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Uncertainty in the mating strategy 
of honeybees causes bias and unreliability 
in the estimates of genetic parameters
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Abstract 

Background Breeding queens may be mated with drones that are produced by a single drone-producing queen 
(DPQ), or a group of sister-DPQs, but often only the dam of the DPQ(s) is reported in the pedigree. Furthermore, data-
sets may include colony phenotypes from DPQs that were open-mated at different locations, and thus to a heteroge-
neous drone population.

Methods Simulation was used to investigate the impact of the mating strategy and its modelling on the estimates 
of genetic parameters and genetic trends when the DPQs are treated in different ways in the statistical evaluation 
model. We quantified the bias and standard error of the estimates when breeding queens were mated to one DPQ 
or a group of DPQs, assuming that this information was known or not. We also investigated four alternative strategies 
to accommodate the phenotypes of open-mated DPQs in the genetic evaluation: excluding their phenotypes, adding 
a dummy pseudo-sire in the pedigree, or adding a non-genetic (fixed or random) effect to the statistical evaluation 
model to account for the origin of the mates.

Results The most precise estimates of genetic parameters and genetic trends were obtained when breeding queens 
were mated with drones of single DPQs that are correctly assigned in the pedigree. However, when they were mated 
with drones from one or a group of DPQs, and this information was not known, erroneous assumptions led to consid-
erable bias in these estimates.

Furthermore, genetic variances were considerably overestimated when phenotypes of colonies from open-mated 
DPQs were adjusted for their mates by adding a dummy pseudo-sire in the pedigree for each subpopulation of open-
mating drones. On the contrary, correcting for the heterogeneous drone population by adding a non-genetic effect 
in the evaluation model produced unbiased estimates.

Conclusions Knowing only the dam of the DPQ(s) used in each mating may lead to erroneous assumptions 
on how DPQs were used and severely bias the estimates of genetic parameters and trends. Thus, we recommend 
keeping track of DPQs in the pedigree, and not only of the dams of DPQ(s). Records from DPQ colonies with queens 
open-mated to a heterogeneous drone population can be integrated by adding non-genetic effects to the statistical 
evaluation model.
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Background
Although mating control is essential to the genetic 
improvement of a honeybee breeding program [1], its 
practical application is not straightforward, due to the 
behavioral and reproductive specificities of queens. 
Indeed, natural mating occurs during flight, typically at 
a height of a few tens of meters, where drones and young 
queens from several kilometers around gather together 
[2]. In order to control the genetic origin of mates in a 
breeding program, virgin queens and mature drones can 
be isolated geographically on mating stations, or artificial 
insemination can be used.

At the mating stations used in selective breeding, a 
group of sister drone-producing queens (DPQs) descend-
ing from a single dam is usually used to produce all the 
drones at the mating station. This group is referred to 
as a pseudo-sire (PS) and is registered in the pedigree. 
To ensure high mating success, the group usually com-
prises between four and 12 DPQs (personal communica-
tion from the French Royal Jelly Producers’ Association 
(GPGR) and island mating in the Beebreed dataset [3]), 
depending on the number of virgin queens to be mated. 
This is referred to as PS mating.

The alternative, artificial insemination, enables greater 
mating control. In particular, drones used to mate a virgin 
queen can be taken from a PS composed of very few sis-
ter-DPQs or even from a single DPQ (for example in [4]). 
In the latter case, this is referred to as single sire (SS) mat-
ing. Compared to PS mating, SS mating results in higher 
relatedness among the workers and offspring queens in 
the colony. When correctly accounted for in the pedigree, 
SS mating should result in estimates of genetic parame-
ters and breeding values with lower standard errors than 
PS mating, for which the precise origin of drones cannot 
be distinguished among the sister-DPQs and needs to be 
derived probabilistically [5, 6]. However, when artificial 
insemination is used, honeybee breeders often record 
only the dam of the DPQ(s) and provide no information 
on the number of sister-DPQs, even when only one DPQ 
is involved, and in this latter case, they also do not record 
the identity of the DPQ used.

