of Holstein cows in South Africa [6, 14].

The second model investigated G×E interactions 
between regions using a multivariate model: the same 
phenotypes in each of the four regions were considered 
as four distinct traits, without preconceived hypotheses 
about the source of potential G×E interactions. Genetic 
correlations between traits (here, between regions) were 
estimated as well as the specific genetic and residual 

Table 1 Descriptive statistics of the data set after edits for the four traits studied

N number of animals; SD standard deviation

Region (code) N Mean (± SD)

Milk yield (kg) Fat yield (kg) Protein yield (kg) Age at first 
calving 
(months)

Western Cape (1) 70,864 8119 ± 2513 297 ± 99 249 ± 80 26.6 ± 3.6

Eastern Cape (2) 40,559 6072 ± 1529 218 ± 59 194 ± 50 28.8 ± 3.7

Free State, Gauteng, North West 
and Limpopo (3)

75,388 7464 ± 2458 273 ± 93 237 ± 77 28.1 ± 4.0

KwaZulu Natal (4) 71,025 5894 ± 1461 211 ± 53 187 ± 45 28.6 ± 3.8

Table 2 Climatic characteristics of the four regions (average over 50 years ± standard deviation)

Climatic variable Western Cape (1) Eastern Cape (2) Free State, Gauteng, North 
West and Limpopo (3)

KwaZulu Natal (4)

Number of animals 70,864 40,559 75,388 71,025

Rainfall (mm) 554 ± 186 609 ± 107 613 ± 85 853 ± 103

Max temperature (°C) 22.7 ± 0.9 23.0 ± 0.7 23.7 ± 1.2 23.0 ± 1.4

Min temperature (°C) 11.1 ± 0.7 12.2 ± 1.7 8.4 ± 1.3 9.9 ± 1.8

Max relative humidity (%) 88.0 ± 4.4 88.9 ± 2.5 88.9 ± 5.2 91.7 ± 2.9

Min relative humidity (%) 47.2 ± 6.1 49.8 ± 6.3 38.7 ± 5.1 47.3 ± 5.2

Solar radiation (MJ  m−2  day−1) 16.3 ± 0.9 15.6 ± 1.5 19.3 ± 0.7 17.8 ± 1.2

Evapotranspiration (mm) 3.3 ± 0.3 3.1 ± 0.3 3.8 ± 0.3 3.4 ± 0.3

Max temperature in summer (°C) 26.3 ± 1.6 25.4 ± 1.1 27.4 ± 2.2 25.5 ± 1.6

Max humidity in summer (%) 85.2 ± 6.0 91.6 ± 2.9 88.9 ± 7.0 94.5 ± 2.0

Max solar radiation in summer 
(MJ  m−2  day−1)

25.1 ± 1.6 24.5 ± 1.9 25.0 ± 1.8 25.9 ± 1.6
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variances from which a heritability could be derived for 
each region.

The third model was also a multivariate model, but 
with a reduction of the rank of the correlation matrix that 
was imposed a priori. The Wombat software [25] repara-
metrizes the genetic (co)variance matrix in order to force 
a matrix of rank inferior to the number of traits (i.e., 3, 
2 or 1, in our case). This results in a more parsimonious 
description of the correlation between traits and forces 
an increased resemblance between regions. The extreme 
situation is a final rank equal to 1, which implies that all 
the genetic correlations between regions are equal to 
1 but the genetic and residual variances—and therefore 
heritability—may vary. Goodness-of-fit of the various 
models were compared using the Bayesian information 
criterion (BIC), which is recommended when comparing 
non-nested mixed models with a large number of obser-
vations [26]. A lower BIC represents a better model after 
accounting for the number of parameters to be estimated.

A second group of analyses was set up in order to 
assess whether the observed differences between regions 
in terms of production could be related to the climatic 
conditions that prevailed in each herd. Only milk yield 
was analyzed and a random regression analysis on cli-
matic variables was used. First, as a base model, a unique 
(homogeneous) genetic variance and heterogeneous 
residual variances (one per region) were estimated. This 
is equivalent to the univariate analysis with a specific 
residual variance for each region. Then, the model was 
extended to a random regression model by including 
each climatic variable as a reaction norm variable: as a 
result, the genetic parameters of the random regression 
model included two genetic effects: a fixed term and a 
regression coefficient on the climatic variable (one at a 
time). The comparison of these models should reveal 
which climatic variables contribute to a G×E interaction. 
Then, two climatic variables were included simultane-
ously together with the fixed term and the most relevant 
combination of the two climatic variables was chosen. 
These random regression analyses were initially run 
assuming a full rank genetic variance–covariance matrix. 
This rank was then reduced to 1. In such a case, the first 

eigenvector of the resulting genetic covariance matrix 
can be interpreted as the optimal linear combination of 
the climatic variables describing the environmental com-
ponent of the genetic variability.

