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Abstract 

Background  There can be variation between animals in how stable their genetic merit is across different environ-
ments due to genotype-by-environment (G×E) interactions. This variation could be used in breeding programs 
to select robust genotypes that combine high overall performance with stable genetic ranking across environments. 
There have been few attempts to validate breeding values for robustness in livestock, although this is a necessary 
step towards their implementation in selection decisions. The objective of this study was to validate breeding values 
for the robustness of body weight across different growth environments that were estimated using reaction norm 
models in sheep data.

Results  Using threefold cross-validation for the progeny of 337 sires, the average correlation between single-step 
breeding values for the reaction norm slope and the realised robustness of progeny across different growth environ-
ments was 0.21. The correlation between breeding values for the reaction slope estimated independently in two 
different datasets linked by common sires was close to the expected correlation based on theory.

Conclusions  Slope estimated breeding values (EBV) obtained using reaction norm models were predictive 
of the phenotypic robustness of progeny across different environments and were consistent for sires with progeny 
in two different datasets. Selection based on reaction norm EBV could be used to increase the robustness of a popula-
tion to environmental variation.

Background
Livestock populations are often managed across a range 
of environments that vary between both locations and 
years. This can give rise to genotype-by-environment 
(G×E) interactions, which occur when the relative per-
formance of a genotype depends on the environment 
in which it will exist. Genotype-by-environment inter-
actions can be challenging in breeding programs, as it 
means that the genetic merit of a genotype can change 

depending on the location or year in which it will be used. 
However, G×E interactions also represent an opportu-
nity, as they are a source of genetic variation from which 
genotypes that are more robust to environmental varia-
tion could be selected [1]. This genetic resource could 
become more valuable due to climate change, as farm 
environments are predicted to become more variable [2].

Genetic variation in robustness can be captured using 
reaction norm models, which regress the estimated 
breeding value (EBV) of individual genotypes across an 
environmental covariable (EC) that is representative of 
the environmental quality. A linear reaction norm esti-
mates an intercept, which represents the overall EBV 
across all the EC values, and a slope, which captures how 
much the EBV of a genotype changes over the range of 
the EC and is inferred from the performance of relatives 
in different environments. An ideal genotype combines 
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a high intercept (high overall performance) with a flat 
slope (robustness of performance) [3]. Variation in the 
slope can also be partitioned into the type of G×E inter-
action which underlies it; that is, heterogeneity of the 
genetic correlation (rank-type G×E), or heterogeneity of 
the genetic variance (scale-type G×E) [4]. Adjusting the 
slope EBV to account for scale-type G×E could help to 
identify sires that have a stable genetic ranking across 
environments [4].

A substantial body of research has demonstrated sig-
nificant G×E interactions using reaction norm models 
in livestock [5–8], as well as their potential to increase 
the accuracy of phenotypic predictions relative to mod-
els that ignore G×E interaction [9–11]. It could also be 
useful to directly explore the predictive ability of reaction 
norm breeding values for robustness, as this would be an 
important step towards understanding the value of their 
inclusion in selection decisions.

Unlike conventional phenotypes, robustness cannot 
be directly measured on an individual animal. However, 
we can estimate the robustness of a sire’s genotype by 
recording progeny across a range of different EC lev-
els. By estimating sire EBV for robustness using a train-
ing dataset, we can then examine their predictive ability 
in a test set. This type of cross-validation analysis has 
been used to validate reaction norm EBV for heat tol-
erance in dairy cattle [12], which eventually led to their 
implementation in selection programs [13]. The validity 
of robustness could also be tested if sires have progeny 
extensively recorded in two different datasets. The corre-
lation between their EBV for robustness estimated inde-
pendently in the two different datasets would provide a 
measure of their reliability.

The aim of this study was to explore the ability of lin-
ear reaction norm EBV to predict the robustness of the 
performance of progeny across environments using 
body-weight records collected on Australian Sheep. The 
EC was defined as the adjusted post-weaning growth 
rate of a contemporary group as a proxy for the quality 
of the environment under which growth performance 
was measured, and the analysed trait was post-weaning 
weight. Hence, robustness was captured as the change 
in EBV for post-weaning weight across different growth 
environments.

Methods
Data
Body weight at weaning (WWT, recorded between 50 
and 120 days of age) and post-weaning (PWT, recorded 
between 120 and 329 days of age) was available for 
34,584 lambs in the Australian Sheep CRC Information 
Nucleus Flock (INF) and Meat and Livestock Resource 
Flock (RF) [14]. The lambs were from Merino, Maternal 

(such as Border Leicester) or Terminal (such as Poll Dor-
set and White Suffolk) sires and Merino or first cross 
Maternal-Merino dams. A previous genomic analysis of 
the reaction norm for post-weaning weight in this data-
set revealed significant genetic variation in the reaction 
norm slope [15]. The objective of the first part of the 
analysis was to test whether this genetic variation was 
predictive of the robustness of progeny performance 
using cross-validation and forward prediction.

