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Abstract 

Background Blood metabolic profiles can be used to assess metabolic disorders and to evaluate the health status 
of dairy cows. Given that these analyses are time‑consuming, expensive, and stressful for the cows, there has been 
increased interest in Fourier transform infrared (FTIR) spectroscopy of milk samples as a rapid, cost‑effective alternative 
for predicting metabolic disturbances. The integration of FTIR data with other layers of information such as genomic 
and on‑farm data (days in milk (DIM) and parity) has been proposed to further enhance the predictive ability of sta‑
tistical methods. Here, we developed a phenotype prediction approach for a panel of blood metabolites based on a 
combination of milk FTIR data, on‑farm data, and genomic information recorded on 1150 Holstein cows, using BayesB 
and gradient boosting machine (GBM) models, with tenfold, batch‑out and herd‑out cross‑validation (CV) scenarios.

Results The predictive ability of these approaches was measured by the coefficient of determination  (R2). The results 
show that, compared to the model that includes only FTIR data, integration of both on‑farm (DIM and parity) and 
genomic information with FTIR data improves the  R2 for blood metabolites across the three CV scenarios, especially 
with the herd‑out CV:  R2 values ranged from 5.9 to 17.8% for BayesB, from 8.2 to 16.9% for GBM with the tenfold ran‑
dom CV, from 3.8 to 13.5% for BayesB and from 8.6 to 17.5% for GBM with the batch‑out CV, and from 8.4 to 23.0% for 
BayesB and from 8.1 to 23.8% for GBM with the herd‑out CV. Overall, with the model that includes the three sources 
of data, GBM was more accurate than BayesB with accuracies across the CV scenarios increasing by 7.1% for energy‑
related metabolites, 10.7% for liver function/hepatic damage, 9.6% for oxidative stress, 6.1% for inflammation/innate 
immunity, and 11.4% for mineral indicators.

Conclusions Our results show that, compared to using only milk FTIR data, a model integrating milk FTIR spectra 
with on‑farm and genomic information improves the prediction of blood metabolic traits in Holstein cattle and that 
GBM is more accurate in predicting blood metabolites than BayesB, especially for the batch‑out CV and herd‑out CV 
scenarios.
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Background
Dairy cows can experience a negative balance between 
energy intake and energy expenditure during the tran-
sition phase from late pregnancy to early lactation (i.e., 
three weeks before and after parturition), which leads 
to important metabolic challenges [1]. This condition 
increases the probability of metabolic stress, which 
results in an often complex interaction between catabolic 
and endocrine pathways that is caused by an increased 
imbalance between lipid mobilization and immune and 
hormonal status [2–4]. After calving, cows experience an 
increase in energy requirements for milk production and, 
when feed intake does not meet this high energy require-
ment, lipolysis is enhanced in the adipose tissue, which 
helps the cows to cope with these situations [2, 5]. How-
ever, this fat mobilization increases the concentrations of 
non-esterified fatty acids (NEFA) and β-hydroxybutyric 
acid (BHBA) in the bloodstream, which increase the risk 
of metabolic disorders, such as ketosis, hepatic lipido-
sis, liver damage and dysfunction [6], impaired hormone 
regulation causing hypocalcemia and hypomagnesemia 
[7, 8] and altered immune response [9]. The occurrence 
of metabolic disorders during early lactation has a pro-
found negative effect on the profitability of the dairy cat-
tle production system due to reduced milk production 
and reproductive performance and increased incidences 
of metritis and mastitis [10]. Furthermore, recent stud-
ies have highlighted that immune-metabolic changes 
can start during late lactation and the dry-off period and 
have long-term carryover effects during the post-calving 
period and following lactation [11, 12]. Hence, to evalu-
ate the immune and metabolic variations during mid and 
late lactation phase, indicators that are associated with 
inflammatory status, oxidative stress and innate immu-
nity are required.

Blood metabolic profiling is a well-established method 
for monitoring the major risk factors for metabolic dis-
orders and nutritional imbalance in dairy cows. Several 
metabolites are evaluated such as glucose and BHBA for 
monitoring energy status, urea as an indicator of pro-
tein status, ceruloplasmin, total proteins and oxidative 
stress parameters, as indicators of inflammatory dis-
ease, and the enzymes aspartate aminotransferase (AST), 
γ-glutamyl transferase (GGT) and paraoxonase (PON) 
as a measure of hepatic overload [4, 13]. Blood mineral 
modifications measure homeostatic imbalance, with 
blood calcium being the major indicator of milk fever, 
and serum potassium and zinc being indicators of sys-
temic inflammation and oxidation [14]. Although blood 
metabolite profiling is an accurate method for detect-
ing metabolic disorders in dairy cows, its assessment on 
a large scale is expensive and time-consuming for dairy 
companies. However, Enjalbert et  al. [15] have shown 

that the ketone concentrations in the milk and blood are 
highly correlated (from 0.66 to 0.96), which raises the 
possibility of predicting these concentrations using Fou-
rier transform infrared (FTIR) milk spectra, as a rapid, 
non-invasive and cost-effective method. The use of milk 
FTIR spectra to assess the metabolic status of dairy cows 
on a large scale is a promising approach, given the inter-
action that exists between the metabolic status and milk 
compounds, mainly fat and protein [16]. De Roos et  al. 
[17] investigated the use of milk FTIR data to predict 
ketone bodies in milk and obtained a predictive abil-
ity  (R2) of 0.64, while Grelet et  al. [18] reported  R2 val-
ues ranging from 0.39 to 0.70 for blood glucose, IGF-1, 
NEFA, and BHBA.

Variations in fat, fatty acids, and protein contents in 
milk due to the mobilization of adipose tissue during a 
period of negative energy balance (NEB) may reflect 
the metabolic status of cows [19–21]. Gross et  al. [22] 
reported that an energy deficiency and a milk fat/milk 
protein ratio above 1.35 could be useful signals of NEB in 
cows in early and mid-lactation. The ability of FTIR spec-
tra to accurately predict fat and protein contents offers 
the possibility of using milk spectra to predict key metab-
olites in the blood that originate from the increased lipid 
mobilization after parturition, which leads to changes in 
milk composition, such as increased fat and decreased 
protein contents [23].

The main issue with using FTIR to predict blood 
metabolites at the farm level is how can the infrared 
wavelength data be transformed into information that 
can be used to identify changes in milk composition 
related to blood metabolites [24]. To solve this, atten-
tion has been directed towards exploring statistical 
approaches, such as machine learning (ML), that offer 
greater flexibility in modeling the complex associations 
between milk FTIR and the target blood metabolites, 
thus improving FTIR predictive ability [25–28]. This flex-
ibility is combined with the ability to deal with correlated 
high-dimensional data and to capture possible non-lin-
ear associations between milk FTIR and the phenotypic 
value of the observed trait. Moreover, studies have indi-
cated that predictive ability is further improved when 
milk FTIR information is integrated with on-farm data 
such as days in milk (DIM) and parity, and/or genomic 
information in the statistical models [25, 29]. Therefore, 
we hypothesized that, by combining different sources of 
information, it could be possible to better capture the 
complex biological signals that affect blood metabo-
lites, which better explain the phenotypic variability and 
enhance FTIR-based predictions. Thus, our aim was 
to evaluate the potential usefulness of combining milk 
FTIR information with on-farm (DIM and parity) and 
genomic information for phenotype predictions of blood 
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metabolites related to energy, liver function/hepatic dam-
age, oxidative stress, and inflammation/innate immunity, 
and minerals in Holstein cattle.

Methods
Field data
The present study was carried out as part of the 
BENELAT project that aimed at developing short- and 
long-term interventions for improving animal welfare 
and efficiency, and the quality of dairy cattle produc-
tion [30]. Milk samples were collected during the even-
ing milking from 1150 Holstein cows that belonged to 
two herds in northern Italy (Emilia-Romagna region) and 
were managed under similar dairy production systems. 
The cows were housed mostly in sand-bedded free stalls 
and fed twice daily on total mixed rations (TMR) based 
on corn and sorghum silage supplemented with con-
centrates. Diets were formulated according to the nutri-
tional requirements recommended by the NRC (Nutrient 
Requirements of Dairy Cattle) [31]. The cows were sam-
pled once after a health check; animals with clinical mas-
titis or receiving medical treatment were excluded from 
the study, because these situations can lead to changes in 
milk spectra and affect the predictive ability of FTIR.

The handling procedures of the animals were approved 
by the ethical committee of the Organismo Preposto al 
Benessere Degli Animali (OPBA; Organization for Ani-
mal Welfare) of the Università Cattolica del Sacro Cuore 
(Piacenza, Italy) and by the Italian Ministry of Health 
(protocol number 510/2019-PR of 19/07/2019). The study 
also followed the ARRIVE (Animal Research: Reporting 
of In Vivo Experiments) guidelines.

Blood and milk sampling
Milk and blood samples were collected in 16 batches 
across two herds (i.e., herd/date combinations): 14 
batches in 2019 (963 cows for herd 1) and two batches 
in 2020 (90 cows for herd 1 and 97 for herd 2). The aver-
age values (± standard deviation (SD)) obtained from 
the evening milking were 32.58 ± 8.70 for milk yield (kg), 
3.76 ± 0.69 for fat (%), and 3.42 ± 0.36 for protein (%). The 
cows had an average DIM of 187.71 ± 106.04 and an aver-
age parity of 1.98 ± 1.05. Individual milk samples (50 mL 
to which bronopol preservative was added) were main-
tained at 4 °C until laboratory analysis (within 24 h), then 
transferred to the laboratory of the Breeders’ Association 
of the Veneto Region (ARAV, Padua, Italy) for milk com-
position analysis (fat, protein, casein, lactose, and urea 
contents) using a Milkoscan FT6000 infrared analyzer 
(Foss A/S, Hillerød, Denmark).