Results
A summary of the statistics describing first lactation 
milk, fat and protein yield and age at first calving in the 
four regions is in Table  1. The mean value of the three 
production traits differed between the four regions, but 
for age at first calving, it only differed between Western 
Cape and the three other regions. The climatic character-
istics of the four (groups of ) regions are in Table 2. Aver-
age rainfall is the variable that varies the most between 
regions, with the lowest average in the Western Cape.

Genetic parameter estimates for production traits 
and age at first calving measured in each of the four 
regions are in Table  4, under six models: two univari-
ate genetic models assuming either a common (U1) or 
four different (U4) residual variances for the four differ-
ent regions, and four multivariate models assuming dif-
ferent genetic and residual variances in each region and 
different assumptions about the rank of the genetic vari-
ance matrix (from full (MTR4) to rank 1 (MTR1)). The 
heritability estimates are generally in agreement with 
the range of values found in the literature [27–30]. They 
are lower for protein yield and even more so for fat yield 
than for milk yield (see Additional file 1: Table S1), pos-
sibly because of less accurate on-farm measurements of 
fat and protein contents compared to milk yield (records 
are collected by the farmers themselves). Regardless of 
the trait, rank reductions of the genetic variance matrix 
did not modify the estimated heritabilities significantly. 
Heritability estimates varied between regions or models 
used, especially for production traits. All the genetic cor-
relations estimated using the multivariate models with-
out rank reduction (MTR4) ranged from 0.619 to 0.868 
and were usually lower than 0.8. They were all statistically 
different from 1. These results underline the existence 
of important G×E interactions, not only as scale effects 
but also inducing strong bull re-rankings. The effect of 
rank reduction on genetic correlations was susbtantial, 

Table 3 Overview of the different models tested

yim performance of animal i  in region m ; 
∑

f  sum of fixed effects (herd-year, calving season and age at first calving for production traits); aim additive genetic value for 
animal i  in region m ; �j reaction norm coefficient for climatic variable j ; bij standardized value of climatic variable j for animal i  ; εi ( εim ): residual for animal i  (in region 
m)

Analysis by region Univariate yi =
∑

f + ai + εi

Multivariate yim =
∑

f + aim + εim

Analysis including climatic variables Univariate with heterogeneous residual yim =
∑

f + ai + εim

Reaction norm on 1 variable yir =
∑

f + ai + �jbij + εim

Reaction norm on > 1 variables yir =
∑

f + ai +
∑

�jbij + εim
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especially for reduction to a rank of 2 (MTR2), or—obvi-
ously—1 (MTR1). The inclusion of these interactions in 
the genetic evaluation model could be more precise by 

using climatic variables: they appear to define more accu-
rately the variety of environments than the geographi-
cal limits, e.g., regions. It appears that including region 

Table 4 Estimates of heritability (in bold) and genetic correlations (below the diagonal) for each region sorted according to Table 1 
depending on the trait studied and the model used (± SE)

U1 univariate model, one residual variance; U4 univariate model, four residual variances; MTRi multiple traits genetic variance matrix of rank i

NA not available due to singularities

Trait Univariate analyses Multivariate analyses

Residual variance(s) Rank 4 (MTR4) Rank 3 (MTR3) Rank 2 (MTR2) Rank 1 (MTR1)

Unique (U1) By region (U4)

Milk yield 0.194 0.234 0.233 0.238 0.231
(0.004) (0.001) (0.009) (0.008) (0.007)

0.254 0.326 0.748; 0.364 0.778; 0.365 0.765; 0.365 1.000; 0.363
(0.006) (0.007) (NA); (0.002) (0.032); (0.013) (0.031); (0.012) (NA); (0.010)

0.215 0.868; 0.833; 0.251 0.853; 0.850; 0.251 0.910; 0.963; 0.246 1.000; 1.000; 0.252
(0.005) (0.022); (0.026); (0.001) (0.024); (0.026); (0.009) (0.015); (0.009); (0.008) (NA); (NA); (0.008)

0.343 0.711; 0.636; 0.816; 
0.118

0.949; 0.750; 0.950; 
0.265

0.996; 0.823; 0.945; 
0.263

1.000; 1.000; 1.000; 
0.262

(0.007) (0.048); (0.060); (0.037); 
(0.009)

(0.013); (0.034); (0.011); 
(0.009)

(0.003); (0.026); (0.012); 
(0.009)

(NA); (NA); (NA); (0.008)

Age at first calving 0.207 0.222 0.223 0.224 0.230
(0.007) (0.010) (0.010) (0.010) (0.009)

0.177 0.170 0.619; 0.184 0.644; 0.175 0.594; 0.175 1.000; 0.160
(0.006) (0.006) (0.056); (0.013) (0.052); (0.012) (0.052); (0.011) (NA); (0.009)

