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Towards genetic improvement of social 
behaviours in livestock using large‑scale sensor 
data: data simulation and genetic analysis
Zhuoshi Wang1*   , Harmen Doekes1 and Piter Bijma1 

Abstract 

Background  Harmful social behaviours, such as injurious feather pecking in poultry and tail biting in swine, reduce 
animal welfare and production efficiency. While these behaviours are heritable, selective breeding is still limited 
due to a lack of individual phenotyping methods for large groups and proper genetic models. In the near future, 
large-scale longitudinal data on social behaviours will become available, e.g. through computer vision techniques, 
and appropriate genetic models will be needed to analyse such data. In this paper, we investigated prospects 
for genetic improvement of social traits recorded in large groups by (1) developing models to simulate and analyse 
large-scale longitudinal data on social behaviours, and (2) investigating required sample sizes to obtain reasonable 
accuracies of estimated genetic parameters and breeding values (EBV).

Results  Latent traits were defined as representing tendencies of individuals to be engaged in social interactions 
by distinguishing between performer and recipient effects. Animal movement was assumed random and with-
out genetic variation, and performer and recipient interaction effects were assumed constant over time. Based 
on the literature, observed-scale heritabilities ( h2o ) of performer and recipient effects were both set to 0.05, 0.1, or 0.2, 
and the genetic correlation ( rA ) between those effects was set to – 0.5, 0, or 0.5. Using agent-based modelling, we 
simulated ~ 200,000 interactions for 2000 animals (~ 1000 interactions per animal) with a half-sib family structure. 
Variance components and breeding values were estimated with a general linear mixed model. The estimated genetic 
parameters did not differ significantly from the true values. When all individuals and interactions were included 
in the analysis, the accuracy of EBV was 0.61, 0.70, and 0.76 for h2o = 0.05, 0.1, and 0.2, respectively (for rA = 0). Including 
2000 individuals each with only ~ 100 interactions, already yielded promising accuracies of 0.47, 0.60, and 0.71 for h2o = 
0.05, 0.1, and 0.2, respectively (with rA = 0). Similar results were found with rA of  – 0.5 or 0.5.

Conclusions  We developed models to simulate and genetically analyse social behaviours for animals that are kept 
in large groups, anticipating the availability of large-scale longitudinal data in the near future. We obtained promising 
accuracies of EBV with ~ 100 interactions per individual, which would correspond to a few weeks of recording. There-
fore, we conclude that animal breeding can be a promising strategy to improve social behaviours in livestock.

Background
Modern animal production systems, which are char-
acterized by group-housing with more opportunity for 
animal movement and ample contacts between individu-
als, are believed to improve animal welfare. However, 
domestic animals regularly engage in social interactions, 
and the high demand for animal productivity has led to 
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intensification of the pig/poultry industry. This intensifi-
cation has brought new challenges for animal welfare and 
health, including an increase in harmful social interac-
tions, such as injurious feather pecking in poultry and tail 
biting in swine.

To reduce the occurrence of harmful social behaviours, 
management strategies can be applied. Physical alteration 
of animals (e.g. beak trimming in poultry or tail docking 
in pigs) has been widely applied, but this has undesired 
implications for animal health and welfare [1] and has 
been banned in many countries. The use of smaller group 
sizes may also reduce harmful behaviours, as it reduces 
the number of (potential) interactions between animals 
[2], but most modern farms have relatively large groups. 
Alternative management solutions include providing 
appropriate rearing conditions to reduce feather pecking 
in laying hens [3, 4], using enriched housing to reduce tail 
biting in pigs [5], and increasing feeding space to reduce 
aggressive behaviours in dairy cows [6]. These husbandry 
solutions may improve or have already improved social 
behaviours in different species. However, many of them 
are prohibitively expensive, labour intensive, or other-
wise difficult to incorporate into routine management. 
The limited efficacy or questionable ethical justification 
of current management solutions has stimulated the 
interest in the use of genetics to improve social behav-
iours, which has the potential to lead to cumulative and 
permanent benefits at relatively low costs for individual 
producers [7].

Over the past century, animal breeding has made a 
substantial contribution to improving the efficiency of 
animal production [8]. However, the contribution of 
animal breeding to the improvement of behavioural 
traits is still limited [9]. In a meta-analysis, Dochterman 
et  al. [10] found an average heritability for behavioural 
traits of ~ 0.25, with most behaviours showing a herit-
ability between 0.15 and 0.29. Kjaer and Sørensen [11] 
found heritabilities in the range from 0.05 to 0.20 for the 
number of pecks performed by laying hens, based on 
an average of ~ 25 pecks per individual. Agha et  al. [12] 
found that the heritability estimate for behavioural traits 
derived from social network analysis in pigs ranged from 
0.09 to 0.26. Desire et  al. [13] estimated heritabilities 
ranging from 0.09 to 0.44 for skin lesions in pigs. These 
results indicate that genetic improvement of behav-
iours is possible, in principle. One challenge of applying 
breeding strategies for behaviour-related traits is that 
the phenotype of an individual may depend not only on 
the effect of the genes of the individual itself (known as 
the direct genetic effect, DGE), but also on the genetic 
effects of the genes of its group mates (known as social 
or indirect genetic effects, IGE) [14, 15]. Over the last 
two decades, social genetic models have been developed 

to quantify DGE and IGE and to optimize breeding 
schemes for traits related to social behaviours (e.g. [14, 
16–19]). Results show that IGE are present for a wide 
range of traits and can have a substantial impact on herit-
able variation and response to selection. For example, in 
laying hens showing pecking behaviour, IGE contribute 
33 to 76% of the heritable variation in survival time [20, 
21]. IGE models are typically applied to individual traits 
that are affected by social interactions, such as growth 
rate, feed intake, and tail injuries in pigs, or mortality and 
feather condition due to pecking in laying hens, rather 
than to the social behaviour itself (e.g. [14]). Hence, these 
models are usually fitted to phenotypes of the recipient 
of the behaviour, and their application does not require 
data on the behavioural interactions that cause the IGE. 
Instead, the IGE (i.e. the genetic effects of the perform-
ers) are identified in a statistical manner, using informa-
tion on group composition [22].