Furthermore, it is common that selective breeding pro-
grams also include open mating, where virgin queens are 
allowed to mate freely with drones from the surround-
ing area (for example, in Italy [7]). In particular, DPQs 
are often open-mated because this reduces management 
costs (for example, in France [8]). If the contribution of 
DPQs to the breeding population is limited to produc-
ing drones, then their mates do not affect the genetic 
evaluation because drones are haploid individuals born 
from unfertilized eggs and thus do not carry genes from 
their dam’s mate. However, when artificial insemination 
is used, these DPQs are often phenotyped and used for 

drone production after phenotypic selection. In that case, 
the mates of DPQs affect genetic evaluation as they are 
the sires of the workers of DPQ colonies whose records 
are used for genetic evaluation.

For most traits, the phenotypes of a colony are expected 
to be affected by both the queen and her worker group, 
as revealed by genetic parameter estimates obtained with 
real data [9–12]. Alongside environmental effects, colony 
performance should therefore be partitioned into two 
genetic effects: a worker genetic effect expressed by the 
worker group, and a queen genetic effect expressed by 
the queen [13, 14]. Therefore, rather than a single genetic 
variance, three genetic parameters need to be estimated: 
the variances of queen effects, of worker effects, and their 
covariance. A reliable estimation of genetic parameters 
requires data and pedigree records from a large popu-
lation of genetically well-connected apiaries. Unfortu-
nately, most honeybee breeding programs use small 
selection nuclei of ten to a few tens of breeding queens [8, 
11, 15, 16]. In addition, queens only mate before they lay 
their first egg, and will normally never mate afterwards. 
Thus, the reproduction mode of honeybees condemns a 
queen to being evaluated with her single mate, regardless 
of whether it is a PS or SS. This adds to the difficulty of 
disentangling the genetic contribution of workers to the 
colony phenotype from that of the queen. This is differ-
ent from other livestock species, where females can have 
offspring from several known mates, but even in that 
case, disentangling direct effects from maternal effects 
remains difficult [17, 18].

Du et al. [19] recently explored the effects of data struc-
ture on the estimates of genetic parameters in simulated 
unselected honeybee populations. Among other param-
eters, they varied the proportion of missing phenotypes, 
as well as the ratio of controlled and uncontrolled mated 
queens, with drones always originating from the closed 
selection nucleus. They demonstrated the importance of 
the proportion of controlled mating for the accuracy of 
the estimates of genetic parameters and obtained unbi-
ased estimates if at least 20% of the colony records were 
used. However, they explored neither the impact of SS vs 
PS mating, and the consequences of erroneous assump-
tions when the true mating strategy is unknown, nor how 
to model the effect of the open mating of DPQs with col-
ony phenotypes.

With the increasing number of honeybee breeding 
plans worldwide, colony records on queens with diverse 
mating strategies often need to be considered in genetic 
analyses. Here, we used simulation to investigate the 
impact of the mating strategy of breeding queens and 
open-mated potential DPQs, and of sire modeling, on 
the bias and standard error of the estimates of genetic 
parameters and genetic trends.
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Methods
For all the scenarios, we simulated colonies with differ-
ent mating strategies for inseminated breeding queens 
(BQs) and for open-mated DPQs. BQs were mated to 
drones that were produced by either a single DPQ or a 
group of three sister-DPQs, while DPQs were mated to 
either a homogeneous or a heterogeneous open-mating 
drone population. We inspected the bias and standard 
errors of the estimates of genetic parameters and genetic 
trends, using either correct or incorrect assumptions for 
the mating strategy.

In simulation Set I, we focused on the controlled mat-
ing of BQs, assuming that it is either known or unknown 
whether drones used in the mating originate from a sin-
gle DPQ or from a group of three sister-DPQs. In simula-
tion Set II, we focus on the open-mating of DPQs, using 
four alternative strategies to account for the heterogene-
ity of the open-mating drone population in the statistical 
analysis. Table 1 gives an overview of the scenarios used 
in the two simulation sets and the scenarios used to esti-
mate the genetic parameters and genetic trends.

Simulation: founder population, mating, selection, 
and reproduction
Figure  1 summarizes the simulation of all generations 
of queens, drones, and worker groups. The infinitesimal 
model used followed the method proposed by Kistler 

et  al. [20] and the main equations are shown in Addi-
tional file 1: Text S1.