On the same day as the milk sampling, blood samples 
(5 mL) from each cow were collected after the morning 
milking and before feeding by jugular venipuncture using 

vacutainer tubes containing 150 USP units of lithium 
heparin as anti-coagulant (Vacumed; FL Medical, Torreg-
lia, Padua, Italy). All blood samples were kept on ice until 
centrifugation at 3500×g for 1 min at 6 °C (Hettich Uni-
versal 16R Centrifuge) within 2 h of blood sampling. The 
plasma obtained was collected and stored at − 20 °C until 
the blood metabolite assay was performed.

FTIR spectra
Milk FTIR spectra were recorded and analyzed with 
a MilkoScan FT6000 (Foss A/S, Hillerød, Denmark), 
which covers transmittance values at 1060 wavenumbers 
ranging from 5011 to 925  (cm−1) from the short-wave-
length infrared (SWIR) to the long-wavelength infrared 
(LWIR) regions. The whole-milk FTIR (n = 1060), with-
out removing the water absorption regions, were used 
to develop prediction equations. Two milk spectra were 
obtained for each sample and were expressed as absorb-
ance values [log(1/transmittance)], then standardized to 
a mean of 0 and a standard deviation of 1; the values were 
then averaged before data analysis. Milk FTIR quality 
control was carried out using principal component analy-
sis and Mahalanobis distance at a significance level of 5% 
to remove possible outlier animals, i.e., those with large 
differences in their FTIR information, according to Shah 
and Gemperline [32]. After quality control, milk spectra 
from 1140 cows remained for further analysis. Among 
the 10 animals that were excluded from the analysis, 
none showed outlier values for blood metabolites.

Genotyping
In total, 1067 Holstein cows were genotyped with the 
GGP (Geneseek Genomic Profiler) Bovine 100K single 
nucleotide polymorphism (SNP) Chip assay. After remov-
ing SNPs in the non-autosomal regions, quality control 
of the genotypes was carried out. Autosomal SNPs with 
a minor allele frequency (MAF) lower than 0.05, SNPs 
that showed a significant deviation from Hardy–Wein-
berg equilibrium (P ≤  10−5), and SNPs and samples with 
a call rate lower than 0.95 were removed. After quality 
control, 1055 cows and 80,274 SNPs remained for further 
analyses.

Blood metabolic profiling
Blood metabolic profiles were assessed for biomarkers 
that are associated with energy metabolism (glucose, 
BHBA and urea), inflammation/innate immune response 
(ceruloplasmin and total proteins [PROTt]), liver func-
tion/hepatic damage (AST, GGT and PON), oxidative 
stress metabolites (advanced oxidation protein products 
[AOPP], ferric reducing antioxidant power [FRAP] and 
total reactive oxygen metabolites [ROMt]) and minerals 
(calcium, potassium, and zinc).
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We used the clinical auto-analyzer (ILAB 650, Instru-
mentation Laboratory, Lexington, MA) to determine 
the concentrations of glucose, PROTt, albumin, urea, 
calcium, AST, and GGT in the plasma samples using 
kits that were purchased from Instrumentation Labora-
tory (IL Test). Globulin concentration was estimated as 
the difference between total proteins and albumin. The 
potassium electrolyte  (K+) was detected by the potenti-
ometer method using an Ion Selective Electrode coupled 
to the ILAB 600 analyzer. Zinc, BHBA, and ceruloplas-
min were analyzed using the methods described in 
Calamari et  al. [33]. The concentration of ROMt, FRAP 
and PON were determined according to Premi et  al. 
[34], and those of AOPP according to Hanasand et  al. 
[35]. Missing information was excluded and after data 
integration, 1020 cows with data on blood metabolites, 
milk FTIR data and genomic information remained for 
further analyses. The descriptive statistics for the blood 
metabolites are in Table 1, a density plot for each blood 
metabolite is displayed in Additional file  2: Fig. S1, and 
the phenotypic means for the blood metabolites across 
lactation are in Additional file 1: Table S1 and Additional 
file 2: Fig. S2.

Genetic parameters
We inferred the genetic parameters for the blood metab-
olites using an animal model via a single-step genomic 
best linear unbiased prediction (ssGBLUP) model, as 
follows:

where y is the vector of the phenotypic data for blood 
metabolites; b is the vector of fixed effects for DIM (6 
classes, i.e. class 1: less than 60 days; class 2: 60–120 days; 
class 3: 121–180 days; class 4: 181–240 days; class 5: 241–
300 days; and class 6: > 300 days), and parity (four classes: 
1, 2, 3, ≥ 4); h is the vector of the random effect of batch; 
a is the vector of additive genetic effects; X , W , and Z 
are the incidence matrices relating y to the fixed effects 
( b ), the batch effect ( h ), and the additive genetic effects 
( a ), respectively; and e is the vector of random residual 
effects.

The ssGBLUP model was fitted under the following 
assumptions for the random effects: a ∼ N

(
0,H⊗σ 2

a

)
 , 

h ∼ N
(
0, I⊗σ

2
batch

)
 , and e ∼ N

(
0, I⊗σ 2

e

)
 , where 

σ 2
a , σ

2
batch, σ

2
e  are the variances for the additive, batch, 

and residual effects, respectively, I is the identity matrix, 
and the symbol ⊗ represents the Kronecker product. H is 
a matrix that combines pedigree and genomic informa-
tion [36], and its inverse 

(
H

−1
)
 is given by: 

H
−1 = A

−1 +

[
0 0

0 G
−1 − A

−1

22

]
 , where A−1 is the inverse 

y = Xb+Wh + Za + e,
of the pedigree relationship matrix, A−1

22
 is the inverse of 

the pedigree relationship matrix for the genotyped ani-
mals, and G−1 is the inverse of the genomic relationship 
matrix obtained according to VanRaden [37]. The pedi-
gree relationship matrix was built from pedigree infor-
mation considering three generations. The G matrix was 
built as follows: G = MM

′

2
∑m

j=1 pj(1−pj)
 where M is the SNP 

matrix assuming 0, 1, and 2 for genotypes AA, AB, and 
BB; and pj is the frequency of the second allele at the j th 
SNP.

We assumed a flat prior distribution for the fixed effects 
and used an inverse Wishart distribution as a prior for 
the random effects. The heritability ( h2 ) was calculated 
based on the posterior variance estimates for each trait as 
h2 = σ

2
a/(σ

2
a + σ

2
e) , and the batch incidence ( hbatch ) was 

estimated as hbatch = σ
2
batch/(σ

2
a + σ

2
batch + σ

2
e).

The model was implemented in the gibbsf90 + software 
from the blupf90 family of programs [38]. The estimates 
of genetic parameters were sampled from the posterior 
distribution using the Gibbs sampling algorithm. A sin-
gle chain consisting of 500,000 cycles was used, with a 
burn-in of the first 100,000 iterations and with samples 

Table 1 Descriptive statistics for blood metabolites related 
to energy, liver function/hepatic damage, oxidative stress, 
inflammation/innate immunity, and minerals

BHBA: β-hydroxybutyric acid; AST: aspartate aminotransferase; GGT: γ-glutamyl 
transferase; PON: paraoxonase; ROMt: total reactive oxygen metabolites; AOPP: 
advanced oxidation protein products; FRAP: ferric reducing antioxidant power; 
PROTt: total proteins; N: number of records; SD: standard deviation; P1: 1st 
percentile; P99: 99th percentile

Hemato-chemical parameters N Mean SD P1 P99

Energy‑related metabolites

 Glucose, mmol/L 1019 4.35 0.33 3.54 5.12

 BHBA, mmol/L 1012 0.53 0.17 0.26 1.12

 Urea, mmol/L 1018 6.40 1.05 3.99 8.90

Liver function/hepatic damage

 AST, U/L 1013 100.65 21.72 62.93 169.59

 GGT, U/L 1014 28.36 7.16 14.68 47.75

 PON, U/mL 1018 97.28 19.29 55.54 147.67

Oxidative stress metabolites

 ROMt,  mgH2O2/100 mL 1017 12.70 3.06 6.59 21.36

 AOPP, µmol/L 1019 48.05 9.14 27.20 73.70

 FRAP, µmol/L 1014 195.96 36.62 120.96 286.26

Inflammation/innate immunity

 Ceruloplasmin, µmol/L 1018 1.90 0.60 0.75 3.63

 PROTt, g/L 1017 81.25 4.82 72.03 95.60

 Globulins, g/L 1013 43.76 5.36 34.88 60.91

Minerals

 Calcium, mmol/L 1018 2.51 0.11 2.21 2.77

 Potassium, mmol/L 1016 4.13 0.41 3.17 5.20

 Zinc, µmol/L 1012 12.02 2.64 6.36 20.25
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stored every five cycles. Hence, the posterior means were 
obtained from 80,000 samples. The analysis converged 
through visual inspection using the boa package in R 
[39], and converged with a p-value > 0.05 for the Geweke 
test [40].