However, a limitation of these models is that they 
assume that each individual affects the phenotype of each 
of its pen mates equally. Therefore, they are particularly 
useful in the case of small groups, where animals have 
ample interactions with all their pen mates [23, 24]. How-
ever, for large groups, the assumption of equal interac-
tion does not hold, e.g. because an individual can only 
interact with another individual when they are physi-
cally close enough. Thus, in large groups with hundreds 
or even thousands of individuals, one individual can only 
interact with the limited number of individuals in its 
homing range.

Radersma [25] presented a framework to estimate the 
social tendencies of individuals from the strength of 
undirected pairwise social interactions obtained from 
social network analysis. The probability of pairwise social 
interactions was modelled by taking the logit of the sum 
of the two social tendencies weighted by the tendencies’ 
social governance. The social governance represents how 
much an individual affects the social interaction fre-
quency relative to other individuals. In this framework, 
social tendency is a normally distributed latent trait that 
explains the observed variation in the frequency of inter-
actions between pairs of individuals. This social tendency 
consists of a heritable component (breeding value, or BV) 
and a random environmental component, similar to an 
ordinary quantitative genetic trait. Therefore, classic ani-
mal breeding theory also applies to social tendency.

Assuming a single social tendency, as in Radersma 
[26], is not always appropriate. Many behavioural inter-
actions are directional and an individual can play one of 
two roles in an interaction event: performer or recipient. 
For a pair of animals, say A and B, the probability that A 
performs and B receives the behaviour is not necessarily 
equal to the probability that B performs and A receives 
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the behaviour. Quantitative genetic studies on feather 
condition score in laying hens, for example, showed that 
the genetic correlation between direct and social effects 
is clearly different from 1 [27], suggesting that performer 
and recipient effects are two distinct quantitative genetic 
traits. Therefore, two distinct traits should be defined 
when individuals can play two distinct roles. Moreover, 
if we can clearly distinguish the performer and the recipi-
ent, then the term IGE in a classic social genetic model 
refers to the genetic effect of the performer, and DGE 
refers to the genetic effect of the recipient because in 
classic social genetic models, traits are usually measured 
on recipients.

Genetic analysis of phenotypes that are a result of pair-
wise social interactions requires extensive records of the 
social interactions, including not only the event itself but 
also the identity of the participants. Recording all interac-
tions between individuals in a large population used to be 
time- and labor-demanding, but it is gradually becoming 
feasible due to recent developments in animal detection 
and tracking techniques. By combining a variety of sen-
sors and artificial intelligence (AI) algorithms, research-
ers have successfully detected animal behaviour in several 
species [26, 28]. These technologies can provide big data 
on social interactions between individuals, and we expect 
that such data will become available in the coming years. 
However, there is still a lack of statistical genetic meth-
ods to translate such data into estimated breeding values 
(EBV) for social traits, and little is known of the sample 
sizes required for estimating genetic parameters and BV.

The objectives of this paper were to (1) extend the 
social genetic model of Radersma [26] for genetic analy-
sis by including both performer and recipient effects, and 
(2) investigate required sample sizes by evaluating the 
effect of the number of individuals, the number of inter-
action records, and group size on accuracy and bias of 
estimated genetic parameters and BV. To address these 
objectives, we used simulation of animal behaviour in 
time and space, with subsequent genetic analysis of the 
resulting data. First, latent traits were defined to repre-
sent the tendency of individuals to be engaged in behav-
ioural interactions by distinguishing between performer 
and recipient effects. Second, social interactions with 
known performer and recipient were simulated under 
various population settings based on an assumed genetic 
structure, and for different values of heritabilities, genetic 
variances, and the genetic correlation between performer 
and recipient effects. And third, statistical models were 
applied to estimate the relevant genetic parameters 
(genetic and environmental variances and correlations) 
and BV of the social trait from the simulated data, and 
to investigate the accuracies and bias of the EBV. Input 
values for the simulation were chosen such that the 

estimated observed-scale heritabilities corresponded to 
common values for behavioural traits found in the litera-
ture. We assumed that movement of animals was random 
and showed no genetic variation, and that performer and 
recipient effects were constant over time (see “Discus-
sion” section).

Methods
Trait definition
For each individual, two latent traits were defined to rep-
resent its tendency to be engaged in a behavioural inter-
action as a performer (trait α ) or recipient (trait β ). Each 
of the two traits consisted of two parts: a heritable part 
(the BV) and a permanent non-genetic effect (known as 
“permanent environment”). Thus, for the i th individual:

where Pα,i and Pβ ,i are the individual’s total tendency for 
each trait, µα and µβ are the means of Pα and Pβ , Aα,i and 
Aβ ,i are the individual random BV, and Epαi and Epβi are 
the random permanent environmental effects. No residu-
als were simulated on the latent scale (see below). Ran-
dom genetic effects of base generation individuals were 
sampled from a bivariate normal distribution,

 where rA is the genetic correlation between traits α and 
β . For the next generation, we simulated a half-sib family 
structure. The BV of the offspring were generated as:

where MS was the Mendelian sampling term, sampled 
from:

Random permanent environmental effects for the off-
spring generation were sampled from:
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(2)Pβ ,i = µβ + Aβ ,i + Epβ ,i,
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 where  the correlation between the permanent envi-
ronmental effects of an individual on traits α and β was 
assumed equal to zero.

Behavioural interactions were simulated for the off-
spring generation only. For an interaction between indi-
viduals i and j when they are physically close (see below 
for conditions related to their proximity), the probability 
of i performing the social interaction towards j is given 
by:

where (Pα,i + Pβ ,j) ∈ ℝ, is the normally distributed ten-
dency that i as performer and j as recipient were engaged 
in a social interaction. The logistic function was used to 
rescale Pα,i + Pβ ,j from the real number domain to the 
probability domain ranging from 0 to 1. Binary interac-
tion records were then generated by sampling a random 
number from a Bernoulli distribution with parameter pij , 
where 1 means that the interaction took place, while 0 
means that it did not take place.