Weaning and post-weaning body weights were avail-
able on another 344,888 pure-bred Merino lambs 
recorded by commercial stud breeders in a national eval-
uation system known as MERINOSELECT [16]. Many 
of the Merino sires recorded in the INF/RF data also had 
progeny recorded in this dataset. The objective of the 
second part of the analysis was to test whether the EBV 
for sires based on the reaction norm slope in the INF/RF 
data were consistent with the equivalent EBV estimated 
in the independent wider industry data.

Part 1. Cross‑validation and forward prediction 
within the INF/RF dataset
As described in Waters et  al. [15], the EC was calcu-
lated for 33,773 lambs as the best linear unbiased esti-
mate (BLUE) of the post-weaning growth rate (PWGR) 
of each contemporary group (CG), where the CG con-
sisted of a flock × year × management group combina-
tion. The management group consisted of animals which 
were subjected to the same management decisions within 
each flock-year, i.e., they were raised in the same pad-
docks and phenotyped at the same time. To be eligible 
for analysis, each lamb had to have a known sire and dam 
and a known birth-type and rear-type, to have at least 40 
days between weaning and post weaning weights, to be 
a member of a contemporary group with at least 15 ani-
mals originating from at least three different sires, and to 
be within 4 standard deviations of the mean PWGR. The 
model to obtain the BLUE of the CG effects was:

where y is the vector of PWGR records, X is an incidence 
matrix for the fixed effects b , Z1 is an incidence matrix 
relating the records to additive genetic effects (a) , Q is a 
matrix of the proportion of each animals’ genome origi-
nating from 39 breed-based genetic groups derived from 
their pedigree, g is the vector of random genetic group 
effects, and e is the vector of residual effects. Fixed effects 
included sex, birth-type by rear-type interaction, age at 
post-weaning (linear and quadratic), and CG. A random 
permanent environmental dam effect was also consid-
ered but was not significant based on a log-likelihood 
ratio test. The BLUE of the CG effects (249 CG in total) 
formed the EC variable in the reaction norm analysis, 

(1)y = Xb+ Z1a +Qg + e,
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where it was standardised to have a mean of 0 and a vari-
ance of 1.

Sires had to have at least 25 progeny across an EC 
range of at least 60  g/day to participate in the cross-
validation and forward prediction analyses. This was to 
ensure reliable estimates of the change in performance 
across the EC. Of the 345 sires that met this criterion, 
337 were only used between 2007 and 2011, while the 
remaining eight sires were used between 2012 and 
2020. This was a result of the project design, as there 
were more locations tested between 2007 and 2011, so 
sires tended to have more progeny across different EC 
levels. Therefore, 18,171 lambs born between 2007 and 
2011 were extracted for the validation analysis. The dis-
tribution of the lambs across the EC is given in Fig. 1.

Genomic data were available for 12,359 of the lambs, 
and consisted of 60,400 imputed single nucleotide poly-
morphisms (SNPs), as outlined in Waters et  al. [15]. 
Genomic information was included in the reaction 
norm models using matrix H , which combined the ped-
igree  (A)  and genomic  (G)  relationship matrices [17]. 
Matrix A was constructed using three generations of 
the pedigree (31,502 animals), while G was constructed 
following the first method proposed in VanRaden [18]. 
The two matrices were combined to form H in the 
MTG2 software [19] using a lambda value of 0.95.

Cross‑validation  In the cross-validation, the progeny of 
each sire was split into one of three folds. To ensure each 
fold contained the maximum environmental range possi-
ble, progeny were ordered by EC within each sire. The first 
three progeny were then randomly assigned to a fold (1, 2 
or 3), without replacement. This was repeated for the next 
three progeny along the EC, and so on for the remainder of 
their progeny. Only sires that had an environmental range 
of at least 60 g/day within each of the three folds and at least 
25 progeny in total across the folds were considered in the 
cross-validation, leaving 337 sires of 14,612 lambs across 
162 contemporary groups.

The single-step reaction norm models were trained 
on progeny from two of the folds, as well as the progeny 
of sires that did not meet the criteria for cross-validation 
(3559 lambs from 142 sires). The resulting EBV were then 
used to predict the realised progeny performance in the 
remaining fold (the test set) for the 337 validation sires. 
This was repeated for each of the three folds. A numerical 
summary for the three folds is given in Table 1, as well as 
the additional data from the progeny of ineligible sires used 
to train the models.