Cross-validation scenarios
The predictive ability ( R2 ) for each blood metabolite 
using the gradient boosting machine (GBM) and the 
BayesB approaches was assessed with two random cross-
validation (CV) scenarios (tenfold, and batch-out) and an 
independent CV scenario (herd-out). The training and 
validation sets in the tenfold CV and batch-out CV sce-
narios were fixed for both models. In the tenfold CV, the 
dataset was randomly split into ten non-overlapping folds 
of approximately equal size (100 to 102 cows per fold). 
Nine folds were assigned to the training set and one to 
the validation set. To evaluate the reliability of the model, 
the CV scenario was repeated ten times, such that each 
fold was predicted in the validation set once.

In the batch-out CV scenario, the training and valida-
tion sets were assigned according to the Euclidean dis-
tance of the genomic relationship of animals across the 
batches (n = 16), with the aim to create independence 
between training and validation sets. The training set 
consisted of 80% of the batches (n = 13), while the other 
20% (n = 3) were assigned to the validation set, with both 
sets being independent of each other. The assessment of 
the predictive ability in this CV scenario was repeated 
five times to ensure that each batch was assigned once to 
the validation set to be predicted. The final  R2 for both 
CV scenarios were estimated for each replicate, and their 
average was taken as the predictive ability, while the SD 
was taken as the variability in predictive ability. For the 
herd-out CV scenario, two combinations were assessed 
i.e., one that considered herd 1 (n = 945) as the training 
set and herd 2 (n = 75) as the validation set and one that 
considered herd 2 as the training set and herd 1 as the 
validation set.

Statistical analyses
The target blood metabolite traits were predicted using 
four statistical models with increasing complexity: Model 
1 (M1), the baseline model, which included only milk 
FTIR data; Model 2 (M2), which included milk FTIR 
data and on-farm information (DIM and parity); Model 
3 (M3), which included milk FTIR data and genomic 
information; and Model 4 (M4), which included milk 
FTIR data, on-farm and genomic information. These 
four models were used to evaluate the predictive ability 
of the GBM [41] and BayesB [42] algorithms. The water 
absorbance region in the FTIR spectra was not removed 
because the statistical approaches used, i.e., GBM and 

BayesB can handle situations where noise is present in 
the predictor variables.

GBM is an ensemble learning algorithm that uses 
boosting to convert weak regression tree models into 
strong learners [41, 43] by combining different predictor 
variables sequentially in the regression tree model, select-
ing and shrinking the predictor variables to control the 
residual from the previous model [44]. To obtain the best 
results from the GBM algorithm, a random search was 
used to determine the best combination of four major 
hyperparameters that maximized the predictive abil-
ity for each trait. The GBM algorithm was implemented 
using the h2o R package (https:// cran.r- proje ct. org/ web/ 
packa ges/ h2o). For the random search, we considered the 
number of trees (ntree) ranging from 100 to 3000 in inter-
vals of 20, the learning rate (lrn_rate) with values from 0 
to 1 in intervals of 0.1, maximum tree depth (max_depth) 
ranging from 5 to 80 in intervals of 5, and the minimum 
samples per leaf ranging from 20 to 100 in intervals of 20. 
The random grid search was performed in the h2o.grid 
function of the h2o R package (https:// cran.r- proje ct. org/ 
web/ packa ges/ h2o) with a maximum of 100 models with 
random combinations of the hyperparameters. For this, 
the training set for each CV scenario was split into 5 folds 
during the learning process of the GBM approach and 
the trained model with the highest predictive ability ( R2 ) 
and the lowest mean square error (MSE) was applied to 
the disjoint validation set of each CV scenario. The rela-
tive importance of the FTIR wavelength information (i.e., 
variable importance [VI]) was determined by calculating 
the relative influence of the improvements in predictive 
ability during the tree regression building process, which 
was the sum of the squared improvements over all the 
internal nodes of the tree for which the FTIR wavelength 
was chosen as the partitioning variable [41].

The BayesB analyses were performed using the imple-
mentation in the R package BGLR version 1.09 [42]. The 
BGLR default priors were used for all models, with 5 
degrees of freedom ( dfu ), a scale parameter ( Sx ), and π . 
BayesB assumes that most independent variables ( weff  ) 
have a null effect (i.e., a point mass at 0), and that a few 
independent variables contribute to explaining the vari-
ability of the target trait [45, 46]. The prior conditional 
distribution on the independent variable is assumed to 
be a mixture with a point mass at 0 

[
(1− π)∗(weff = 0

)
] 

i.e., the probability of SNPs with null effects and a scaled t 
distribution [π ∗ t

(
weff |df , SB

)
] as follows:

where π represents the proportion of the non-null 
effect, and 1− π is the proportion of the null effect of 
the independent variable that contributes to the vari-
ability of the target trait [46]; weff  is the effect of the 

p
(
weff |df ,π, SB

)
= π ∗ t

(
weff |df , SB

)
+ (1− π) ∗

(
weff = 0

)
,

https://cran.r-project.org/web/packages/h2o
https://cran.r-project.org/web/packages/h2o
https://cran.r-project.org/web/packages/h2o
https://cran.r-project.org/web/packages/h2o
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independent variable, t
(
weff |df , SB

)
 is a scaled t dis-

tribution with df = 5 degrees of freedom and SB scale 
(SB = var

(
y
)
∗ VP ∗ (df + 2)/MSx/π ), were MSx rep-

resents the sum of the variances of the columns of X, 
and VP = 0.5 is the variance partition used to control 
the variance attributable to the linear predictors, in this 
case 50% by program default. The residual variance was 
assigned a scaled-inverse χ2 density with degrees of free-
dom, dfe , and scale, Se , ( Se = var

(
y
)
∗ R2 ∗ (dfe + 2) ). 

For the SNP effects, we used the default prior param-
eters π = 0.5 and count = 10 to assign the beta-prior 
for two fixed shape parameters and derived the propor-
tion of nonzero SNP effects π for the SNP term [42]. 
Thus, the two shape parameters of the beta distribution 
π0 =

0.5∗(1−0.5)
10+1 = 0.023 and p0 = 0.5 [29].

The predictive ability of the BayesB and GBM 
approaches for the four models (M1, M2, M3 and M4) on 
the validation set was assessed by the coefficient of deter-
mination ( R2 ) between the observed and predicted phe-
notypes. In addition, the standard deviations (SD) of the 
R2 values were also calculated across the ten replicates 
used in the CV scenarios. The second parameter used to 
assess model performance was the root mean squared 

error (RMSE) defined as: 
√∑n

i=1(yi−ŷi)
2

n  where n is the 
number of cows in the validation set. The linear regres-
sion slope between the observed ( yi ) and predicted values 
( ̂yi ) for each model and each cross-validation scenario 
was used to assess the degree of bias of the model. The 
relative difference (RD) in predictive ability is measured 
as RD =

(rm−rM1)
rM1

× 100 , where rm is the predictive abil-
ity using Models M2, M3 or M4, and rM1 is the predictive 
ability using the baseline Model M1.

Results
Variance components and heritability estimates
Posterior means of the variance components, heritability 
( h2 ) and batch incidence ( hbatch ) for the blood metabo-
lites are in Table  2. The lowest heritability estimates were 
observed for BHBA (0.12 ± 0.049), urea (0.18 ± 0.068), oxi-
dative stress metabolite-related traits (ROMt—0.13 ± 0.06; 
AOPP—0.09 ± 0.045, FRAP—0.05 ± 0.037), total pro-
teins (0.09 ± 0.044), globulins (0.09 ± 0.05) and calcium 
(0.12 ± 0.049). Moderate heritability estimates were 
observed for glucose (0.36 ± 0.083), AST (0.36 ± 0.091), 
GGT (0.43 ± 0.073), ceruloplasmin (0.37 ± 0.091), potassium 
(0.24 ± 0.067), and zinc (0.35 ± 0.078). A high heritability 

Table 2 Estimates (± SD) of genetic ( σ 2
a  ), batch ( σ 2

batch
 ) and residual ( σ 2

e  ) variance components, heritability ( h2 ), and batch incidence 
( hbatch ) for blood metabolites

BHBA: β-hydroxybutyric acid; AST: aspartate aminotransferase; GGT: γ-glutamyl transferase; PON: paraoxonase; ROMt: total reactive oxygen metabolites; AOPP: 
advanced oxidation protein products; FRAP: ferric reducing antioxidant power; PROTt: total proteins

h
2
=

σ
2
a

σ2a+σ2e

hbatch = σ
2

batch
/(σ2a + σ

2

batch
+ σ

2
e)

Traits σ
2
a σ

2

batch
σ
2
e h

2 hbatch

Energy‑related metabolites

 Glucose, mmol/L 0.018 ± 0.009 0.040 ± 0.035 0.032 ± 0.007 0.360 ± 0.083 0.444 ± 0.097

 BHBA, mmol/L 0.002 ± 0.002 0.003 ± 0.003 0.014 ± 0.002 0.125 ± 0.049 0.158 ± 0.051

 Urea, mmol/L 0.097 ± 0.061 0.305 ± 0.221 0.443 ± 0.061 0.180 ± 0.068 0.361 ± 0.091

Liver function/hepatic damage

 AST, U/L 136.228 ± 39.725 46.593 ± 18.297 241.761 ± 30.869 0.360 ± 0.091 0.110 ± 0.060

 GGT, U/L 17.049 ± 4.153 0.528 ± 0.288 22.922 ± 3.945 0.427 ± 0.073 0.013 ± 0.013

 PON, U/mL 197.144 ± 34.858 26.971 ± 13.834 129.064 ± 25.22 0.604 ± 0.086 0.076 ± 0.035

Oxidative stress metabolites

 ROMt,  mgH2O2/100 mL 0.972 ± 0.485 0.677 ± 0.268 6.481 ± 0.915 0.130 ± 0.065 0.083 ± 0.040