The simulation started with the generation of found-
ers, followed by 2 initialization years in which BQs were 
open mated, since a first generation of DPQs would be 
available for drone production only in year 3 (Fig. 1). The 
initial founder generation consisted of 432 unrelated, 
non-inbred, and open-mated base BQs. The term “BQ” 
is used to indicate queens that were candidates for selec-
tion, and “selected BQ” to refer to the selected dams. Base 
BQs were mated with base drones to produce worker 
groups to form colonies. Phenotypes were obtained from 
the 432 colonies, followed by selection of the 24 BQs with 
the highest colony phenotypes to produce new offspring 
queens.

From year 1 and in each subsequent year, each of 
the 24 selected BQs produced 24 offspring BQs and 
20 DPQs. Virgin DPQs were open-mated, as were 
all following generations of DPQs. In year 2 and each 
subsequent year, a mortality event was simulated by 
randomly eliminating 25% of all colonies. Phenotypes 
were obtained from the remaining 75% of BQ and DPQ 
colonies, which correspond, respectively, to 18 and 
15 sister queens phenotyped per dam. After pheno-
typing, each year, one BQ from each sister-group was 
selected based on its colony phenotype to produce new 
offspring queens. Thus, in the dam path, selection was 

Table 1 Simulation and estimation scenarios

Controlled mating strategy in the simulation: SS (single sire) and PS (pseudo-sire) mating

Sire pedigree modeling for controlled mating:  C_SSP,  C_dummySSP/DPQdam,  C_dummySSP/Q,  C_PSP: in the pedigree, controlled mated queens are assigned, 
respectively, single sires, dummy single sires per dam of DPQ(s), dummy single sires per mated queen, pseudo-sires

Sire modeling for open mating: O_NoPheno: open-mated DPQs’ colony phenotypes were excluded from the genetic analysis;  O_PSP,  O_TwoPSP: in the pedigree, 
open-mated DPQs are assigned, respectively, a single open-mating pseudo-sire, or one for each open-mating drone subpopulation (initial BQs and each half of the 
DPQ); O_FixedGroup or O_RandGroup: the effect of the drone subpopulation mating DPQs was accounted for by adding a fixed or a random non-genetic effect in the 
statistical model describing the phenotypes

Simulation scenarios Estimation scenarios

Set Mating strategy Sire modeling

Controlled mating 
of BQs

Open mating of DPQs Controlled mating of BQs Open mating of DPQs

I SS Homogeneous open mating drone population C_SSP O_PSP

C_dummySSP/DPQdam

C_dummySSP/Q

C_PSP

PS C_SSP O_PSP

C_dummySSP/DPQdam

C_dummySSP/Q

C_PSP

II SS Heterogeneous open mating drone population C_SSP O_NoPheno

O_TwoPSP

O_FixedGroup

O_RandGroup
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within the maternal family with one replacement queen 
per maternal sister-group. In the sire path, two-thirds 
of the dams of DPQs were selected each year based on 
the mean phenotype of their DPQ offspring (across-
family selection). After a second winter mortality 
event, three DPQs were randomly chosen per selected 
sister-group in year 3 and each subsequent year. In 
year 3 and each subsequent year, BQs were mated with 
drones produced by these chosen DPQs, which closed 
the breeding population. The same selection and mat-
ing procedure were repeated until year 10. The result-
ing generation interval was 1.5 years (1 year on the dam 
path and 2 years on the sire path).

Other simulation parameters included the number of 
drones that mate each queen, which was fixed at 8. These 
eight drones contributed equally to the genetic effect of 
the worker group in a colony.

In our base genetic parameter set, founder BQs had 
breeding values that were drawn from a bivariate nor-
mal distribution centered on zero, with a genetic vari-
ance for queen effects ( σ2Q ) and worker effects ( σ2W ) both 
equal to one-third of the residual variance ( σ2e ), and a 
null genetic correlation. Additional simulations were 
run using three other genetic parameter sets (see Addi-
tional file 2: Table S1). The variance of worker effects was 
doubled in genetic parameter sets 2 and 4. The genetic 

Fig. 1 Simulation process. BQ breeding queen, DPQ drone-producing queen. BQ refers to queens that were candidates for selection, and “selected 
BQ” to the selected dams. Because of overlapping generations, the selection of DPQ families is completely shown only for the first event (years 1 
to 3). See main text for a description of the simulation process
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correlation between worker and queen effects ( rWQ ) was 
zero in the two first genetic parameter sets and − 0.5 in 
the last two. This range of parameters represents typical 
estimates for honeybee production and behavioral traits 
[9–12]. The breeding values of base drones were also 
drawn from a normal distribution, but with a halved (co)
variance matrix to simulate haploidy. In simulation Set I, 
their breeding values were centered on 0, while in sim-
ulation Set II, one half of the drones mating with DPQs 
had their BV centered on −α and the other half on +α , as 
described below.