The reaction norm model fitted was:

where y is a vector of PWT phenotypes, X is an incidence 
matrix for the fixed effects b , Z1 and Z2 are matrices 
relating records to the additive genetic effects for the 
intercept (a0) and slope (a1) respectively, with Z1 contain-
ing 1s on the diagonal and Z2 containing the EC value 
corresponding to each individual in y on the diagonal, Z3 
is an incidence matrix relating records to the permanent 
environmental dam effects  (c) , which were estimated 
ignoring relationships between dams, Q is a matrix of the 
proportion of each animals’ genome originating from 39 
breed-based genetic groups, g is the vector of random 
genetic group effects, and e is the vector of residual 
effects. Fixed effects included age at measurement (linear 
and quadratic), birth-type and rear-type interaction, sex, 
and contemporary group. The additive genetic variance 
of a0 and a1 was modelled according to 

(2)y = Xb+ Z1a0 + Z2a1 + Z3c+Qg + e,

Fig. 1  Distribution of 18,171 lambs across the mean-centred 
environmental covariables

Table 1  Numerical summary of animals within each fold and the additional training data

Mean ± standard deviation is reported for post-weaning weight and the EC

Fold 1 2 3 Additional training

Number of animals 4876 4880 4856 3559

Number of genotyped animals 3331 3338 3294 2396

Number of contemporary groups 162 162 162 139

Post-weaning weight (kg) 43.1 ± 8.7 43.1 ± 8.8 43.1 ± 8.6 41.0 ± 9.1

EC (g/day) 0.86 ± 8.2 0.68 ± 38.2 0.76 ± 38.1 − 3.14 ± 32.9
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[

a0
a1

]

∼ N(0,H⊗ K) , where K =

[

σ
2
a0 σa1a0

σa0a1 σ
2
a1

]

 . The 

residual (e) was modelled as a continuous function of the 
EC rather than using discrete intervals. An intercept (e1) 
and slope (e2) residual coefficient were used, such that 
[

e1
e2

]

∼ N(0, I⊗ E) , where E =

[

σ
2
e1

σe2e1

σe1e2 σ
2
e2

]

 . The mod-

els were implemented using the MTG2 software [19].
In addition to the EBV for the intercept  (a0)  and 

slope (a1) , scale corrected EBV for the slope (a∗1) were also 
estimated using a genetic regression, which captures varia-
tion in the slope that is independent of the genetic correla-
tion between the intercept and slope [4]:

Forward prediction  In the forward prediction analysis, 
data from 14,521 lambs born in 2007 to 2010 were used 
to train the reaction norm model and predict the progeny 
performance of 88 sires with 3103 progeny born in 2011. 
Unlike the cross-validation, the progeny of validation sires 
were not used to train the reaction norm model, so they had 
a more distant relationship to the training population. The 
same reaction norm model as Eq. (2) was fit to the data. The 
distribution of the training and test data across the EC is 
given in Fig. 2.

Realised performance in the test set  The realised progeny 
performance across the EC in the test set was used to assess 
the predictive ability of the reaction norm EBV and was 
obtained as a linear random regression of the pre-adjusted 
phenotypes (y∗) of the sire’s test progeny across the EC. The 
pre-adjustment factors were calculated in an animal model 
using the 18,171 lambs born between 2007 and 2011:

where y is the vector of PWT records, X is an incidence 
matrix for the fixed effects b , which were the same as 
in Eq. (2), Z1 is an incidence matrix relating the records 

(3)a∗1 = a1 −
σa0a1

σ
2
a0

a0.

(4)y = Xb+ Z1a + Z2c+Qg + e,

to additive genetic effects  (a) , and Z2 , Q , c , g and e 
were the same as in Eq.  (2). The pre-corrected pheno-
types (y∗) were obtained as:

The pre-corrected phenotypes were then regressed 
across the EC for each sire within each test set using a 
linear random regression model:

where X , Z1 , Z2 and e were the same as in Eq. (2), and p0 
and p1 are the vectors of random sire regression coeffi-
cients for the intercept and slope, respectively. The vari-
ance of p0 and p1 was modelled according to 
[

p0
p1

]

∼ N(0, I⊗ K) , where K =

[

σ
2
p0 σp1p0

σp0p1 σ
2
p1

]

 and I is 

an identity matrix (i.e., the model ignored the relation-
ships between sires). The residual variance, e , was mod-
elled as a continuous function of the EC [i.e., the same as 
in Eq. (2)]. The regression coefficients p0 and p1 captured 
the overall phenotypic performance and robustness of 
each sire’s progeny in the test set, respectively. The Pear-
son correlation between the EBV for the sires in the 
training set and the realised progeny performance esti-
mated from the test set was used to quantify the predic-
tive ability of the EBV. The design of the cross-validation 
and forward prediction schemes is summarised in 
Table 2.