 AOPP, µmol/L 5.374 ± 2.769 19.491 ± 8.748 54.696 ± 3.459 0.089 ± 0.045 0.245 ± 0.073

 FRAP, µmol/L 45.411 ± 4.575 295.345 ± 114.219 867.563 ± 155.12 0.050 ± 0.027 0.244 ± 0.074

Inflammation/innate immunity

 Ceruloplasmin, µmol/L 0.111 ± 0.034 0.023 ± 0.014 0.186 ± 0.028 0.374 ± 0.091 0.072 ± 0.034

 PROTt, g/L 1.785 ± 0.786 1.401 ± 0.883 17.964 ± 1.254 0.090 ± 0.044 0.066 ± 0.034

 Globulins, g/L 2.155 ± 0.955 1.636 ± 0.809 21.460 ± 2.059 0.091 ± 0.047 0.065 ± 0.033

Minerals

 Calcium, mmol/L 0.001 ± 0.001 0.002 ± 0.001 0.007 ± 0.001 0.125 ± 0.049 0.200 ± 0.073

 Potassium, mmol/L 0.026 ± 0.007 0.042 ± 0.018 0.079 ± 0.009 0.248 ± 0.057 0.286 ± 0.080

 Zinc, µmol/L 1.168 ± 0.444 2.377 ± 1.556 2.205 ± 0.377 0.346 ± 0.078 0.413 ± 0.092
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estimate was obtained for PON (0.60 ± 0.086). Batch inci-
dences, calculated as the ratio between batch variance and 
total phenotypic variance, had relatively low values for liver 
function/hepatic damage traits, inflammation/innate immu-
nity metabolite groups and ROMt; moderate values for 
BHBA, potassium, calcium, AOPP, and FRAP (ranging from 
0.16 for BHBA to 0.28 for potassium), but showed a sub-
stantial contribution to the observed variability in glucose 
(0.44 ± 0.097), zinc (0.41 ± 0.092), and urea (0.36 ± 0.091).

Predictive performance of FTIR data integrated 
with on-farm and genomic information
Model M1 (which included only the milk FTIR data) 
achieved the lowest  R2 for each CV scenario and 
approach, compared with the models including on-farm 
data (M2), genomic information (M3) and both on-farm 
and genomic information (M4). For M1, the R2 values 
ranged from 0.45 to 0.85 for the tenfold CV, from 0.38 to 
0.81 for the batch-out CV and from 0.23 to 0.74 for the 
herd-out CV (see Additional file 1: Tables S2, S3 and S4, 

respectively); for M2, they ranged from 0.47 to 0.88 for 
the tenfold CV, from 0.39 to 0.82 for the batch-out CV 
and from 0.24 to 0.75 for the herd-out CV (see Addi-
tional file 1: Tables S2, S3 and S4, respectively); for M3, 
they ranged from 0.49 to 0.89 for the tenfold CV, from 
0.40 to 0.84 for the batch-out CV and from 0.25 to 0.78 
for the herd-out CV (see Additional file 1: Tables S2, S3 
and S4, respectively); and for M4, they ranged from 0.53 
to 0.92 for the tenfold CV (Table 3), from 0.41 to 0.88 for 
the batch-out CV (Table 4) and from 0.25 to 0.80 for the 
herd-out CV (Table 5).

The relative differences (RD) in  R2 obtained by the 
BayesB and GBM approaches with the tenfold CV, batch-
out CV and herd-out CV showed great improvements in 
R2 for Models M2, M3 and M4 compared to Model M1 
(Fig.  1). Integrating on-farm data in the baseline model 
(Model M2) increased the R2 by 1.27% to 7.14% using 
BayesB (Fig.  1a), and by 2.47% to 8.33% using GBM 
(Fig. 1b) with the tenfold CV. For the batch-out CV, RD 
ranged from 1.27 to 4.44% using BayesB (Fig.  1c) and 

Table 3 Average milk Fourier transform infrared (FTIR) prediction performance (± SD) considering the systematic effect of days in 
milk, parity, and genomic information (Model M4) for the tenfold random cross‑validation scenario of blood metabolites parameters 
using BayesB and gradient boosting machine (GBM) methods

BHBA = β-hydroxybutyric acid; AST = aspartate aminotransferase;  GGT : γ-glutamyl transferase; PON = paraoxonase; ROMt = total reactive oxygen metabolites; 
AOPP = advanced oxidation protein products; FRAP = ferric reducing antioxidant power; PROTt = total proteins, RMSE: root mean squared error

R2: coefficient of determination between the observed and predicted phenotypes in validation set and standard deviation (SD) as the variability measurement of 
predictive ability

Trait Method

BayesB GBM

R2 RMSE Slope R2 RMSE Slope

Energy‑related metabolites

 Glucose, mmol/L 0.80 ± 0.035 0.16 ± 0.008 1.03 ± 0.074 0.85 ± 0.029 0.14 ± 0.008 1.02 ± 0.044

 BHBA, mmol/L 0.59 ± 0.059 0.11 ± 0.009 1.04 ± 0.097 0.62 ± 0.053 0.10 ± 0.006 0.99 ± 0.043

 Urea, mmol/L 0.76 ± 0.041 0.52 ± 0.041 1.03 ± 0.099 0.80 ± 0.033 0.48 ± 0.042 1.01 ± 0.082

Liver function/hepatic damage

 AST, U/L 0.53 ± 0.085 13.53 ± 1.274 1.04 ± 0.174 0.63 ± 0.05 12.71 ± 0.539 1.01 ± 0.082

 GGT, U/L 0.63 ± 0.063 4.12 ± 0.511 1.04 ± 0.130 0.65 ± 0.073 3.95 ± 0.350 1.01 ± 0.072

 PON, U/mL 0.66 ± 0.031 11.59 ± 0.976 1.02 ± 0.105 0.69 ± 0.025 11.05 ± 0.471 0.99 ± 0.083

Oxidative stress metabolites

 ROMt,  mgH2O2/100 mL 0.79 ± 0.059 1.51 ± 0.326 1.04 ± 0.095 0.82 ± 0.034 1.30 ± 0.090 1.01 ± 0.052

 AOPP, µmol/L 0.68 ± 0.052 5.36 ± 0.439 1.03 ± 0.136 0.71 ± 0.043 4.92 ± 0.340 0.99 ± 0.092

 FRAP, µmol/L 0.53 ± 0.053 24.86 ± 1.524 1.05 ± 0.173 0.58 ± 0.049 20.57 ± 1.158 0.98 ± 0.098

Inflammation/innate immunity

 Ceruloplasmin, µmol/L 0.77 ± 0.048 0.32 ± 0.049 1.02 ± 0.089 0.82 ± 0.027 0.28 ± 0.018 0.99 ± 0.073

 PROTt, g/L 0.85 ± 0.029 1.90 ± 0.191 1.03 ± 0.079 0.88 ± 0.024 1.58 ± 0.106 1.02 ± 0.052

 Globulins, g/L 0.89 ± 0.019 1.82 ± 0.186 1.02 ± 0.078 0.92 ± 0.023 1.68 ± 0.133 1.01 ± 0.033

Minerals

 Calcium, mmol/L 0.61 ± 0.063 0.07 ± 0.006 1.05 ± 0.132 0.67 ± 0.032 0.05 ± 0.005 1.03 ± 0.098

 Potassium, mmol/L 0.67 ± 0.055 0.24 ± 0.015 1.03 ± 0.102 0.72 ± 0.027 0.21 ± 0.015 1.02 ± 0.082

 Zinc, µmol/L 0.63 ± 0.032 1.54 ± 0.054 1.04 ± 0.222 0.70 ± 0.033 1.44 ± 0.057 0.98 ± 0.095
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from 1.23 to 8.77% using GBM (Fig. 1d), and for the herd-
out CV they ranged from 1.82 to 8.93% using BayesB 
(Fig.  1e) and from 1.35 to 8.82% using GBM (Fig.  1f ). 
When genomic information was integrated in the base-
line model (Model M3), for the tenfold CV the observed 
RD ranged from 3.57 to 8.93% using BayesB (Fig. 1a) and 
from 4.71 to 12.07% using GBM (Fig. 1b), for the batch-
out CV they ranged from 2.53 to 8.89% using BayesB 
(Fig.  1c) and from 3.70 to 14.04% using GBM (Fig.  1d), 
and for the herd-out CV they ranged from 5.45 to 14.29% 
using BayesB (Fig.  1e) and from 5.26 to 14.71% using 
GBM (Fig. 1f ).

When both on-farm data and genomic information 
were integrated in the baseline model (Model 4), for the 
tenfold CV, RD ranged from 5.95 to 17.78% using BayesB 

(Fig. 1a) and from 8.24 to 16.95% using GBM (Fig. 1b); for 
the batch-out CV, they ranged from 3.80 to 13.46% using 
BayesB (Fig.  1c) and from 8.62 to 17.54% using GBM 
(Fig. 1d); and for the herd-out CV, they ranged from 8.45 
to 23.08% using BayesB (Fig. 1e) and from 8.11 to 23.81% 
using GBM (Fig.  1f ). Phenotypic predictions obtained 
with M4 were markedly improved, especially in the herd-
out CV scenario for some of the blood metabolites such 
as PON (23.08%), ROMt (17.86%), AST (17.78%), and 
zinc (17.5%) using BayesB, and PON (23.81%), AOPP 
(20.59%), GGT (20%) zinc (19%) and calcium (17.5%) 
using GBM. In addition, RD values were higher than 11% 
for blood metabolites related to liver function/hepatic 
damage across all CV scenarios.