The total variance underlying the binary records is the 
result of five components: Aα,i , Epα,i , Aβ ,j , Epβ ,j , and the 
variance induced by the Bernoulli sampling process. The 
latter is known as the link variance [29] and is equal to π

2

3
 

for the logistic link function. Because this model is equiv-
alent to a threshold model with a logistically distributed 
residual on the underlying scale of the latent variable, 
there is no need to include a residual in Eqs. (1) and (2) 
(see Dempster and Lerner [30] for the threshold model). 
Therefore, the heritability for the performer trait on the 
underlying scale is given by:

The analogous expression applies to the heritability for 
the recipient trait ( β).

Simulation of animal movement
For social interactions to occur, animals need to be in 
each other’s proximity. Thus, the physical position of 
the individuals over time in the pen must be simulated. 
We used an Agent Based Model [31] with three behav-
iours underlying individual movement: (1) eating, where 
the individual first moved to a target (a feeder that was 
located on the edge of the pen) and then stayed for a 
while until it was satisfied; (2) walking, where the indi-
vidual moves into a random direction; and (3) resting, 
where the individual did not move at all. These behav-
iours and the resulting physical position of individuals 

(5)pij = logistic
(
Pα,i + Pβ ,j

)
=

1

1+ e−(Pα,i+Pβ ,j)
,

(6)h2uα =
σ 2
Aα

σ 2
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+ σ 2
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+ σ 2
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+ σ 2
Epβ

+
π2

3
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were simulated in discrete time steps. For each individual 
and each time step t , the motivation for the three behav-
iours was defined as a motivation vector:

where MEi,t , MWi,t , and MRi,t denote the individual’s 
motivation for eating, walking, and resting, respectively. 
The change of motivation in each time step is given by 
the matrix �:

where �B←B′ , (B,B
′
= E,W ,R) is the change of moti-

vation in behaviour B resulting from the expression of 
behaviour B′ . Therefore, in the next time step, the new 
motivation vector is:

with B′
= E,W ,R.

The elements of matrix � determine the timespan that 
individuals typically spend on a certain behaviour and the 
behaviour they express after that. The diagonal elements 
in matrix � were negative, meaning that the motivation 
for a behaviour decreased when an individual performed 
that specific behaviour. The off-diagonal elements were 
positive, meaning that when the individual was perform-
ing one behaviour, the motivation of the other two behav-
iours increased.

The individual starts a behaviour when the motiva-
tion was greater than a preset threshold T  ( T  > 0) and 
terminates the behaviour when the motivation is zero. 
We chose a T  of 100, so that the motivation can approxi-
mately be interpreted as a percentage for how motivated 
the animal is for a behaviour. A motivation of 100 for 
e.g. eating behaviour, means that the animal moves to a 
feeder and starts eating (if a free feeder is available); the 
animal stops eating when the motivation reaches zero. 
The time interval between meals for each animal was set 
to ~ 70 min and the duration of each meal was set to ~ 3 
min (Fig.  1a). The animal-to-feeder ratio was set to 5:1, 
which was sufficient for animals not having to wait too 
long to eat when they are motivated. For each individual, 
the initial motivations were uniformly, randomly, and 
independently chosen from the interval 0 to T  , and the 
initial position in the pen was random as well. The ele-
ments of matrix � were chosen to fulfill the behavioural 
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pattern shown in Fig.  1a, where an individual visits the 
feeder every ~ 70 min and, between two meals, frequently 
switches between walking and resting for details, (see 
Additional file  1: Text S1 and Fig. S1). Animals can be 
motivated for multiple behaviours at the same time. In 
these cases, eating was given the highest priority and 
walking the lowest priority, as defined in the behaviour 
decision tree (Fig. 1b). Figure 1c shows the resulting time 
budget of the animals for each behaviour.

The physical position of all animals in the pen was sim-
ulated at every time step using the approach described 
in Additional file  1. Following each time step, the dis-
tance between individuals was computed. If the distance 
between two pen mates was below a preset sensing range 
r , then the probability of a social interaction taking place 
was calculated from Eq. (5) and a binary record was sam-
pled (1 means they interact, 0 means that they meet but 
do not interact).

For each interaction during the simulation process, 
the performer’s ID, recipient’s ID, performer’s position, 
recipient’s position, and pen ID were recorded. For each 
pair of pen mates, we also recorded the total number of 
encounters Nij , which represents the number of poten-
tial interactions between i and j , i.e. the number of time 
steps that the distance between individuals i and j was 
below the sensing range r.

Determining realistic genetic input values
To obtain realistic results with respect to the accuracy of 
EBV and the sample size required to estimate genetic 
parameters, we mimicked real populations as good as pos-
sible, particularly with respect to the heritability of the trait. 
Observed-scale heritabilities for binomial traits related to 
animal behaviour are typically within the range of 0.05 to 
0.20 [11–13]. To find realistic input values for our simula-
tions, we simulated a test dataset where individuals per-
formed on average 25 interactions (corresponding to ~ 2500 
encounters per individual, each with a 1% probability of 
interaction), then estimated the observed-scale heritability 
with an ordinary linear mixed model, and next tuned the 
input value for the underlying genetic variance until the 
observed-scale heritability was 0.05, 0.1, or 0.2. These input 

values were then used for the actual simulations. In the 
simulation of the test dataset, we used a genetic correla-
tion of zero between the traits α and β , noting that this only 
applied to the test set used to find realistic input values. In 
the simulation for genetic analysis we used three levels for 
the genetic correlation; see below in the section entitled 
“Implementation” section.