Part 2. Validation of robustness EBV in industry data
Many of the Merino sires used in the INF/RF also 
had progeny recorded in the wider industry popula-
tion, known as MERINOSELECT [16]. The aim of this 
analysis was to test whether reaction norm slope EBV 
estimated for Merino sires in the INF/RF data were 
consistent with the equivalent EBV estimated in the 
MERINOSELECT data. The analysis used pedigree data 
to model additive relationships because of both com-
putational limitations and potential issues related to 
selective genotyping in the commercial data.

(5)y∗ = y − Xb− Z2c−Qg.

(6)y∗ = Xb+ Z1p0 + Z2p1 + e,

Fig. 2  Distribution of lambs in 2007–2010 (blue) and 2011 (grey) 
across the mean-centred environmental covariables

Table 2  Design of the cross validation and forward prediction 
analyses

Cross-validation Training set Test set

Run 1 Fold 2, 3 + additional data Fold 1

Run 2 Fold 1, 3 + additional data Fold 2

Run 3 Fold 1, 2 + additional data Fold 3

Forward prediction Years 2007–2010 Year 2011
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Data  There were 12,087 and 318,028 pure-bred Merino 
lambs in the INF/RF and MERINOSELECT databases, 
respectively, that had a known sire and dam and a known 
birth-type and rear-type, had at least 40 days between 
weaning and post-weaning weights, were a member of a 
contemporary group with at least 15 animals originating 
from at least three different sires and had a PWGR within 
4 standard deviations of the mean. The INF/RF data dif-
fered from Part 1 of the analysis as it consisted of (1) only 
pure-bred Merino lambs, and (2) lambs born between 
2007 and 2020. Contemporary groups in the MERINOSE-
LECT data were only included if they contained at least 
one animal related to a sire or grandsire in the INF/RF 
data, leaving 277,060 lambs. Approximately 93% of the 
MERINOSELECT lambs were born between 2007 and 
2020. The remaining 7% were born between 2000 and 
2006 but were still included in the analysis because of 
their genetic relationship to the INF/RF dataset.

The same model as Eq. (1) was used to obtain a BLUE 
of PWGR for each CG using the joint INF/RF and 
MERINOSELECT datasets, except that an additional 
permanent environmental dam effect (c) was fitted as it 
was significant based on a log-likelihood ratio test. This 
formed the EC for the reaction norm analysis, where it 
was standardised to have a mean of 0 and a variance of 1.

After mean-centring, the EC effects ranged from 
− 99.2 to + 122.7 g/day in the INF/RF dataset and from 
− 200.9 to + 256.5 g/day in the MERINOSELECT data-
set (Fig.  3). Only CG within ± 75  g/day (INF/RF), and 
± 120 g/day (MERINOSELECT) of the mean were used 
in the reaction norm analysis, because small amounts 
of data at the ends of an EC can produce unreliable esti-
mates in reaction norm models. This left 11,638 and 
265,284 animals for the reaction norm analysis in the 

INF/RF and MERINOSELECT datasets, respectively. 
There were 253 common sires with 4729 and 23,150 
direct progeny in the INF/RF and MERINOSELECT 
datasets, respectively. In total, 5291 animals in the INF/
RF and 140,039 animals in the MERINOSELECT data-
sets were at least great-grand progeny of the common 
sires (i.e., their pedigree-based relationship was at least 
0.125). A numerical summary of the final INF/RF and 
MERINOSELECT data is in Table 3.

Reaction norms  Linear reaction norms were fit to the 
INF/RF and MERINOSELECT datasets independently to 
model how EBV for PWT changed across the EC using the 
ASReml 4.2 package [20]. ASReml 4.2 was used because it 

Fig. 3  Distribution of lambs across the EC as a deviation from the overall mean environmental covariable in the MERINOSELECT (red) and INF/RF 
(purple) datasets. The vertical lines show the range of data used to fit the reaction norm models in the two datasets

Table 3  Numerical summary of animals in the INF/RF and 
MERINOSELECT, and mean values for traits and environmental 
covariate (EC) (± standard deviation)