Simulation Set I: sire modeling for the controlled mating 
of breeding queens
In simulation Set I, we explored the impact of the sire 
modeling for controlled mating on the genetic analysis. 
Two controlled mating strategies for BQs were consid-
ered in the simulation. The first strategy was SS mating, 
where a single DPQ was chosen at random from three 
sister-DPQs to produce all the drones that mate a sin-
gle BQ. The second strategy was PS mating, where the 
three sister-DPQs formed a PS. The PS drone pool was 

obtained for each mating by drawing at random (with 
replacements) a DPQ eight times from the three sister-
DPQs to produce the eight drones used for mating. In 
both strategies, the contribution of each group of sister-
DPQs to the total drone pool that mated with all the BQs 
was balanced. All DPQ generations were open-mated 
with a homogeneous (or unstructured) drone population 
descending from the same base population as the BQs. 
Thus, their BVs were drawn from a single bivariate nor-
mal distribution centered on 0.

In the estimation, the dam of the DPQ(s) that mated 
with BQs was always correctly assigned, but four differ-
ent sire-modeling scenarios were considered to study the 
consequences of not knowing whether one or more DPQs 
were used (Table 1 and Fig. 2). These four sire-modeling 
scenarios were used for each of the true mating strategies 
(SS and PS). First, under the  C_SSP scenario (where “C” 
refers to “controlled mating”, and the subscript to how 
the sire was included in the pedigree), individual DPQs 
were assigned in the pedigree exactly as they were used 
for mating when SS was the controlled mating strategy 
used for the simulation; alternatively, one of the three 

Fig. 2 Sire modeling scenarios for controlled mating. In simulation Set I, either single sire mating (all drones mating with a queen are produced 
by a single drone-producing queen, DPQ) or pseudo sire mating (all drones mating with a queen are produced by a group of three sister-DPQs) 
was used. The dam of DPQ(s) was always correctly assigned. Regardless of the true (simulated) mating strategy adopted, four hypothetical scenarios 
were used to derive the sire pedigree, and to simulate different ways of handling uncertainty in the true mating strategy. First, in the ‘single sire 
in the pedigree’ modeling, individual DPQs were assigned exactly as they were used for mating when single sire mating was the controlled 
mating strategy in the simulation; alternatively, one of the three sister DPQs making up the pseudo sire was randomly assigned in the pedigree 
when pseudo sire mating was used for the simulation. Second, under the ‘dummy single sire in the pedigree per dam of DPQ’ scenario, a unique 
dummy DPQ was assigned to all queens that mated with drones from the same dam of DPQs. Third, under the ‘dummy single sire in the pedigree 
per mating’ scenario, one dummy DPQ was assigned to the pedigree for each mating. Lastly, in the ‘pseudo sire in the pedigree’ model, a pseudo sire 
made of three sister DPQs was assigned to the pedigree
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sister-DPQs making up the PS was assigned randomly 
in the pedigree when PS mating was used for the simu-
lation (PS). Second, under the “C_dummySSP/DPQdam” 
scenario, a single DPQ was assigned to all queens mated 
with drones from the same dam of DPQs. Third, under 
the “C_dummySSP/Q” scenario, a different dummy DPQ 
was assigned in the pedigree to each controlled-mated 
queen. Lastly, under the  C_PSP scenario, a dummy sire 
was assigned in the pedigree and corresponded to a PS 
made up of three sister-DPQs, as described by Brascamp 
and Bijma [6].