The following linear mixed model was used to estimate 
the observed-scale heritability from the test dataset:

where the response variable ni is the total number of 
interactions that i performed, µ is the population mean, 
Ai is the animal’s random genetic effect, and εi is the 
residual. ASReml 4.1 [32] was used to fit the model and 
estimate the genetic ( ̂σ 2

A ) and residual ( ̂σ 2
ε  ) variances. 

Observed-scale heritability was then estimated as:

Because we used equal genetic and perma-
nent environmental variances for both traits 
( σ 2

A,α = σ 2
A,β = σ 2

Ep,α = σ 2
Ep,β ; see section “Implementa-

tion” section below), the observed-scale heritability is also 
the same for both traits. Therefore, we identified the input 
values to obtain the desired observed-scale heritability for 
trait α and then used the same values for trait β . The result-
ing genetic parameters used for the final simulations are in 
Table 1.

Genetic analysis
Next, we investigated sample sizes required for accurate 
estimation of genetic parameters and associated bias and 
accuracy of EBV. To estimate genetic parameters and BV 
for traits α and β , the following generalized linear mixed 
model (GLMM) with a logit link-function and a binomial 
distribution was fitted in ASReml 4.1 [32], using the data of 
the offspring generation:

(10)ni = µ+ Ai + εi,

(11)ĥ2o =
σ̂ 2
A

σ̂ 2
A + σ̂ 2

ε

.

(12)
logit

(
pij

)
= µ+ Penk + Aα,i + Aβ ,j + Epα,i + Epβ ,j ,

(See figure on next page.)
Fig. 1  Simulated behavioural pattern and decision tree of agents. a Behavioural cycle. Individuals will visit the feeder approximately every 70 min. 
The meal lasted 5 min on average (including the time to approach a feeder). Between two visits of the feeder, the individuals would frequently 
switch between random walking and resting behaviour. The duration of walking and resting were both ~ 20 s. b Decision tree. Eating had 
the highest priority and walking had the lowest. At the beginning of each time step, the program would check if the motivation of the behaviour 
in the previous step was still above zero. If this was true, then the individual will continue the behaviour, without performing other behaviours 
even if the motivation of those behaviours was greater than the threshold value. This means that once the individual started a behaviour, it would 
not initiate a new behaviour until the motivation for the current behaviour fell below zero. When none of the behaviours exceeded the threshold 
an individual would rest. c Time budget. In the simulation, individuals on average go to the feeder every 70 min and spend 4% of the total time 
on eating. Walking and resting evenly take up the rest of the time
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Fig. 1  (See legend on previous page.)
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where pij is the probability that animal i performed a 
social interaction towards j given their distance is below 
the sensing range r (i.e. they encounter). Penk is a fixed 
pen effect, Aα,i is the random BV of individual i for per-
former effect, Aβ ,j is the random BV of individual j for 
recipient effect, and Epα,i and Epβ ,j are the corresponding 
independently distributed random permanent environ-
mental effects. Co-variances of breeding values among 
individuals were based on the pedigree relationship 
matrix A:

where ⊗ denotes the Kronecker product. In these analy-
ses, we only included records for pairs of individuals that 
met at least once. Hence, pairs of individuals that did not 
meet were omitted. For each replicate, we estimated both 
the genetic parameters and the BV. Hence, the quality of 
EBV will also reflect the quality of the estimated genetic 
parameters. The quality of the EBV was evaluated by their 
accuracy, the correlation between the true BV (TBV) and 
EBV, and bias, the regression of the BV on EBV.

Two traits were defined in this study, i.e. the per-
former and recipient effects. For each individual, the 
sum of the BV for these two traits was defined as the 
total BV [22], i.e.:

We focused on the total BV because it reflects 
response to selection, which is the ultimate purpose 
of animal breeding. In other words, the per-generation 
change in mean total BV is equal to the response to 

(13)var

[
aα

aβ

]
=

(
σ 2
Aα

rAσAα
σAβ

rAσAα
σAβ

σ 2
Aβ

)
⊗ A

−1
,

(14)
total BV = BVα + BVβ , total EBV = EBVα + EBVβ .

selection in the underlying trait value, i.e., in Pα + Pβ . 
Note that individuals with a lower total BV will show 
less harmful social interactions, such that lower values 
of the total BV are preferable. In the remainder of this 
paper, reported accuracies and biases refer to the total 
EBV, unless explicitly stated otherwise, i.e.:

Implementation
The default scenario
We considered a relatively small population, as auto-
mated detection of individual social behaviours with 
sensors and AI is still under development. In the default 
scenario, 2000 offspring were generated from 100 sires 
and 400 dams, where each sire was mated to four dams 
and each dam produced five offspring. Then, the 2000 
offspring were randomly divided into 20 groups of 100 
individuals. Hence, there were 9900 ordered pairs of 
individuals in each pen (i.e., 100 × (100–1) i.e. when dis-
tinguishing ij from ji . The mean trait value on the under-
lying scale for each trait ( µα and µβ ) was set to -2.3 to 
result in a median interaction probability of 1% given 
that individuals encountered each other (such that 
µα + µβ = logit(0.01) ). The simulation was run until at 
least 10,000 interaction events took place in each pen. 
Given the average interaction probability of 1%, this 
implied around 1 million encounters per pen (a value 
realistic for actual populations; see “Discussion” sec-
tion). By the end of the simulation, the total number of 
encounters and the total number of interactions were 
determined for all 9900 × 20 pairs of individuals. The sim-
ulations were replicated 20 times, and results are based 
on the averages of these 20 replicates.

As mentioned above, the variance of the BV and per-
manent environment effects were assumed equal for both 
traits (Table  1). Three levels for the genetic correlation 
between trait α and trait β were simulated, -0.5, 0, and 
0.5. When the two traits are positively correlated, indi-
viduals that perform more interaction behaviours also 
tend to receive more interactions from others, and vice 
versa.

Pen size followed from a fixed density of one animal 
per m2. Thus, pen size was 100 m2 in the default sce-
nario (10 m × 10 m). For each pen, 20 feeders were uni-
formly located on two opposite sides of the pen (i.e. 40 
in total). In each time step, an animal moved 1 m if it was 
motivated for walking, either in a random direction or 
towards a feeder when motivated for eating.