INF/RF MERINOSELECT

Number of lambs 11,638 265,284

Number of sires with progeny data 615 6707

Number of dams 7070 150,962

Parities per dam 1.65 ± 0.89 1.76 ± 1.14

Number of contemporary groups 134 2335

Weaning age (days) 94.0 ± 9.8 95.2 ± 14.3

Post-weaning age (days) 262.0 ± 35.5 226.6 ± 40.8

Post-weaning growth period (days) 167.9 ± 36.9 131.4 ± 41.4

Weaning weight (kg) 24.5 ± 5.3 27.8 ± 6.6

Post-weaning weight (kg) 38.4 ± 8.04 40.4 ± 9.9

Post-weaning growth rate (g/day) 84.1 ± 39.4 98.7 ± 59.1

EC (g/day) − 17.5 ± 29.8 − 3.6 ± 50.1
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is very efficient at modelling large datasets with pedigree 
relationships (such as the MERINOSELECT data). The 
linear reaction norm models were as follows:

where y , X , Z1 , Z2 , Z3 , Q , b , a0 , a1 , c , g and e were the 
same as in Eq.  (2), and Z4 is an incidence matrix relat-
ing records to the additive maternal genetic effects (m) . 
The variance of the additive maternal genetic effect was 
modelled according to: m ∼ N

(

0,A ⊗ σ
2
m

)

 . The covari-
ance between σ2m and all other variance components in 
the model was assumed to be zero. Additive maternal 
genetic effects were not fitted in the INF/RF model as 
they were not significant. The age of the dam at the time 
of the measurement of the lamb was fitted as a covariate 
(linear and quadratic) in the MERINOSELECT model. To 
account for heterogeneity within the Merino population, 
genetic groups were formed on a flock and time basis 
[16]. There were 252 and 432 genetic groups in the INF/
RF and MERINOSELECT datasets, respectively.

The residual variance was estimated at four (− 75 to 
− 30 g/day, − 30 to 0 g/day, 0 to 30 g/day, 30 to 75 g/day) 
and six (− 120 to − 70 g/day, − 70 to − 30 g/day, − 30 to 
0 g/day, 0 to 30 g/day, 30 to 70 g/day, 70 to 120 g/day) dis-
crete classes along the EC for the INF/RF and 
MERINOSELECT dataset, respectively. The variance of 
the intercept and slope were modelled as follows: 
[

a0
a1

]

∼ N(0,A ⊗ K) where K =

[

σ
2
a0 σa1a0

σa0a1 σ
2
a1

]

 and A  is 

the pedigree relationship matrix. There were 24,431 and 
532,181 animals in the pedigree for the INF/RF and 
MERINOSELECT datasets, respectively.

To compare estimates of the genetic variance and her-
itability between the datasets along the different levels 
of the EC, the genetic (co)variance between breeding 
values at different levels of the EC was obtained using 
G = �K�′ , where K is the genetic (co)variance matrix 
for the intercept and slope, and � is a 100 × 2 matrix con-
taining a vector of 1s for the intercept and a vector of 
standardised EC values ranging from the minimum to the 
maximum value of the EC. The heritability of PWT at a 
given EC level was then obtained by dividing the genetic 
variance at the EC level by the sum of the genetic, mater-
nal genetic (if fitted), permanent environmental dam, and 
residual variance at the EC level. Scale corrected EBV for 
the slope (a∗1) were estimated within each dataset using 
Eq. (3).

Sire EBV for the intercept (a0) , slope (a1) and scale cor-
rected slope (a∗1) were compared between the two data-
sets using the Pearson product-moment correlation. This 
was compared to the expected correlation, which was 
calculated as the product of the average EBV accuracies 

(7)
y = Xb+ Z1a0 + Z2a1 + Z3c+ Z4m +Qg + e,

of the two datasets. The accuracy of each reaction norm 
EBV was calculated as r =

√

1− PEV
σ
2
a

 , where PEV is the 
prediction error variance of the EBV, and σ2a is the esti-
mated genetic variance associated with either a0 or a1 . 
The average accuracy (r̄) of a0 and a1 was then obtained 
within each dataset using Fischer’s Z transformation, as 
untransformed correlations (and hence accuracies) are 
not normally distributed. The expected correlation for a0 
and a1 was then r̄a0INF/RF

× r̄a0MERINOSELECT
 and 

r̄a1INF/RF
× r̄a1MERINOSELECT

 , respectively. The expected cor-
relation was calculated only for the intercept  (a0)  and 
slope  (a1)  EBV, as further investigation is required to 
derive the PEV for a∗1 . The expected correlation for a1 
served as an approximate expectation for a∗1.

Results
Part 1. Cross‑validation and forward prediction 
within the INF/RF dataset
In the cross-validation analysis, the average correlation 
between EBV for the intercept and the realised overall 
progeny performance was high (0.67, Table 4). The EBV 
for the reaction norm slope and scale-corrected slope 
were moderately correlated with the realised robustness 
of progeny performance across the EC (0.18–0.21). Using 
forward prediction, the correlation between the reac-
tion norm slope and the realised progeny robustness was 
higher than in the cross-validation analysis (0.28) but was 
lower for the intercept (0.53) and scale-corrected slope 
(0.12). Overall, the results show that the reaction norm 
EBV for the intercept, slope, and scale-corrected slope 
were predictive of the robustness of progeny perfor-
mance across the EC.