For all four scenarios, the contribution of open-mating 
drones to the colony phenotypes of base and initial BQs 
and all DPQs was modeled by genetic effects through 
the pedigree, as follows: a single group of 100 unknown 
non-inbred and unrelated DPQs (an open-mating  PSP) 
was assumed to produce all open-mating drones and was 
uniquely assigned in the pedigree files. The open-mating 
 PSP was modeled as a group of individuals, and thus its 
coefficients in the relationship matrix were divided by the 
number of DPQs that it was assumed to comprise (see 
Additional file 3: Text S2, for more details).

Simulation Set II: sire modeling for the open mating 
of drone‑producing queens
In simulation Set II, we explored the impact of the sire 
modeling of worker groups from open-mated queens on 
the genetic analysis. In this simulation set, we only con-
sidered SS mating for BQs (except base and initial BQs at 
the start of the simulation). However, DPQs were mated 
with a heterogeneous (or structured) open-mating drone 
population (unlike the homogeneous population in simu-
lation Set I). This heterogeneous drone population con-
sisted of two subpopulations, with a mean genetic level 
that differed by approximately one genetic standard 
deviation of queen effects. DPQ sister-groups were ran-
domly allocated to mate with drones from one of the two 
subpopulations. This could, for example, reflect a breed-
ing population in which DPQs are mated in two different 
geographic areas, each with a different drone population.

In the estimation, we assumed  SSP for BQs (consid-
ering that it is known that SS mating was indeed used), 
except for base and initial BQs. For DPQs, we considered 
four scenarios to model the effect of the drone subpopu-
lations mating with them. First, under the O_NoPheno 
scenario (where “O” refers to “open mating”), we elimi-
nated colony phenotypes of DPQs from the performance 
file. Deleting these records removed the impact of drone 
subpopulations from the data, except for a weak DPQ 
family selection that had occurred. It served as a baseline 
scenario for the comparison to the other scenarios that 
integrate these additional phenotypes. Second, in the 
 O_TwoPSP scenario, each half of the DPQs was assigned 

to a distinct open-mating  PSP in the pedigree to account 
for the drone subpopulation with which they were mated. 
In the last two scenarios, we accounted for the effect of 
the drone subpopulations by adding either a fixed (O_
FixedGroup) or a random (O_RandGroup) non-genetic 
effect in the statistical model describing the phenotypes. 
For base and initial BQs in all four scenarios, and also for 
the DPQs in the last two scenarios, we assigned a unique 
open-mating  PSP as mate (as in simulation Set I, see 
Additional file 3: Text S2).

Two hundred replicates were run for all Set I and Set II 
simulation scenarios.

Genetic evaluation using a mixed model with queen 
and worker effects
Pedigree and colony records were used to obtain a sin-
gle retrospective estimation of the genetic parameters 
and breeding values. The vector of phenotypes, y , was 
described using a linear mixed model with worker and 
queen effects [13, 14]:

where b is the vector of fixed year effects with the cor-
responding incidence matrix X , aw is the vector of worker 
effects with the incidence matrix Zw , aq is the vector of 
queen effects with the incidence matrix Zq , and e is the 
vector of residuals.

For the simulation Set II in the scenarios O_
FixedGroup and O_RandGroup, an additional fixed or 
random effect was added to the estimation model. This 
effect had three levels: one for the base drones mat-
ing with base and initial BQs (for the first 3 years of the 
breeding scheme), and one for each of the two drone sub-
populations mating with DPQs.

The performance file in each analysis included all 8352 
records on BQ and DPQ colonies. All queens had a line 
in the input pedigree file, providing the identity of their 
dam (unknown for base and initial BQs) and their mate, 
which was either a single DPQ or a dummy individual, i.e. 
a PS. Additional columns described the mate by identify-
ing the DPQ(s)’s dam, the number of DPQs it comprised, 
as well as the number of drones it contributed to the mat-
ing (eight). The pedigree of the mate was either known 
(for controlled mating) or unknown (for open mating). 
Thus, the complete pedigree file contained entries for 
queens, sires, and worker groups. The pedigree was then 
used to compute the matrix of additive genetic relation-
ships and its inverse, according to Brascamp and Bijma 
[6, 21]. The software developed by Brascamp to generate 
the complete pedigree file and the inverse relationship 
matrix was made publicly available (https:// doi. org/ 10. 
5281/ zenodo. 79513 34).

y = Xb+ Zwaw + Zqaq + e,

https://doi.org/10.5281/zenodo.7951334
https://doi.org/10.5281/zenodo.7951334
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We used AIREMLF90 from the BLUPF90 package [22] 
to estimate the genetic parameters and solve the best lin-
ear unbiased prediction (BLUP) equations using our per-
formance file and honeybee-specific inverted relationship 
matrix. The starting values used are shown in Additional 
file 2: Table S2.