(15)Accuracy = cor(total BV , total EBV ),

(16)Bias = reg(total BV , total EBV ).

Table 1  Simulated genetic variances ( σ 2

A
)a required to obtain a 

certain observed-scale heritability ( h2o)
b

a Variances were the same for genetic effect and permanent environmental 
effect, as well as for both traits, so these input values are for all four variances
b  h2o is the observed-scale heritability of the mean of 2500 binary observations 
with on average 25 successes, based on a linear mixed model
c Interaction probability of the top and bottom ranking individuals for the 
performer effect. These values are calculated assuming that an individual 
whose value for trait α is Pα = µα ± 2σAα interacts with an average pen 
mate ( Pβ = µβ ). The interaction probability for such a combination is 
p = logistic ( µα ± 2σAα + µβ ). The mean interaction probability was 1% 
( µα = µβ = 1/2logistic−1(0.01))
d Accuracy of the EBV for the performer effect based on the simple LMM, 
computed as the correlation between true and estimated breeding values

h2o h2u σ
2

A
p(Aα = µα − 2σAα )

c p(Aα = µα + 2σAα )
c Accuracy 

LMMd

0.05 0.0036 0.012 0.008 0.012 0.173

0.1 0.0111 0.038 0.006 0.015 0.195

0.2 0.0429 0.170 0.004 0.022 0.241
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To obtain the behavioural pattern described in Fig. 1a, 
the threshold T  was set at 100 and the matrix of changes 
of motivation per time step was set at:

Alternative scenarios
Compared to the default scenario, three parameters were 
varied, one at a time: (a) the total number of individuals, 
(b) the number of observed interactions per pen, and (c) 
group size.

(a)	 To evaluate the impact of the total number of indi-
viduals, we varied the number of pens included in 
the statistical analysis from 1 to 20 (where 20 was 
the default). Thus, the number of animals ranged 
from 100 to 2000. To accomplish this, we did not 
change the simulations but assumed data were 
available from a range for numbers of pens. Because 
families were distributed randomly across pens, 
variation in the number of pens included in the 
analysis resulted in variation in the amount of sib 
information included in breeding value estimation. 
In the default situation with 2000 individuals, an 
animal has own performance and records of four 
full sibs and 15 half-sibs. When the number of indi-
viduals was reduced to 100, an average individual 
had own performance and records on 0.2 full-sibs 
and 0.75 half-sibs.

(b)	 To evaluate the impact of the number of observed 
interactions per pen, we extended the simulated 
time until at least 100k interactions were obtained 
for each pen. The GLMM was then fitted by includ-
ing the first 5k, 10k (default), 20k, 50k, or 100k 
interactions.

(c)	 To evaluate the impact of group size, we randomly 
divided the 2000 individuals into 10, 20 (default), 
50, or 100 groups. The corresponding group sizes 
were 200, 100 (default), 40 and 20 individuals. The 
average number of interaction events per individual 
was set at 100 for each group size. Hence, simula-
tions were continued until the number of interac-
tions recorded in each pen was at least 100 × group 
size. With npens pens of n individuals, yielding a 
total of N = npensn individuals, the total number of 
(ordered) pairs that can potentially interact is equal 
to N (n− 1) . Hence, for a given N  , the number of 
pairs decreased as pen size decreased, which may 
affect the accuracy of EBV. Because density was 

(18)�t,t+1 =




−1 0.025 0.025

0 −10 10

0 10 −10



.

fixed, larger groups were simulated using larger 
pens and the total area summed over all pens was 
always 2000 m2, irrespective of the number of 
groups.

Results
Default scenarios
Table  1 shows the genetic variances ( σ 2

A ) that corre-
spond to observed-scale heritabilities of total number 
of interactions performed ( h2o ) of 0.02, 0.05, and 0.1, and 
the corresponding heritabilities on the underlying scale. 
Note that the underlying-scale heritability is defined 
here for a single realization of the latent variable, while 
the observed-scale heritability is estimated from the 
sum of ~ 2500 Bernoulli trials, resulting in an average 
of ~ 25 interactions per individual (see “Methods” sec-
tion). Thus, the random sampling process has much less 
impact on the observed-scale heritability, which explains 
why h2o is much greater than h2u . To interpret the magni-
tude of the genetic variance on the underlying scale, we 
also show the corresponding expectation of interaction 
probabilities for assumed individuals whose BV were 2σA  
above or below average (Table 1). The interaction prob-
abilities for the top and bottom ranking individuals dif-
fered by a factor of 1.5 for h2o = 0.05, 2.5 for h2o = 0.10, 
and 5.5 for h2o = 0.20, assuming that these top/bottom 
animals interact with random pen mates. Hence, in spite 
of the low observed-scale heritability, the genetic differ-
ences between individuals in their tendency to engage 
in social interactions were substantial. Accuracies of the 
EBV for the performer effect predicted by the ordinary 
LMM were relatively small (Table 1). Because simulated 
variance components were equal for the performer and 
recipient effects, results for the recipient effects (not 
shown) were very similar to those shown in Table 1.

The results also show that estimated genetic parame-
ters did not differ from their true values (Table 2 for rA = 
0, and see Additional file 2: Table S1 for rA = −0.5, and 
for rA = 0.5 ). In this analysis, we assumed that σ 2

Aα
 , σ 2

Aβ
 , 

σ 2
Epα

 , and σ 2
Epβ

 have the same true value in order to sim-
plify the simulation, so similar estimates were expected.

For the default scenario, the accuracies of the EBV for 
the two latent traits were slightly higher than the accu-
racy of the total EBV (Table 3).