The variance components estimated in each of the 
models are also reported in Table  5. Notably, the cor-
relation between the intercept and slope was small and 
not significantly different from zero in all models. This 

Table 4  Correlations between reaction norm estimated 
breeding values (EBV) for sires and the realised regression of 
pre-corrected progeny phenotypes across the environmental 
covariable (EC)

Cross-validation results (Fold 1, 2, and 3 and average) and forward prediction are 
reported

a0 : sire EBV for intercept; a1 sire EBV for slope; a*1 : sire EBV for scale-corrected 
slope; p0 : realised progeny performance intercept; p1 : realised progeny 
peformance slope

Test set fold a0 vs. p0 a1 vs. p1 a∗1 vs. p1

1 0.70 0.13 0.12

2 0.63 0.25 0.17

3 0.67 0.26 0.26

Average 0.67 0.21 0.18

Forward prediction (2011) 0.53 0.28 0.12
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suggests that there was little to no scale-type G×E inter-
actions in the data. The relatively large standard errors 
for the correlation between the intercept and slope mean 
that the results for the scale-corrected slope (a∗1)  should 
be interpreted with caution.

Part 2. Validation in industry data
The variance components estimated using linear reac-
tion norms for pure-bred Merinos in the INF/RF and 
MERINOSELECT datasets are in Table  6. The INF/RF 
had greater additive genetic variation in both the inter-
cept and slope, while the ratio of slope to intercept vari-
ance was also greater in the INF/RF. This indicates that 
the G×E interactions were larger in the INF/RF than 

in the MERINOSELECT data. The genetic correlation 
between the intercept and slope was very similar, as well 
as the permanent environmental dam variance.

The genetic variance and heritability were consistently 
higher across the EC in the INF/RF data compared to the 
MERINOSELECT data (Fig. 4). However, the pattern of 
increase along the EC was very similar, indicating large 
scale-type G×E interactions in both datasets.

Using all sires with progeny in both datasets, the cor-
relations for the reaction norm slope and scale-corrected 
slope EBV were 0.22 and 0.13, respectively (Table  7), 
while the correlation between intercept EBV was higher 
(0.40). The correlations for all EBV increased when 
only sires with either the most progeny or the most 

Table 5  Variance components for the reaction norms models fitted to each fold in the cross-validation, the forward prediction (2007–
2010), and all the data (18,171 lambs)

σ
2
a0 : additive genetic intercept; σ2a1 : additive genetic slope; ra0a1 : correlation between intercept and slope; g2: genetic group; c2: permanent environmental dam. 

Standard errors are given in parentheses

Data σ
2
a0 (kg2) σ

2
a1 (kg2/SD EC) ra0a1 σ

2
a1
/σ2a0

g2 c2

Fold 1 8.40 (0.53) 0.66 (0.24) 0.10 (0.11) 0.08 40.92 (14.25) 1.99 (0.28)

Fold 2 7.29 (0.48) 0.67 (0.29) 0.08 (0.10) 0.09 40.77 (14.22) 2.29 (0.28)

Fold 3 8.11 (0.53) 0.66 (0.23) − 0.01 (0.11) 0.08 44.97 (15.85) 1.98 (0.28)

2007–2010 7.94 (0.49) 0.69 (0.21) 0.09 (0.10) 0.09 39.31 (13.74) 2.19 (0.25)

All data 7.88 (0.44) 0.64 (0.18) 0.04 (0.09) 0.08 40.95 (14.29) 2.13 (0.22)

Table 6  Reaction norm variance components estimated in the INF/RF and MERINOSELECT (MS) data

Standard errors are given in parentheses

σ
2
a0 : additive genetic intercept; σ2a1 : additive genetic slope; σ2a1/σ

2
a0 : ratio of intercept and slope variance; ra0a1 : correlation between intercept and slope; g2: genetic 

group; c2: permanent environmental dam; m2: maternal variance

Model σ
2
a0

 (kg2) σ
2
a1

 (kg2/SD EC) σ
2
a1
/σ2a0

ra0a1 g2 c2 m2

INF/RF 11.35 (0.96) 1.98 (0.88) 0.17 0.64 7.60 (2.04) 1.64 (0.33) –

MS 8.06 (0.18) 1.00 (0.08) 0.12 0.60 4.47 (0.61) 1.28 (0.08) 0.95 (0.08)

Fig. 4  Genetic variance (a) and heritability (b) across the environmental covariables in the MERINOSELECT and INF/RF datasets
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contemporary groups were considered. The correlations 
for the slope were only slightly lower than those expected 
based on the accuracy of the EBV (Table  7). Since the 
expected correlation represents the upper bound given 
the accuracy of the EBV, we can conclude that the EBV 
for robustness were consistent across the two independ-
ent datasets.