Table 4 Average milk Fourier transform infrared (FTIR) prediction performance (± SD) considering the systematic effect of days in 
milk, parity, and genomic information (Model M4) for the batch‑out cross‑validation scenario of blood metabolites parameters using 
BayesB and gradient boosting machine (GBM) methods

BHBA: β-hydroxybutyric acid; AST: aspartate aminotransferase; GGT: γ-glutamyl transferase; PON: paraoxonase; ROMt: total reactive oxygen metabolites; AOPP: 
advanced oxidation protein products; FRAP: ferric reducing antioxidant power; PROTt: total proteins; RMSE: root mean squared error

R2: coefficient of determination between the observed and predicted phenotypes in validation set and standard deviation (SD) as the variability measurement of 
predictive ability

Trait Method

BayesB GBM

R2 RMSE Slope R2 RMSE Slope

Energy‑related metabolites

 Glucose, mmol/L 0.74 ± 0.054 0.17 ± 0.012 1.04 ± 0.073 0.79 ± 0.051 0.16 ± 0.015 0.99 ± 0.060

 BHBA, mmol/L 0.53 ± 0.068 0.12 ± 0.034 1.05 ± 0.117 0.58 ± 0.066 0.11 ± 0.004 0.98 ± 0.078

 Urea, mmol/L 0.64 ± 0.050 0.54 ± 0.082 0.96 ± 0.093 0.74 ± 0.055 0.49 ± 0.048 1.01 ± 0.075

Liver function/hepatic damage

 AST, U/L 0.51 ± 0.093 15.34 ± 1.415 1.04 ± 0.136 0.61 ± 0.053 14.31 ± 0.828 1.01 ± 0.087

 GGT, U/L 0.53 ± 0.034 5.06 ± 0.341 1.05 ± 0.056 0.60 ± 0.043 4.95 ± 0.259 1.02 ± 0.090

 PON, U/mL 0.59 ± 0.045 12.46 ± 1.149 0.97 ± 0.095 0.64 ± 0.049 12.13 ± 0.658 1.01 ± 0.083

Oxidative stress metabolites

 ROMt, 
 mgH2O2/100 mL

0.74 ± 0.040 1.58 ± 0.149 1.03 ± 0.050 0.77 ± 0.022 1.41 ± 0.152 0.99 ± 0.065

 AOPP, µmol/L 0.54 ± 0.042 5.68 ± 0.423 1.07 ± 0.073 0.63 ± 0.072 5.5 ± 0.449 1.02 ± 0.074

 FRAP, µmol/L 0.41 ± 0.084 23.58 ± 3.552 1.09 ± 0.077 0.48 ± 0.065 21.5 ± 1.572 1.01 ± 0.076

Inflammation/innate immunity

 Ceruloplas‑
min, µmol/L

0.68 ± 0.066 0.33 ± 0.033 0.95 ± 0.124 0.74 ± 0.056 0.31 ± 0.025 0.99 ± 0.069

 PROTt, g/L 0.77 ± 0.027 2.09 ± 0.172 0.96 ± 0.042 0.85 ± 0.040 1.87 ± 0.183 1.01 ± 0.045

 Globulins, g/L 0.82 ± 0.035 2.23 ± 0.230 1.07 ± 0.037 0.88 ± 0.025 1.96 ± 0.150 1.03 ± 0.029

Minerals

 Calcium, mmol/L 0.53 ± 0.030 0.07 ± 0.006 0.94 ± 0.099 0.62 ± 0.096 0.06 ± 0.023 1.01 ± 0.046

 Potassium, 
mmol/L

0.58 ± 0.069 0.23 ± 0.015 1.05 ± 0.093 0.67 ± 0.078 0.22 ± 0.014 1.01 ± 0.078

 Zinc, µmol/L 0.57 ± 0.054 1.63 ± 0.341 1.06 ± 0.085 0.67 ± 0.071 1.46 ± 0.244 1.03 ± 0.067
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The slope coefficients obtained from all four models 
(M1, M2, M3 and M4) using BayesB or GBM showed 
that the predictions were slightly inflated (slope < 1) or 
deflated (slope > 1), with values ranging from 0.95 to 1.15 
for the tenfold CV, from 0.90 to 1.17 for the batch-out CV 
and from 0.90 to 1.15 for the herd-out CV (Tables 3, 4, 5) 
and (see Additional file 1: Tables S2, S3 and S4). Overall, 
the slope values were lower with GBM than with BayesB 
across all evaluated CV scenarios.

Comparing the statistical approaches 
across cross-validation scenarios
The predictive abilities of BayesB and GBM with Model 
M4 (integrating milk FTIR, DIM, parity, and SNP data) 
for blood metabolite-related traits ranged from mod-
erate to high according to trait and model (Tables  3, 4, 
5). Overall, the average predictions for inflammation/
innate immunity traits ( R2 = 0.79, ranging from 0.58 to 

0.92), and for energy-related metabolite traits ( R2 = 0.64, 
ranging from 0.40 to 0.85) were more accurate than the 
predictions for minerals ( R2 = 0.59, ranging from 0.42 
to 0.72), oxidative stress metabolites ( R2 = 0.58, rang-
ing from 0.25 to 0.82), and liver function/hepatic damage 
metabolites ( R2 = 0.56, ranging from 0.38 to 0.69) (see 
Tables 3, 4, 5).

The predictive ability of GBM was superior to that of 
BayesB (Tables 3, 4, 5), and the most remarkable differ-
ences in predictive ability between GBM and BayesB 
were observed with the tenfold CV for AST: 0.63 vs. 
0.53 (18.9%), zinc: 0.70 vs. 0.63 (11.1%) and calcium: 0.67 
vs. 0.61 (9.84%). With the batch-out CV, the largest dif-
ferences in predictive ability between GBM and BayesB 
were observed for AST: 0.61 vs. 0.51 (19.6%), zinc: 0.67 
vs. 0.57 (17.5%), FRAP: 0.48 vs. 0.41 (17.07%), calcium: 
0.62 vs. 0.53 (16.98%), AOPP: 0.63 vs. 0.54 (16.67%), urea: 

Table 5 Average milk Fourier transform infrared (FTIR) prediction performance (± SD) considering the systematic effect of days in 
milk, parity, and genomic information (Model M4) for the herd‑out cross‑validation scenario of blood metabolites parameters using 
BayesB and gradient boosting machine (GBM) methods

BHBA: β-hydroxybutyric acid; AST: aspartate aminotransferase; GGT: γ-glutamyl transferase; PON: paraoxonase; ROMt: total reactive oxygen metabolites; AOPP: 
advanced oxidation protein products; FRAP: ferric reducing antioxidant power; PROTt: total proteins, RMSE: root mean squared error

R2: coefficient of determination between the observed and predicted phenotypes in validation set and standard deviation (SD) as the variability measurement of 
predictive ability

Trait Method

BayesB GBM

R2 RMSE Slope R2 RMSE Slope

Energy‑related metabolites

 Glucose, mmol/L 0.63 ± 0.066 0.26 ± 0.034 1.07 ± 0.040 0.65 ± 0.035 0.16 ± 0.008 1.02 ± 0.073

 BHBA, mmol/L 0.40 ± 0.105 0.21 ± 0.033 0.94 ± 0.068 0.43 ± 0.062 0.12 ± 0.009 0.97 ± 0.057

 Urea, mmol/L 0.47 ± 0.164 0.78 ± 0.119 0.97 ± 0.084 0.49 ± 0.051 0.52 ± 0.041 1.01 ± 0.093

Liver function/hepatic damage

 AST, U/L 0.38 ± 0.115 17.14 ± 2.069 0.97 ± 0.072 0.43 ± 0.085 13.53 ± 1.268 1.05 ± 0.060

 GGT, U/L 0.45 ± 0.080 5.38 ± 0.341 0.98 ± 0.051 0.48 ± 0.063 4.12 ± 0.511 1.03 ± 0.046

 PON, U/mL 0.48 ± 0.035 17.21 ± 0.127 0.99 ± 0.091 0.52 ± 0.081 12.59 ± 1.577 1.02 ± 0.062

Oxidative stress metabolites

 ROMt, 
 mgH2O2/100 mL

0.66 ± 0.071 1.89 ± 0.133 0.97 ± 0.089 0.69 ± 0.079 1.51 ± 0.326 1.01 ± 0.056

 AOPP, µmol/L 0.37 ± 0.057 8.86 ± 0.770 0.98 ± 0.076 0.41 ± 0.052 5.36 ± 0.440 1.01 ± 0.073

 FRAP, µmol/L 0.25 ± 0.061 36.86 ± 1.664 0.94 ± 0.082 0.29 ± 0.093 25.85 ± 2.601 1.01 ± 0.097

Inflammation/innate immunity

 Ceruloplas‑
min, µmol/L

0.58 ± 0.052 0.44 ± 0.004 0.96 ± 0.058 0.62 ± 0.066 0.32 ± 0.050 1.01 ± 0.065

 PROTt, g/L 0.76 ± 0.02 2.57 ± 0.255 0.97 ± 0.021 0.79 ± 0.039 1.91 ± 0.189 0.98 ± 0.050