Table  4 shows the accuracy and bias of the total 
EBV from the GLMM for the default scenario for 
nine combinations of three observed-scale herit-
abilities ( h2o = 0.05, 0.1, and 0.2 ) and three genetic cor-
relations between performer and recipient effects 
( rA = −0.5, 0, and 0.5 ). Accuracies were moderate and 
increased with heritability. For example, for rA = 0, the 
accuracy was 0.47, 0.60, and 0.71 for h2o of 0.05, 0.1, and 
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0.2, respectively. Breeding values were overestimated by 
6 to 15% and bias was larger when heritability was lower.

Number of phenotyped individuals
Results for the effect of the number of phenotyped indi-
viduals on accuracy of EBV are shown in Fig.  2. With 
less than 500 individuals, the size of the dataset was too 
small to fit the GLMM for some replicates using ASReml 

and we did not test whether this issue could be resolved 
with other software. Note that for each replicate, we not 
only estimated BV but also the variance components. 
When the phenotypes of 500 individuals were included, 
ASReml successfully fitted the GLMM for all 20 repli-
cates and accuracies were 0.30, 0.36, and 0.44 for h2o of 
0.05, 0.1, and 0.2, respectively (Fig. 2). As the number of 
phenotyped individuals increased to 2000, the accuracy 
of EBV increased to 0.47, 0.59, and 0.71 for h2o of 0.05, 0.1, 
and 0.2, respectively (Fig. 2). Hence, with 2000 individu-
als, accuracies of ~ 0.5 or more were obtained, suggesting 
that 50% or more of the maximum possible response to 
selection can be obtained. Thus, results in Fig.  2 show 
that promising accuracies can be obtained with relatively 
small datasets, although genetic parameters needed to be 
also estimated for each replicate.

Number of observations
Results show that the accuracy increased with the 
increasing number of records, as expected (Fig.  3). 
However, as the amount of data increased, the accuracy 
increased at a diminishing rate, and the benefit of addi-
tional data decreased, particularly with higher heritabili-
ties. Note that accuracy does not asymptote to a value of 
1 because of the permanent environmental components 
of the individual phenotype, which had the same vari-
ance as the genetic effects. A derivation of the theoretical 
upper bound of the accuracy when including an infinite 
amount of data is in Discussion and (see Additional file 3: 
Text S2).

Group size
Group size had only a minor impact on the accuracy of 
EBV (Fig. 4). In the four scenarios with different group 
sizes, accuracy ranged from 0.68 (group size of 200) to 
0.73 (group size of 40). Thus, a larger group size led to 

Table 2  Estimated and true genetic parameters based on the GLMM for the default scenario with rA = 0

Estimates were averages of 25 replicates.
a The true values of variances were the simulated input values (Table 1).

rAσAα σAβ is the genetic covariance between the two traits.

rA = 0 h2o

0.05 0.1 0.2

Estimated Truea Estimated Truea Estimated Truea

σ 2

Aα
0.0121 0.012 0.0396 0.038 0.1719 0.170

σ 2

Aβ
0.0138 0.012 0.0375 0.038 0.1706 0.170

σ 2

Epα
0.0117 0.012 0.0358 0.038 0.1649 0.170

σ 2

Epβ
0.0113 0.012 0.0361 0.038 0.1655 0.170

rAσAα σAβ 0.0009 0 0.0012 0 – 0.0004 0

Table 3  Comparison of accuracies for total versus latent trait EBV 
for the default scenarioa

a Accuracies refer to the default scenario, where the number of phenotyped 
individuals is 2000, the average number of records per individual is 10, and the 
group size is 100

rA = 0 h2o

0.05 0.1 0.2

rIH,total 0.471 0.595 0.713

rIH,α 0.532 0.624 0.727

rIH,β 0.516 0.638 0.718

Table 4  Accuracy and bias of EBV from the GLMM for the default 
scenario

Standard errors are in brackets. For the bias, regression coefficients of true total 
breeding values on estimated total BV are shown, so that values smaller than 1 
indicate overestimation of breeding values. h2o is the observed-scale heritability 
of the mean of 2500 binary observations with on average 25 successes, based 
on a linear mixed model

h2o rA

− 0.5 0 0.5

0.05 Accuracy 0.455 (± 0.009) 0.471 (± 0.009) 0.448 (± 0.008)

Bias 0.875 (± 0.023) 0.847 (± 0.027) 0.881 (± 0.016)

0.1 Accuracy 0.571 (± 0.008) 0.595 (± 0.011) 0.563 (± 0.015)

Bias 0.917 (± 0.019) 0.911 (± 0.022) 0.896 (± 0.018)

0.2 Accuracy 0.668 (± 0.012) 0.713 (± 0.017) 0.659 (± 0.010)

Bias 0.936 (± 0.030) 0.925 (± 0.019) 0.928 (± 0.021)
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a slight decrease in accuracy. However, the difference 
in accuracy was statistically significant only between 
group sizes 40 and 200 (P < 0.05). The average num-
ber of social interactions per individual was identical 
for the four group sizes. However, individuals interact 
with more pen mates in scenarios with a larger group 
size. Therefore, with a fixed total number of records, 

the average number of records per pair of individuals 
is smaller in larger groups. This can become problem-
atic when the total number of records is small and a lot 
of zeros show up in the data, which may lead to poor 
estimation of probabilities and BV. In these cases, one 
could record more interaction events or use statistical 
techniques to overcome this issue.

Fig. 2  Accuracy of EBV as a function of the number of phenotyped individuals. For different observed-scale heritabilities and genetic correlations 
between performer and recipient effect. The number of individuals was varied by varying the number of groups included in the analysis. Statistical 
analysis did not converge with fewer than 500 individuals

Fig. 3  The accuracy of EBV as a function of the number of records per individual. For a fixed number of pens (20) and a fixed number of individuals 
per pen (100). In total, 100 thousand encounters were simulated, and the first 5, 10, 20, 50, 100 thousand records were included in the statistical 
analysis. Error bars (± 1 SE) are shown for the top line only; SE for the other lines were similar
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Discussion
Performence of the analysis model
We investigated prospects for genetic improvement of 
social traits recorded in large livestock populations with 
hundreds of animals. For this purpose, we developed an 
individual-based simulation method to generate data on 
social interactions in a population with individual genetic 
and permanent environmental effects, and with spatial 
movement of individuals over time. We also presented a 
GLMM to estimate genetic parameters and BV for per-
former and recipient effects from the simulated data. We 
chose input values to ensure that estimated observed-
scale heritability agrees with typical values of the herit-
ability for social behaviour traits found in the literature. 
Thus, we believe that our simulations reflect the mag-
nitude of genetic effects in actual livestock populations. 
These low observed-scale heritabilities corresponded to 
relatively large genetic differences between individuals in 
the tendency to express a behaviour.