Discussion
The aim of this study was to validate breeding values 
for robustness that were estimated using reaction norm 
models in Australian sheep. The results showed that reac-
tion norm EBV for the slope, which can be interpreted 
as ‘robustness EBV’, were predictive of the robustness of 
phenotypes of progeny across a range of environments. In 
addition, the reaction norm EBV were consistent across 
different datasets. Therefore, reaction norm EBV could 
be used to select sires that yield lambs that have a weight 
gain that is more robust to environmental variation.

The closest comparable validation analysis of robust-
ness to our study was a study that examined heat toler-
ance in dairy cattle [12], and in which the robustness of 
milk, fat and protein yields to a temperature-humidity 
index was calculated for each cow using a linear ran-
dom regression model to estimate a slope while ignoring 
genetic relationships. The robustness of sires was then 
obtained as the combination of their daughters’ slopes, 
and heat tolerance EBV were estimated using the slopes 
for genotyped sires and cows as phenotypes in a genomic 
best linear unbiased prediction (GBLUP) model. Using 
forward prediction with a reference population of 2300 
Holstein sires, the correlation between heat tolerance 
EBV and the realised heat tolerance ranged from 0.28 to 
0.31 for the first parity. The forward prediction strategy 
in our study was close to their validation structure and 
yielded a similar correlation of 0.28, although our study 
included substantially fewer sires (337 sires vs. 2300 
sires) and measured animals (18,171 lambs vs. 366,835 
cows). From this perspective, the results of the current 

study are promising, as heat-stress EBV are now success-
fully applied in dairy breeding programs [13].

To evaluate the correlations obtained in the cross-
validation analysis, 337 sires with 43 progeny each were 
simulated across an EC, assuming the same variance 
components as estimated for all the data (Table  5). The 
simulation assumed that sires were unrelated and were 
randomly mated to dams distributed across the EC. 
Across 100 runs with threefold cross-validation, the aver-
age correlation between training and test sets was 0.68 for 
the intercept, and 0.12 for the slope and scale-corrected 
slope using random regression. This was consistent with 
the results in Table  4, although the empirical correla-
tion was slightly higher for the reaction norm slope EBV. 
This was probably because we modelled the relationships 
between animals using genomic information, while the 
simulation assumed that sires were unrelated. This gives 
further reassurance that the results in the current study 
demonstrate the potential of selecting reaction norm 
EBV to improve robustness.

The correlations between reaction norm EBV esti-
mated in the INF/RF and MERINOSELECT datasets 
were slightly lower than expected by theory. This was 
expected, as the theoretical correlation assumed that 
the genetic correlation between the datasets was 1. The 
deviations from theory were consistent with a genetic 
correlation between datasets of approximately 0.60–0.85 
for the intercept, and 0.70–0.90 for the slope (e.g., for the 
slope in Table 7 scenario (b), 0.37 × 0.90 = 0.33, which was 
the realised correlation). This could be reasonable given 
that the MERINOSELECT models were trained on lambs 
across a much wider range of EC values (i.e., larger dif-
ferences between environments), which could result in 
G×E interactions occurring between the datasets. There-
fore, the analysis demonstrated that reaction norm EBV 
for robustness in PWT to different growth environments 
were consistent across two independent datasets and 
could be used for selection.

The correlation of reaction norm EBV between the 
INF/RF and MERINOSELECT datasets was higher for 
sires with (1) the most progeny, and (2) the most con-
temporary groups in both datasets. This highlighted 
the importance of data structure to accurately capture 
genetic variation in robustness. Sires require progeny 
across a wide range of EC values to estimate the reac-
tion norm slope accurately [21]. Therefore, the success of 
breeding for robustness will likely depend on the struc-
ture of data available to estimate it accurately. If robust-
ness is to be considered in genetic evaluations, breeders 
should be encouraged to ensure even stronger genetic 
linkage across years and locations. Alternatively, genomic 
EBV for robustness could be supplied using an appropri-
ately designed reference population, such as the INF/RF 

Table 7  Correlation of reaction norm estimated breeding values 
(EBV) for intercept (a0) , slope (a1) and scale-corrected slope (a∗

1
)

The expectation of the correlation based on the accuracy of the EBV is given in 
parentheses

a: sires with direct progeny in both datasets; b: sires with at least 45 progeny in 
the MERINOSELECT and 15 progeny in the INF/RF; c: progeny in at least four CG 
in both datasets