 Globulins, g/L 0.77 ± 0.011 2.6 ± 0.312 0.96 ± 0.047 0.80 ± 0.019 1.82 ± 0.186 0.97 ± 0.037

Minerals

 Calcium, mmol/L 0.42 ± 0.086 0.17 ± 0.004 1.01 ± 0.093 0.47 ± 0.073 0.07 ± 0.007 0.98 ± 0.099

 Potassium, 
mmol/L

0.54 ± 0.065 0.32 ± 0.014 0.98 ± 0.094 0.57 ± 0.055 0.24 ± 0.014 1.04 ± 0.093

 Zinc, µmol/L 0.47 ± 0.083 2.27 ± 0.056 1.05 ± 0.099 0.50 ± 0.042 1.54 ± 0.054 1.02 ± 0.095
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0.74 vs. 0.64 (15.63%), potassium: 0.67 vs. 0.58 (15.52%) 
and GGT: 0.60 vs. 0.53 (13.2%), and with the herd-out 
CV, the largest differences were observed for FRAP: 0.29 
vs. 0.25 (16%), AST: 0.43 vs. 0.38 (13.16%), and calcium: 
0.47 vs. 0.42 (11.9%). The slope coefficient was used to 
measure the extent of the prediction bias (Tables 3, 4, 5) 
and showed that the values for the predictions from GBM 
were closer to 1 than those from BayesB, which suggests 
that the predictions based on GBM are less biased.

Effects of the heritability on the relative gains in predictive 
ability between Models 1 and 4 on blood metabolites
The genetic architecture of blood metabolite traits is 
polygenic and controlled by several genes with moderate 
to large effects [47], which may affect phenotype predic-
tion depending on the model used. The relative difference 
in predictive ability ( R2 ) for blood metabolites between 
Models M4 (full model) and M1 (base model, only milk 
FTIR) increased as the heritability estimate of the trait 
increased (Fig.  2). The R2 obtained from fitting a linear 
regression of the RD of M4 against M1 on the heritabil-
ity estimates was used to evaluate the strength of their 
association. With the tenfold CV, R2 of 0.44 for BayesB 
(Fig. 2a) and of 0.55 for GBM (Fig. 2b), with the batch-out 
CV, R2 of 0.36 for BayesB (Fig. 2c) and of 0.65 for GBM 
(Fig. 2d) and with the herd-out CV R2 of 0.16 for BayesB 
(Fig. 2e) and of 0.33 for GBM (Fig. 2f ) were obtained. As 
the heritability of the trait increased, the  R2 increased 
with both statistical approaches and for all CV scenarios. 
The greatest gains in predictive ability were observed for 
PON (from 13.46 to 23.81%), GGT (from 12.77 to 20%), 
ceruloplasmin (from 7.94 to 14.81%), AST (from 11.76 
to 17.78%), BHBA (from 8.16 to 14.29%), glucose (from 
8.82 to 14.55%), and zinc (from 11.76 to 19.05%). Fur-
thermore, considerable improvements in predictive abil-
ity were also observed for blood metabolites with lower 
heritability estimates, such as calcium (from 10.42 to 
17.50%) and FRAP (from 7.89 to 16%). As expected, with 
both CV scenarios, GBM produced greater gains in pre-
dictive ability and stronger associations between its pre-
dictive ability and the heritability of blood metabolites 
(Fig. 2), which suggests that GBM is more consistent than 
BayesB.

Relative importance of specific FTIR wavelengths 
for variation in blood metabolites
The FTIR wavelength regions that captured the phe-
notypic variation in the GBM approach for phenotype 
prediction of the blood metabolic profile showed a 
consistent effect across biological groups (Fig.  3a). In 
total, 67 wavelengths were identified as the most rel-
evant (i.e., explaining more than 0.8% of the phenotypic 

variability) with GBM. The number of relevant indi-
vidual FTIR wavelengths ranged from 11 for AST to 22 
for AOPP and covered the three main regions: short-
mid wavelength infrared (4351 to 3650   cm−1), mid 
wavelength infrared (1773 to 1179   cm−1), and mid-
long wavelength infrared (975 to 925   cm−1; Fig.  3b). 
The number of overlapping wavelengths that explained 
more than 0.8% of the phenotypic variability across the 
two investigated models (BayesB and GBM) was larger 
for blood minerals, globulin and RMOt, which shared 
more than 60% of wavelengths (see Additional file  2: 
Fig. S3). For urea, AST, PON, AOPP, FRAP and ceru-
loplasmin, we observed that BayesB and GBM shared 
from 27 to 42% of wavelengths with the highest contri-
bution for phenotypic prediction (Fig. 3c).

The most significant FTIR wavelengths for the GBM 
approach (VI > 0.8) are related to overtones and com-
binations of the vibrations of some chemical bonds, 
such as C–O symmetric stretching, C=O stretching, 
C–H, N–H, O–H, and S–H. Twenty-four wavelengths 
were shared by at least five blood metabolites (Fig.  3a): 
971   cm−1 (12 metabolites); 975   cm−1 (10 metabolites); 
925, 3708 and 4348  cm−1 (9 metabolites); 929, 940, 956, 
1179, 1476, 1765, 3650, and 4351   cm−1 (8 metabolites); 
964, 1773, 3654, 3658, and 3661   cm−1 (7 metabolites); 
1472, 3700, 3704, and 4247   cm−1 (6 metabolites) and 
933 and 967   cm−1 (5 metabolites). These shared regions 
contributed to the predictive ability of GBM, from 0.84% 
(975   cm−1 for urea and 1179   cm−1 for K) to 20.96% 
(1179  cm−1 for calcium). In agreement with these results, 
the major FTIR wavelength was lowly to highly corre-
lated with the evaluated blood metabolites, with values 
ranging from − 0.75 to − 0.12 and from 0.13 to 0.72 (see 
Additional file 2: Fig. S4).

Discussion
Predictive performance of FTIR data integrated 
with on-farm and genomic information
In this study, we evaluated the potential of combining 
FTIR spectroscopy with on-farm and genomic data to 
predict blood metabolites related to metabolic disorders 
in Holstein cattle. Such a multi-data approach to pre-
dict complex phenotypes is a subject of growing interest, 
since it better captures their biological meaning and can 
be exploited to build a prediction model that accurately 
predicts unknown samples. Including on-farm informa-
tion (DIM and parity) in the FTIR predictions (Model 
M2) increased the predictive ability ( R2 ) with an average 
RD of 3.7% for energy-related metabolites, 5.1% for liver 
function/hepatic damage-related metabolites, 4.3% for 
oxidative stress-related metabolites, 2.8% for inflamma-
tion/innate immunity-related metabolites, and 4.6% for 
minerals (Fig. 1).
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The improvements in  R2 may be related to the direct 
effect due to lactation stage, which is linked to energy 
requirements, milk yield, and milk fat and protein con-
centrations [48]. Metabolic disorders in dairy cows have 
a direct effect on milk yield and quality [49], which indi-
cates that variations in the milk composition closely 
reflect alterations in the blood biochemical profile. 
Within this framework, we observed a slight difference 
across the DIM classes for blood parameters (see Addi-
tional file 1: Table S1 and Additional file 2: Fig. S2), due 
to the fact that the evaluated cows were within a normal 
range of physiological values, without visible signs of 
metabolic disorders [50]. Consistent with this result, a 
previous study on healthy cows by Premi et al. [34] found 

non-significant differences between the early (from 28 
to 45 DIM) and late (from 160 to 305 DIM) lactation 
phases for most of the blood metabolites that we consid-
ered here. However, substantial differences between DIM 
classes were observed for urea content, liver function/
hepatic damage indicators ROMt, AOPP, ceruloplasmin 
and zinc (see Additional File 1: Table  S1), in agreement 
with the higher RD observed for M2 (Fig. 1). In addition, 
Krogh et  al. [51] reported that taking herd/diet, parity, 
and DIM into account does not explain all the variations 
observed for some blood metabolites (such as, BHBA, 
NEFA, glucose, and serum IGF-1), which indicates 
that other factors may contribute to their phenotypic 
variation.

Fig. 1 Average of the relative difference (%) in predictive ability across tenfold random, batch‑out and herd‑out cross‑validation scenarios for 
Model 2 (milk FTIR data and on‑farm data), Model 3 (milk FTIR data and genomic information) and Model 4 (milk FTIR data, on‑farm data, and 
genomic information) for BayesB (a, c, e) and gradient boosting machine (GBM) (b, d, f) against the Model 1 considering only the FTIR data. Data are 
shown as mean ± SD (dark red error bar line) [for more details, see Additional file 1: Table S2 to S4]. GLU: Glucose; BHBA: β‑hydroxybutyric acid; AST: 
aspartate aminotransferase; GGT: γ‑glutamyl transferase; PON: paraoxonase; ROMt: total reactive oxygen metabolites; AOPP: advanced oxidation 
protein products; FRAP: ferric reducing antioxidant power; CuCp: Ceruloplasmin; PROTt: total proteins; GLOB: Globulin; Ca: Calcium; k: Potassium; Zn: 
Zinc
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We found a greater improvement in predictive abil-
ity with Model M4, which included FTIR, on-farm, and 
genomic data, with a RD ranging from 9.1% for inflam-
mation/innate immunity to 16.4% for liver function/
hepatic damage (Fig.  1). Including genomic information 
established a link between genotype and phenotype, 
which is an effective means of associating the genetic 
background of an individual with a variation in blood 
metabolites [47, 52, 53]. By integrating the FTIR predic-
tions with different individual sources of variation (DIM 
and parity) and genetic backgrounds (SNP data), we 
reduced the prediction error and increased the  R2. These 
different sources of information contribute to better cap-
turing the variation in biological pathways in which the 

blood metabolites are involved. A potential limitation 
could be related to the availability of females with geno-
typic information, although the rapid drop in the price of 
genotyping has led to a considerable increase in the num-
ber of young genotyped females. Therefore, genotyping 
animals no longer seems to be a limiting factor [54]. An 
alternative strategy could be to combine milk FTIR spec-
tral information with pedigree data, even if it provides a 
lower or similar  R2 compared to the strategy that includes 
genomic information [29].