The GLMM successfully estimated genetic parameters 
that were not significantly different from the true values. 
Results also showed a considerable accuracy of total EBV. 
With the half-sib family structure used in this study and 
the presence of permanent environmental effects, the 
maximum possible accuracy is 0.77 (see Additional file 3: 
Text S2). The realized accuracy of 0.71 with h2o = 0.2 
and ~ 100 interactions per animal is already very close to 
this upper bound. For the other scenarios, more records 
were required to approach the upper bound. With a very 
large number of sibs, the theoretical upper bound of 
accuracy would be 0.82 (see Additional file  3: Text S2), 

which is still only a little larger than the 0.71 value we 
found for h2o = 0.2.

Significant biases of EBV were observed in all scenar-
ios. One reason for these biases could be inaccurate esti-
mation of genetic parameters; when the true values of the 
genetic parameters were used in the GLMM instead of 
the estimates, the bias of EBV became non-significant in 
four out of nine scenarios.

The amount of data that we used, i.e. a total of 10,000 
interactions per pen of 100 individuals, may seem large 
and unrealistic. However, literature on the frequency of 
behavioural interactions in livestock suggests that this 
amount of data corresponds to several days or weeks 
of observation, rather than months or years. For laying 
hens, for example, Blokhuis et al. [33] found a frequency 
of feather pecking ranging from 28 to 74 pecks per hour 
per individual. For swine, Brunberg et al. [34] found that 
a single fattening pig performed 0 to 80 tail bites per hour 
and received 0 to 30 tail bites per hour. Our default sce-
nario included on average 100 interactions per individual. 
Even with only one interaction per individual per hour, 
our data would correspond to no more than 100 h of 
recording. Even when animals are active only during the 
day, this amount of data can be collected in a few weeks.

The GLMM yielded higher accuracies of EBV than the 
ordinary LMM but we believe this is due to an unequal 
amount of data that was used to fit these two models. The 
LMM was only used to tune the input values to obtain 
realistic observed-scale heritabilities. Therefore, for the 
test dataset, we used an amount of data similar to that in 
previous studies, i.e., 25 interactions per animal on aver-
age. With the GLMM, in contrast, our aim was to inves-
tigate the accuracy of EBV for datasets obtained with 
computer vision and AI and, as a result, we used 100 
interactions per animal. Thus, results of the GLMM and 
LMM cannot be compared. We used the GLMM to esti-
mate BV because it is theoretically more appropriate for 
count data than the LMM and because it can account for 
variation in the potential number of interactions between 
pairs of individuals (i.e., in the number of encounters). 
when the amount of data is smaller, random variation 
in the number of encounters among pairs of individuals 
will be larger and the number of interactions per pair will 
deviate more from a normal distribution. Thus, when the 
amount of data is limited, we expect GLMM to be more 
suitable for dealing with the resulting nonlinear relation-
ship between the frequency of social interactions and 
underlying BV. When the amount of data is large enough 
such that the interaction frequencies are close to a nor-
mal distribution and all pairs of individuals have ample 
interaction, we expect little difference between the accu-
racy of EBV for performer and recipient effects obtained 

Fig. 4  Effect of group size on the accuracy of EBV. For a total of 2000 
individuals and a pen size of 20, 40, 100, or 200 individuals. Error bars 
indicate ± 1 SE. In panels a and b, h2o is the observed-scale heritability 
of the mean of 2500 binary observations with on average 25 
successes, based on a linear mixed model. In all panels, accuracies are 
averages of results for the performer and the recipient trait
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from LMM and the GLMM we used here. Some addi-
tional results shown in Table 5 for a single scenario are in 
line with this expectation, suggesting that the GLMM is 
superior when the amount of data is limited.

Impact of the investigated parameters
We investigated the effects of the number of phenotyped 
individuals on the accuracy of EBV. For this compari-
son, we assumed a situation in which a large population 
is housed in several pens (with random grouping of ani-
mals over pens) and where the video monitoring system 
is installed by pen. We found that a larger number of 
phenotyped individuals resulted in a higher accuracy 
(Fig. 2). Thus, equipping more pens with the video sys-
tem resulted in higher accuracy of EBV. This increase of 
the accuracy of EBV with population size can be partly 
explained by the associated increase in the number of 
relatives in the data. When more individuals are pheno-
typed, more sib information will be included. When all 
20 pens were phenotyped, each individual had records 
for four full sibs and 15 half sibs. However, when only 
half of the pens was phenotyped, sib information was 
also halved, which led to lower accuracies (from 0.71 
to 0.61). More precise estimation of genetic parameters 
may also have contributed to the higher accuracy of 
EBV with larger populations [35].

In terms of the number of records, we found that ~ 100 
interactions per animal yielded a fairly high accuracy of 
EBV (0.71) and increasing the number of interactions 
tenfold increased accuracy by only 7% (0.78). Given that 
automated phenotyping is still relatively complicated 
and costly, we suggest to increase the number of phe-
notyped individuals rather than increase the number of 
interactions recorded per individual (if ~ 100 interactions 
per individual are available). One way to achieve this is 
to equip a few pens with a system for automated behav-
iour detection, and to replace the individuals in those 
pens, for example, every few weeks. Nevertheless, a key 
challenge remains to collect a sufficiently large amount 
of annotated data to train AI algorithms for automated 
behaviour detection.