0.157 0.738; 0.815; 0.183 0.742; 0.886; 0.186 0.770; 0.971; 0.188 1.000; 1.000; 0.181
(0.006) (0.038); (0.039); (0.010) (0.037); (0.029); (0.010) (0.032); (0.010); (0.009) (NA; (NA); (0.008)

0.167 0.711; 0.636; 0.816; 
0.118

0.791; 0.976; 0.889; 
0.113

0.854; 0.926; 0.999; 
0.107

1.000; 1.000; 1.000; 
0.112

(0.006) (0.048); (0.060); (0.037) 
(0.009)

(0.036); (0.010); (0.026; 
0.008)

(0.025); (0.019); (0.005); 
(0.006)

(NA); (NA); (NA); (0.006)

Table 5 Contribution of the second eigenvalue of the genetic covariance matrix, correlation between the two genetic effects (± SE) 
and goodness-of-fit (BIC was set to 0 for the model without climatic variable) for reaction norm models including a constant and a 
regression on one climatic variable at a time, in the case of milk yield and age at first calving traits

RH relative humidity; SR solar radiation; T temperature

Climatic variable Milk yield Age at first calving

Eigenvalues (%) Correlation (SE) BIC Eigenvalues (%) Correlation (SE) BIC

C1: Average rainfall 9.93 − 0.637 ± 0.016 − 28.1 8.97 0.236 ± 0.035 202.6

C2: Max temperature 2.64 0.599 ± 0.041 726.9 7.30 − 0.366 ± 0.040 241.5

C3: Min temperature 0.37 − 0.499 ± 0.107 1199.6 3.07 − 0.692 ± 0.037 66.9

C4: Max relative humidity 1.78 − 0.837 ± 0.029 188.3 18.82 0.439 ± 0.023 52.0

C5: Min relative humidity 1.01 − 0.880 ± 0.025 204.0 23.25 − 0.061 ± 0.027 106.2

C6: Solar radiation (SR) 1.13 0.797 ± 0.032 748.5 10.26 0.115 ± 0.039 234.5

C7: Evapotranspiration 1.07 0.867 ± 0.026 315.7 12.14 − 0.119 ± 0.038 206.3

C8: Max temperature in 
summer

0.99 0.895 ± 0.029 400.9 26.11 0.895 ± 0.029 − 26.3

C9: Max relative humidity in 
summer

1.06 − 0.911 ± 0.022 65.5 16.09 − 0.346 ± 0.025 − 100.7

C10: Max solar radiation in 
summer

1.35 0.692 ± 0.048 876.8 16.43 0.692 ± 0.048 110.5
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as a factor of heterogeneity for residual variances already 
greatly improved the goodness-of-fit of the model.

Table  5 shows the respective importance of the two 
eigenvectors of the genetic variance matrix when a reac-
tion norm model was used with one climatic variable 
included at a time for each studied trait (C1–C10). Given 
the eigenvector coordinates, it follows that the first eigen-
value roughly represents the part of the total genetic 
variance that is explained by the average genetic effect 
regardless of the environment. The second eigenvalue 
represents the part explained by the reaction norm on 
the climatic variable.

The most important climatic variable for all production 
traits is the average rainfall, contributing to about 10% of 
the total genetic variance (C1). In fact, the other climatic 
variables did not lead to any improvement of the BIC. In 
contrast, age at first calving was more influenced by the 
average maximum temperature in summer (C8) and by 
the average minimum relative humidity (C5), represent-
ing about a quarter of the total genetic variance, i.e., the 
two components related to THI.

To highlight the impact of average rainfall, cows were 
partitioned into four groups depending on the average 
rainfall of their herd and a multivariate analysis was 
performed for milk production (RF4). The results are 
in Table  6. This analysis showed that a higher level of 

rainfall was often associated with a lower milk produc-
tion but also a reduced residual variance and a higher 
proportion of pasture-based herds (among the herds 
for which this information was available). However, and 
quite surprisingly, the heritability was higher in herds 
with an above-average rainfall level, in spite of their 
lower average production.