Concerning the practical applications of predicting 
blood metabolites, it is worth noting that the aim of met-
abolic profiling is not to identify visible diseases, which 
can be diagnosed with gold standard methods, but to 

Fig. 2 Relationship between relative difference (expressed as the difference in predictive ability from Model 4, i.e., full model including FTIR data, 
DIM, parity and genomic information and from Model 1 considering only FTIR data) and heritability estimates for each trait. Plots are differentiated 
for tenfold, batch‑out and herd‑out cross‑validation scenarios using BayesB (a, c, e) and gradient boosting machine (b, d, f) approaches for 
predicted blood metabolites
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detect subclinical disorders at an early stage to preven-
tively take adequate measures at both the individual and 
the herd level [55]. Thus, given that phenotyping blood 
metabolites is invasive, time-consuming, and not feasi-
ble at the herd level, prediction from milk samples is very 
attractive. Moreover, using milk FTIR for large-scale phe-
notyping of blood metabolic profiles could be exploited 
by breeding programs that aim at selecting resilient ani-
mals [55].

Predictive performance of the statistical approaches used 
in this study
We have shown that it is feasible to predict blood metab-
olite traits in Holstein cattle using different layers of the 
omics cascade (FTIR and genomic information) and 
different individual sources of variation (DIM and par-
ity). The multiple sources of information capture the 
heterogeneity of the biological profiles, creating a com-
plex relationship between the predictor variables, which 
requires finely-tuned statistical methods to capture the 
biological variation by identifying the most informative 

Fig. 3 Wavelength regions variable importance (VI) greater than 0.8% for the GBM approach using Model 4 (M4) that includes milk FTIR data, 
on‑farm (DIM and parity), and genomic information for blood metabolites. a Overlap of FTIR wavelength considered as significant (VI > 0.8%) 
indicating specific and shared regions, b total of FTIR wavelengths with a relative VI greater than 0.8% of the phenotypic variability and c heatmap 
for relative VI scores for each FTIR wavelength absorbance considered as significant (VI > 0.8%)
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variables [53]. We compared the BayesB and GBM meth-
ods for their effectiveness when they include heterogene-
ous information for phenotypic prediction of the major 
groups of blood metabolites. Using statistical methods 
such as Bayesian penalized regression or machine learn-
ing algorithms for the prediction of phenotypes makes 
it possible to select more informative predictor vari-
ables capable of improving the predictive ability ( R2 ) in 
the validation population and reducing overfitting in the 
training population. Our results show that GBM outper-
formed BayesB in predicting blood metabolite-related 
traits (Tables 3 and 4); the differences in R2 between the 
approaches are due to differences imposed in variable 
selection, which aim at reducing noise in the training 
dataset.

The weaker predictive ability of BayesB compared to 
GBM can be due to considering an additive effect for pre-
dictors and a prior assigned as mixture of a peak around 
zero with a scaled t-distribution [56]. Given this, com-
pared to GBM, BayesB showed predictive abilities that 
were lower by about 6.07% for energy-related metabo-
lites, 8.54% for liver function/hepatic damage metabo-
lites, 6.78% for oxidative stress metabolites, 4.11% for 
inflammation/innate immunity metabolites, and 8.24% 
for minerals. The usefulness of GBM for predicting phe-
notypes depends on how much this approach accurately 
models the complex relationships (e.g., non-linear and 
interaction effects) between predictor variables and/or 
the target trait [44]. However, the use of automatic varia-
ble selection and the possibility of making fewer assump-
tions regarding phenotype distribution than traditional 
statistical methods, can help achieve more accurate pre-
dictions [41].

Comparing different CV scenarios based on model 
fit parameters showed that the tenfold CV had a higher 
predictive ability than the batch-out CV and herd-out 
CV (Tables 3, 4, 5). The training and validation popula-
tions were assigned as random samples in both these CV 
scenarios, but differences in how the CV scenarios were 
structured caused differences in relationships between 
training and validation populations, which affected the 
model fit parameters. On the one hand, leaving-out 20% 
of the herd/date data in the batch-out CV scenario com-
pared to the tenfold CV scenario led to a decrease in  R2 
of 11.01% for BayesB and of 7.06% for GBM, which indi-
cates that GBM has a greater adaptive learning rate and 
a lower reduction in R2 than BayesB. On the other hand, 
considering the greater independence between the train-
ing and validation sets in the herd-out CV, we observed 
a lower accuracy due to the reduction in the ability of 
predictors to accurately capture the relationship between 
individuals from the training and validation sets. These 
reductions in  R2 observed for the herd-out CV compared 

to the tenfold CV ranged from 10.59 to 53.05% for Bayes 
B and from 10.20 to 50.98% for GBM. Qin et al. [57] indi-
cated that random CV under-estimates the error rate of 
the prediction equation compared with batch-out CV 
especially when systematic differences exist between 
batches. Different authors have observed that lower 
dependencies between training and validation sets led to 
lower  R2 and higher prediction errors [25, 58–60]. How-
ever, the GBM approach showed greater predictive ability 
than BayesB, which is due to its power to handle complex 
scenarios and improve FTIR predictions of blood metab-
olites with different origins and biological variability.

Among the categories of blood metabolites analyzed, 
inflammation/innate immunity-related traits had the 
highest predictive ability in each CV scenario and sta-
tistical approach, ranging from 0.52 to 0.82 for cerulo-
plasmin, from 0.69 to 0.88 for PROTt, and from 0.71 to 
0.92 for globulins, these values being higher than those 
obtained by Luke et  al. [55] for globulins ( R2 = 0.12). 
However, these results are very different from those 
obtained by Giannuzzi et  al. [28] for ceruloplasmin ( R2 
= 0.21), PROTt ( R2 = 0.32), and globulins ( R2 = 0.37) 
who used in-line near-infrared based on 31 light-emit-
ting diodes (LED). Our results suggest that milk FTIR 
data combined with on-farm and genomic data could be 
useful for predicting changes in liver function caused by 
inflammatory events, and could help predict the evolu-
tion of the inflammatory response in the medium and 
long term and understand whether the animals are in a 
phase of adaptation or chronic stress [34].

Predictive abilities using the M4 Model for energy-
related metabolites ranged from 0.63 to 0.80 (BayesB) 
and from 0.65 to 0.85 (GBM) for glucose, from 0.40 to 
0.59 (BayesB) and from 0.43 to 0.62 (GBM) for BHBA, 
and from0.47 to 0.76 (BayesB) and from 0.49 to 0.80 
(GBM) for urea. The values for glucose were higher than 
those reported by Grelet et  al. [18] ( R2 = 0.44) using 
a fourfold CV and by Benedet et  al. [61] ( R2 = 0.20) 
using a threefold CV, but the prediction accuracy that 
we obtained for BHBA was lower than that reported 
by these authors using only FTIR information (0.63 
to 0.70), and by Mota et  al. [58] using a multi-breed 
scenario ( R2 = 0.76). However, the predictive ability 
obtained for BHBA was higher than those reported by 
Belay et al. [62] (0.46 to 0.66), and Luke et al. [55]  (R2 
from 0.48 to 0.59). These differences between studies 
may be explained by the differences in the statistical 
approaches used (PLS regression in the other studies), 
in the variability of the blood metabolites, and in the 
DIM in which the blood metabolites were evaluated 
(i.e., DIM from 5 to 65 were used in the other studies 
whereas we considered the entire lactation).
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Combining on-farm and genomic information and 
applying statistical approaches for selecting informative 
FTIR wavelengths, represent key factors for the higher 
predictive ability observed in our study compared with 
the results from the aforementioned studies. Energy-
related metabolites (glucose, BHBA and urea) have 
been identified as the major metabolites that are related 
to the degree of physiological imbalance [1, 63] and 
deficiencies in protein and energy in the ration [64]. 
These results indicate that the GBM approach and the 
full model (M4) could be used to effectively and accu-
rately assess cow energy balance-related traits with the 
aim of devising strategies to avert impaired energy bal-
ance during milk production.