EBV a b c

a0 0.40 (0.67) 0.62 (0.76) 0.64 (0.76)

a1 0.22 (0.32) 0.33 (0.37) 0.31 (0.38)

a
*
1

0.13 0.32 0.34

Number of sires 253 65 62
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used in this study. Selection based on genomic EBV for 
traits only measured within the INF/RF (such as traits 
related to meat eating quality) has yielded significant 
responses in the Australian sheep flock (Sheep Genet-
ics, 2022), so a similar response could conceivably be 
gained for robustness. However, the INF/RF data had 
a much narrower range of EC values compared to the 
MERINOSELECT data (Fig.  1), which could limit its 
ability to predict robustness in PWT to different growth 
environments. The results of this study also indicated 
the existence of G×E interactions occurring between the 
research and industry datasets. The use of industry data 
(i.e., MERINOSELECT) to predict robustness in industry 
animals is a sensible solution to this problem.

Another way of estimating breeding values for robust-
ness would be to reconsider the EC used to regress EBV 
on. While we used the adjusted post-weaning growth rate 
of the contemporary groups, other EC could be derived 
from measured environmental variables. This approach 
appears to work well for traits for which the time dur-
ing which a small number of environmental factors are 
important in influencing the phenotype, is short. For 
instance, Nel et  al. [7] found significant changes in the 
genetic variation of lamb survival as a function of a cold 
stress EC, which was calculated as a function of tempera-
ture, wind, and rainfall. Acute cold stress was an ideal EC 
to regress on, as it is a critical factor that influences neo-
natal lamb survival [22, 23]. The regression of milk pro-
duction on a temperature-humidity index in dairy cattle 
is also ideal for these reasons [24]. In contrast, the post-
weaning weight of a lamb is affected by many interact-
ing environmental factors over a 6-month period, which 
makes it hard to identify and parameterise the relevant 
environmental descriptors. A vegetation index and a 
temperature-humidity index were recently used in a reac-
tion norm analysis of body weight in Australian sheep 
[25]. While both EC captured significant G×E interac-
tions, it could be challenging to combine both variables 
into a single genetic evaluation. In contrast, the adjusted 
post-weaning growth rate of a contemporary group auto-
matically indexes the environmental factors into a single 
value with a practical interpretation; it captures the unit 
change in genetic merit of an individual for every unit 
change in growth environment. It also does not require 
any additional investment in data capture since it is 
derived from phenotypes that are routinely collected in 
breeding programs. Previous research across different 
livestock species and traits have identified growth rate as 
a suitable EC [6, 26, 27]. The results of our study dem-
onstrated that the differences in robustness of sire EBV 
to a post-weaning growth EC were repeatable, meaning 
that it captured meaningful G×E interactions and could 
be used for selection.

The scale-corrected slope EBV represented slope varia-
tion that was independent of the genetic correlation with 
the intercept. This meant that they captured slope vari-
ation that was available for selection independent of the 
overall performance. In the across-dataset analysis, the 
genetic correlation between intercept and slope was rea-
sonably large (0.60–0.64), which meant that the scale cor-
rection (Eq. 6) had a large effect on the slope EBV. When 
considering the sires with the best distribution of prog-
eny across the EC, the scale corrected EBV were as highly 
correlated between datasets as the raw slope values. This 
indicated a significant genetic variation in robustness 
that could be selected alongside overall performance in 
PWT.

In the validation within the INF/RF data, the scale-
corrected slope did not improve the predictive ability 
relative to the uncorrected reaction norm slope. How-
ever, the genetic correlation between the intercept and 
slope across all the data was 0.04, implying that only 
0.16% (0.042 × 100) of the genetic variation in the slope 
was due to scale-type G×E [28]. The standard errors for 
the genetic correlation were also large relative to the size 
of the correlation. This means that the breeding values 
for the scale-corrected slope were (1) not very different 
to the uncorrected breeding values, and (2) were cor-
rected with low precision. Therefore, the results for the 
scale-corrected slope should be treated with caution. 
The smaller correlation between the intercept and slope 
found in this analysis could indicate that modelling the 
residual as a continuous function (Part 1) was able to 
adjust for the changes in phenotypic variance better 
than the discrete classes used in the across-dataset (Part 
2) analysis, as suggested by Lillehammer et al. [29]. This 
should also be interpreted with caution, as the two analy-
ses used different data (i.e., different breed compositions, 
flocks, and years) which could explain the difference in 
correlation.

Conclusions
Differences between sires in their progeny performance 
across environments can be predicted using reaction 
norm models. Selection based on EBV from reaction 
norm models could be used to improve the robustness of 
weight gain in Australian sheep to different growth envi-
ronments. The success of selection for robustness will 
depend on the availability of appropriate data structures 
to estimate it. If selection for robustness is to be imple-
mented, sires need to be used across a wide range of envi-
ronments to accurately estimate their EBV.
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