We found a minor effect of group size on the accuracy 
of EBV. Although there was a statistically significant dif-
ference for one of the comparisons (n = 40 vs. n = 200), 
differences in accuracy were still minor. In larger groups, 
animals can interact with more group mates but the 
number of interactions for specific pairs will be smaller 
(as we assumed a fixed total number of interactions). 
Apparently, these two opposing effects largely compen-
sate each other. Given the minor impact of group size on 
accuracy, we suggest that group size should mainly be 
determined by practical considerations.

Impact of other parameters
A variety of factors play a role in social interactions. How-
ever, due to the lack of quantitative data on these factors, it 
is difficult to incorporate them into the simulation at pre-
sent. Therefore, we made a number of assumptions in this 
study. First, we assumed that animal movement is com-
pletely random and we did not simulate genetic differences 
in movement between animals. However, genetic differ-
ences in movement between individuals probably exist and 
more active animals will have more opportunity to interact 
with pen mates. Factors such as walking speed and rest-
ing time may also show large variation between individuals 
[36, 37], which should also be taken into account in future 
research. Particularly if individual variation in movement 
has a genetic basis, it may be relevant to include such vari-
ation in the breeding value estimation, both to optimize 
response to selection in the behaviours of interest, and to 
prevent undesirable correlated responses.

Second, animals typically develop a hierarchy, which 
affects their role in social interactions, but we did not 
include this in this study. Animals may carefully assess 
their opponent and take into account what happened 
in previous interactions before deciding how to inter-
act [38]. Moreover, research shows that the number of 
interactions is typically the largest when animals are 
mixed and the hierarchy is not yet formed [39, 40]. Dur-
ing this time, animals explore the pen and interact with 
the pen mates to adapt to the new environment and to 
establish a dominance hierarchy. Less interaction will be 
performed after establishment of hierarchy and animals 
with higher hierarchy are more frequently a performer 
than a receiver. In future studies, establishment of hier-
archy should be included by, e.g., using a feedback loop 
where the animal’s hierarchy will decrease if the animal 
is frequently at a disadvantage in interactions. The hier-
archy could also be analyzed by, for example, social net-
work analysis (SNA), which has recently been applied 
to relatively large animal populations [26]. In social net-
work models, individuals are nodes and their interactions 
are edges connecting two nodes. SNA is able to provide 
novel centrality traits that describe an individual’s role 

Table 5  Comparison of the accuracy of EBV based on LMM and 
GLMM with different amounts of dataa

a  n = 2000 , h2o = 0.2 and rA = 0

Model Number of behavioural interactions per 
animal

10 100 1000

LMM 0.196 0.340 0.633

GLMM 0.609 0.710 0.756
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in group interactions and, using these, one can take the 
impact of hierarchy further into account.

Third, we assumed that the (expected) frequency 
of social interactions is constant for a pair of animals, 
while it has been shown that social behaviours can 
spread across the group like an epidemic [41, 42]. This 
phenomenon is called social transmission and sug-
gests that social behaviours are not independent among 
individuals but may show positive feedbacks. In laying 
hens, for example, severe feather pecking can cause 
naked areas and wounds on the recipient [43], which 
are attractive to pen mates and may cause increased 
pecking on the victim. This factor is similar to hierar-
chy, as both are related to the dynamics of individual 
behaviour over time and both cause individuals that 
are more involved in interactions to tend to become 
engaged in even more interactions in the future. We 
think that SNA can also be used to analyze such social 
transmission. Assuming hierarchy is established within 
the group and is fixed, the phenomenon that one may 
observe as a result of social transmission is a gradual 
increase of edges connecting nodes because animals 
copy the behaviour of others.

All above-mentioned factors have been proven to exist 
but there is still a lack of quantitative studies, so they were 
not included in the present study. However, rapid devel-
opments in AI and computer vision techniques prom-
ise to deliver quantitative information on these factors 
in the near future [26, 28]. In the future, if we are able to 
take these factors into account, a relevant issue that needs 
to be addressed is that hierarchy and social transmission 
will make the interaction records dependent because both 
describe the phenomenon that individuals act according 
to previous experience. Dependent records lead to overd-
ispersion of binomial interaction records, which is prob-
lematic, for example, because it leads to false statistical 
significance. Including appropriate random effects, such as 
a temporal environmental term, may help to account for 
overdispersion. To accommodate this, we recommend the 
data collection period to be extended and use intermittent 
records. For example, if 14 days of data are needed, instead 
of collecting the data continuously for two weeks, it might 
be preferable to collect data for two days per week for a 
period of seven weeks since the animals were mixed. With 
this strategy, it may also be possible to analyze the estab-
lishment of hierarchy and the spread of behaviour, and 
include time-dependent temporal environmental effects 
for each combination of individuals.

Given the accuracy of EBV that we found and given the 
fact that relevant data will become available in the near 
future, genetic improvement appears to be a promising strat-
egy to improve social behaviours in livestock. However, there 
is still lack of knowledge on the genetic basis of directional 

social behaviours and on the relationship between behav-
ioural traits and other traits. Animals that show less harmful 
social behaviour may be less fearful or less stressed animals 
but could, for example, also be inactive or dim-sighted. 
Although the first results on selection for indirect genetic 
effects in pigs and laying hens suggest the opposite [44], it 
is necessary to pay attention to changes in other traits when 
selecting for behavioural traits.

Conclusions
We investigated prospects for genetic improvement of 
social traits. For this purpose, we developed methods 
to simulate social behaviours and to analyze the result-
ing data. Results showed unbiased genetic parameter 
estimates and promising accuracies of EBV of social ten-
dency, even with only ~ 100 interactions per individual, 
which corresponds to a few weeks of recording. The 
analysis model is applicable to large-scale longitudinal 
data on behavioural interactions between animals kept in 
large groups. Given the facts that (1) phenotype data will 
become available in the near future and (2) genetic analy-
sis of these phenotype data is feasible, we conclude that 
animal breeding can be a promising strategy to improve 
social behaviours in the future.
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