Regarding the blood metabolites related to liver func-
tion and hepatic damage, R2 values for GGT ranged 
from 0.45 to 0.63 using BayesB and from 0.48 to 0.65 
using GBM, for aspartate aminotransferase (AST) from 
0.38 to 0.53 using BayesB and from 0.43 to 0.63 using 
GBM, and for PON from 0.48 to 0.66 using BayesB and 
from 0.52 to 0.69 using GBM. The accurate predictions 
of these metabolites show that hepatic disturbances 
can be assessed by FTIR with the integration of differ-
ent sources of biological variation and might be used 
in detecting changes in liver functions and liver injury 
in dairy cows. The oxidative stress metabolites exhib-
ited an average predictive ability ( R2 ) for tenfold and 
batch-out CV  using that ranged approximately from 
0.45 to 0.72 for BayesB and from 0.49 to 0.75 for GBM, 
these values being higher than those reported by Gian-
nuzzi et  al. [28] ranging from 0.32 to 0.36. Blood oxi-
dative stress metabolites are related to dysfunctional 
host immune and inflammatory responses, increas-
ing the cows’ susceptibility to health disorders during 
the transition phase [65, 66]. In the early postpartum 
period, the negative energy balance increases lipid 
mobilization, and lipid β-oxidation in the liver tissue 
is associated with a greater susceptibility to oxidative 
stress in dairy cows [2]. Milk infrared spectra accu-
rately predicted blood mineral concentrations in line 
with previous studies using FTIR to predict milk min-
eral concentrations, with R2 values ranging from 0.33 to 
0.87 [67–69].

Effect of the trait heritability on relative gains in predictive 
ability between Models 1 and 4 on blood metabolites
The objective of combining FTIR data with multiple 
sources of information is to make accurate pheno-
typic predictions to support farm management and 
breeding decisions. Predictive performance for blood 
metabolites suggests that the improvement in accu-
racy depends on the trait analyzed (Fig. 1). The results 
show that the performance of M4 (integrating FTIR, 

on-farm, and genomic information) depends highly on 
the heritability estimates of the traits (Fig. 2). The rela-
tionship between the predictive ability of M4 and the 
heritability of the traits, was, in general, stronger with 
GBM ( R2 = 0.55, 0.65 and 0.33, depending on the CV 
scenario) than with BayesB ( R2 = 0.44, 0.36 and 0.16, 
depending on the CV scenario), even for traits that are 
mostly polygenic.

Relative importance of FTIR wavelengths for blood 
metabolite variation
The aim of blood metabolic profiling is to obtain infor-
mation on the cows’ nutritional status, metabolic health, 
and resilience [34] within the herd by identifying the 
prevalence of certain metabolic disorders. FTIR wave-
length absorbance could be an effective method for pre-
dicting blood metabolites because of its association with 
milk components, which are indirect indicators of energy 
balance in dairy cows. Notably, 28 of the 67 wavelengths 
explaining more than 0.8% of VI were identified as the 
most relevant wavelengths that explained more than 
3% of the blood metabolites’ variability and that have a 
biological link with the main components of milk, such 
as protein and fatty acids, fat, and pH. In addition, the 
shared regions between the BayesB and GBM approaches 
are the three major regions (4351 to 3650  cm−1; 1773 to 
1179  cm−1 and 975 to 925  cm−1; Additional file 2: Fig. S3) 
that interact with the common chemical bonds present 
in milk components such as fat, protein, lactose, carbo-
hydrates, and organic acids [70–73]. Duffield et  al. [74] 
found that the increase in milk fat and decrease in milk 
protein concentrations were associated with an elevated 
BHBA concentration in the serum (sensitivity and speci-
ficity of 58% and 69%, respectively), which can explain 
the observed wavelengths related to chemical bonds 
interacting with these milk components. De Roos et  al. 
[17] found that the concentration of ketone bodies was 
associated with milk spectral regions mainly when there 
were changes in the milk fat and protein contents and 
in the FA profile during energy-deficient periods, which 
explains the major contribution of these wavelength 
regions in accurately predicting blood metabolites in 
dairy cows.

Conclusions
This study confirms that, compared to a model that 
considers only milk FTIR spectral data, combin-
ing milk FTIR data with on-farm and genomic infor-
mation, especially in the case of metabolites under 
strong genetic control, increased the predictive abil-
ity for blood metabolic traits in Holstein cattle. The 
GBM ensemble approach improved the predictive 
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performance compared to the BayesB model because 
it extracts a smaller number of informative predictors 
and captures the non-linear and interaction effects, 
which lead to greater predictive ability. In addition, 
compared to BayesB, GBM was less affected when the 
training and validation sets became more independ-
ent. Although further research is required to test the 
potential of GBM on other populations and breeds, this 
study provides an integrated statistical approach for 
the large-scale monitoring of blood indicators of meta-
bolic disorders in dairy cattle for farm management and 
breeding purposes.
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Additional file 1: Table S1. Descriptive statistics for blood metabolites. 
Average and standard deviation (in parentheses) values for blood metabo‑
lites across the six classes of days in milk (DIM). Table S2. Predictive perfor‑
mances using the tenfold cross‑validation scenario. Average milk Fourier 
transform infrared (FTIR) prediction performance (± SD) for gradient 
boosting machine (GBM), and BayesB using the tenfold cross‑validation 
scenario considering only the milk FTIR information (M1), the milk FTIR 
information and on‑farm information (DIM and parity; M2) and consider‑
ing the milk FTIR information and single nucleotide polymorphism (SNP; 
M3), for blood metabolites. Table S3. Predictive performances using 
the batch‑out cross‑validation scenario. Average milk Fourier transform 
infrared (FTIR) prediction performance (± SD) for gradient boosting 
machine (GBM), and BayesB using the batch‑out cross‑validation scenario 
considering only the milk FTIR information (M1), the milk FTIR informa‑
tion and on‑farm information (DIM and parity; M2) and considering the 
milk FTIR information and single nucleotide polymorphism (SNP; M3), for 
blood metabolites. Table S4. Predictive performances using the herd‑out 
cross‑validation scenario. Average milk Fourier transform infrared (FTIR) 
prediction performance (± SD) for gradient boosting machine (GBM), and 
BayesB using the herd‑out cross‑validation scenario considering only the 
milk FTIR information (M1), the milk FTIR information and on‑farm informa‑
tion (DIM and parity; M2) and considering the milk FTIR information and 
single nucleotide polymorphism (SNP; M3), for blood metabolites.

Additional file 2: Figure S1. Distribution of the phenotypic values 
for blood metabolites. Distribution of the phenotypic values for blood 
metabolites. (a) Energy‑related metabolites: BHBA: β‑hydroxybutyric acid; 
GLU: glucose and urea; (b) Liver function/hepatic damage: AST: aspartate 
aminotransferase, GGT: γ‑glutamyl transferase and PON: paraoxonase; 
(c) Oxidative stress metabolites: AOPP: advanced oxidation protein 
products, FRAP: ferric reducing antioxidant power, ROMt: total reactive 
oxygen metabolites; (d) Inflammation/innate immunity: CuCp: ceru‑
loplasmin, GLOB: globulins, PROTt: total proteins; and (e) Minerals: Ca: 
calcium, K: potassium, and Zn: zinc. Figure S2. oxplot of the phenotypic 
values for blood metabolites. Boxplot of the phenotypic values for blood 
metabolites across the six classes of days in milk (DIM). (a) Energy‑related 
metabolites: BHBA: β‑hydroxybutyric acid; GLU: glucose and urea; (b) 
Liver function/hepatic damage: AST: aspartate aminotransferase, GGT: 
γ‑glutamyl transferase and PON: paraoxonase; (c) Oxidative stress metabo‑
lites: AOPP: advanced oxidation protein products, FRAP: ferric reducing 
antioxidant power, ROMt: total reactive oxygen metabolites; (d) Inflamma‑
tion/innate immunity: CuCp: ceruloplasmin, GLOB: globulins, PROTt: total 
proteins; and (e) Minerals: Ca: calcium, K: potassium, and Zn: zinc. Class 
of days in milk (DIM): CL1: less than 60 days; CL 2: from 60 to 120 days; 
CL 3: from 121 to 180 days; CL 4: from 181 to 240 days; CL 5: from 241 to 
300 days; and CL 6: higher than > 300 days. Figure S3. Venn diagrams of 
the most informative milk FTIR wavelengths for blood metabolites using 
BayesB and gradient boosting machine (GBM). Venn diagrams showing 
the unique and shared milk FTIR wavelengths explaining more than 0.8% 

of the phenotypic variability for BayesB and gradient boosting machine 
(GBM) for blood metabolites. (a) Energy‑related metabolites: BHBA: 
β‑hydroxybutyric acid; GLU: glucose and urea; (b) Liver function/hepatic 
damage: AST: aspartate aminotransferase, GGT: γ‑glutamyl transferase and: 
paraoxonase; (c) Oxidative stress metabolites: AOPP: advanced oxidation 
protein products, FRAP: ferric reducing antioxidant power, ROMt: total 
reactive oxygen metabolites; (d) Inflammation/innate immunity: CuCp: 
ceruloplasmin, GLOB: globulins, PROTt: total proteins; and (e) Minerals: 
Ca: calcium, K: potassium, and Zn: zinc. Figure S4. Pearson correlation of 
most informative wavelength regions with blood metabolites. Pearson 
correlation between wavelength regions explains more than 0.8% of the 
phenotypic variability in the GBM approach and blood metabolites in the 
Holstein cow population. AOPP: advanced oxidation protein products; 
AST: aspartate aminotransferase; BHBA: β‑hydroxybutyric acid; Ca: calcium; 
CuCp: ceruloplasmin; FRAP: ferric reducing antioxidant power; GGT: 
γ‑glutamyl transferase; GLOB:globulins; GLU: glucose; K: potassium; PON: 
paraoxonase; PROTt: total proteins; ROMt: total reactive oxygen metabo‑
lites; Zn: zinc.
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