All the models used were compared according to 
their goodness-of-fit [BIC, see Table 7 and (Additional 
file 1: Table S2)]. It can be first concluded that includ-
ing a heterogeneous residual variance according to the 
region (U4) strongly increased the goodness-of-fit for 
the univariate model. However, for milk yield, a reac-
tion norm model including average rainfall (C1) led to 
a better fit (lower BIC) than models based on regions. 
Including more climatic variables in the model (C2V, 
C5V) did not necessarily increase the goodness-of-fit, 
but greatly increase computation time. The best model 
was clearly the multivariate model that groups herds 
according to rainfall level (RF4), with distinct residual 
variances by region. For age at first calving, the best 
model was the model that included a reaction norm 
on maximum relative humidity in summer, followed by 
the model with a reaction norm on maximum tempera-
ture in summer, suggesting again that a model includ-
ing a reaction norm on temperature-humidity index 

Table 6 Herd characteristics, estimates of heritability (in bold) and genetic correlations (below the diagonal of bold figures) for milk 
yield when herds are grouped according to average rainfall (Model RF4)

a Information on feeding system was available only on a limited fraction of the herds

Level of average rainfall 
(mm)

Proportion of herds with 
 pasturea

Milk production

Mean Residual standard deviation Heritability and 
genetic correlations

 > 755 80.5 5962 783 0.268
 > 659 and < 755 48.8 6070 797 0.909; 0.306
 > 547 and < 659 11.7 7746 1016 0.779; 0.991; 0.257
 < 547 1.8 7989 1062 0.829; 0.858; 0.862; 0.250

Table 7 Goodness-of-fit of analyses based on different models for milk production

a Best model

Model BIC−BICmin

U1: Univariate 11,190

U4: Univariate + specific residual variances by region 2016

MTR4: Multivariate by region, rank 4 773

MTR1: Multivariate by region, rank 1 967

C1: Reaction norm on average rainfall 745

C2V: Reaction norm on average rainfall and maximum temperature with genetic correlation = 0 and reduced rank 956

C5V: Reaction norm on 5 variables with genetic correlation between “average production” and a linear regression term on climatic vari-
ables

967

RF4: Multivariate, grouping herds according to level of rainfall 0a
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(THI)—not considered here because only yearly aver-
ages of temperature and of humidity were available—
could be even better.

Discussion
After more than 50 years of uninterrupted development, 
genetic (and genomic) evaluations continue to play a fun-
damental role in the sustainable improvement of dairy 
cattle. To avoid computational complications, the first 
animal models were simple, based on strong assump-
tions, such as cow selection performed only through 
their sire-to-cow path or successive lactations considered 
as repetitions of a same trait. These unrealistic assump-
tions were progressively dropped in many countries with 
the development of, e.g., multiple-trait animal models 
and/or models based on test-day records (e.g. [31]). How-
ever, some of these initial simplifications are still in use, 
for example in international evaluations, where daugh-
ter yield deviations (DYD) on a standard lactation scale 
are first derived in order to evaluate bulls on different 
national scales; these approximations are considered as 
minor and indispensable in order to properly account for 
large within-breed G×E interactions between countries, 
i.e. in international genetic evaluations, a trade-off is nec-
essary between the accurate modeling of national perfor-
mances and the exploration of G×E interactions.

Our study is another illustration that strong G×E 
interactions do exist also within country—in our case, 
South-Africa—with genetic correlations between South-
African environments as low as 0.8. In spite of the use of 
a quite simplistic lactation model, we could demonstrate 
that genetic correlations for lactation milk yield between 
regions with different climates could be of the same order 
of magnitude as the correlation considered in Interbull 
evaluations between South Africa as a whole and Euro-
pean or North American countries [6]. A likely expla-
nation is the large contrast in average rainfall between 
farms in different parts of the country, which conditions 
the management of the cows, i.e. a higher average rainfall 
favors pasture-based feeding systems. The effect of the 
feeding systems on genetic parameters has already been 
demonstrated in previous studies [12, 13, 32]. The use of 
climatic variables averaged over many years in the genetic 
part of the model is an indirect way of accounting for the 
most likely feeding system when this information is not 
available for all farms. This is very different from, e.g., the 
inclusion of THI in the model to reflect the short-term 
influence of extreme climatic conditions (e.g., [33, 34]).

The model that compared herds according to aver-
age rainfall over 50  years was statistically better than 
the model that opposed regions. Interestingly, in con-
trast with what is classically found in North America or 
Europe [22] where genetic variance and heritability tend 

to increase with level of production, the highest herit-
ability was found in the group of herds with substantially 
lower average production levels (Table 6), due to a much 
lower estimate of the residual variance. A potential expla-
nation is that large herds based on TMR are grouped and 
fed according to level of production, with less opportu-
nity to express genetic differences between cows com-
peting for grazing. For clarity, we used a rather trivial 
lactation model in this study but our conclusions can be 
extended to more complex genetic or genomic evalua-
tion models, for example based on multivariate random 
regression models [34].

Conclusions
This study shows that important G×E interactions exist 
in Holstein cattle in South Africa that could result in 
large re-rankings of bulls. In absence of a generalized 
recording of the farms’s feeding systems, these inter-
actions could be taken into consideration in national 
genetic evaluations by defining a heterogeneous residual 
variance by region and a genetic term involving a reac-
tion norm on long-term averages of climatic variables 
for each herd. In local breeding programs, calculating a 
different breeding value depending on the environment 
(region or feeding system) should be considered.
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