Summary statistics for the estimates of genetic parameters 
and breeding values
The bias on genetic variances was expressed relative to 
the true values and given in percentages. However, the 
bias on the estimated rWQ was not divided by the true 
genetic correlation, which was zero, and therefore it was 
expressed in absolute values. The true genetic trend was 
calculated as the regression coefficient of average true 
breeding values (BVs) of BQs over years, from the fifth 
generation of the breeding program (after the selec-
tion nucleus became closed) to the last tenth generation 
of selection. The estimated genetic trend was derived 
similarly but based on estimated breeding values (EBVs) 
rather than BVs. Over or underestimates of the genetic 
trend were calculated as the difference between the esti-
mated and true trend, relative to the true trend.

All statistical analyses were run under R [23], using sev-
eral packages for data formatting [24, 25], and production 
of the figures [24, 26, 27].

Results
First, we describe the results of the genetic analyses using 
various scenarios for the sire modeling of controlled 
mated BQs (simulation Set I). We explore the relevance 
of knowing whether the three sister-DPQs of each known 
dam of DPQs had been used as a PS or SS, and for SS, 
which DPQ in particular had been used in each mating. 
Second, we show the results of the genetic analyses for 
the sire modeling of open-mating DPQs with colony phe-
notypes, when they were mated with a heterogeneous 
drone population (simulation Set II). In this second part, 
we compare the results obtained either (i) by ignoring the 
colony phenotypes of DPQs, or (ii) by accounting for the 
effect of drone subpopulations in the pedigree, or (iii) by 
adding an additional non-genetic effect in the evaluation 
model describing the phenotypes.

Results across all scenarios
Across all scenarios, no strong biases were observed 
when the male mate pedigree of BQs was known and 
correctly modeled  (SSP for SS mating and  PSP for PS 
mating), and when the effect of drone subpopulations 
in open mating was accounted for by an additional non-
genetic effect in the statistical model. However, in the 
other pedigree modeling scenarios, the bias or standard 

errors (or both) that affect the genetic (co)variance com-
ponents could be considerable, while they were almost 
always small on the estimated variance of residual effects 
( ̂σ2e ). Some of these marked biases resulted from under or 
overestimated variances being compensated for by over 
or underestimated covariances. In addition, within a rep-
licate, there was a tendency to both under- (or over-) esti-
mate σ2W and σ2Q.

The results focus on the base genetic parameter set in 
which σ2W = σ2Q and rWQ = 0. The results obtained for the 
other genetic parameter sets are presented in Additional 
file 2: Tables S1 to S8. Within a scenario, the errors on the 
estimated genetic parameters or genetic trends were sim-
ilar across all genetic parameter sets (except for expected 
differences, e.g., doubling σ2W reduced the relative errors 
on its estimate ( ̂σ2W ). The main differences between 
genetic parameter sets were that errors on the estimated 
genetic correlation between worker and queen effects 
( ̂rWQ ) were smaller for rWQ = − 0.5 than for rWQ = 0, and 
the tendency towards both the under-(and over-) estima-
tion of genetic variances was stronger for rWQ = − 0.5. For 
all scenarios, at least 98% of the 200 replicates converged, 
except for simulation Set II with an equal variance for 
worker and queen effects, rWQ = − 0.5, and a random 
non-genetic effect for the open-mating drone subpopula-
tion, where 24% of the replicates failed to converge.

Simulation Set I: sire modeling for the controlled mating 
of breeding queens
Simulating SS or PS controlled mating and estimating genetic 
parameters accordingly
When the mating of BQs was correctly modeled in the 
pedigree, no strong biases on (co)variance estimates were 
observed. However, across scenarios, we still observed a 
trend towards a small underestimation of the variance of 
queen effects (− 3%, Table 2) and a more marked under-
estimation for the genetic trend (Fig. 3) on queen effects 
(− 6% of the true genetic trend with σ2W = 10 and rWQ = 0, 
see Additional file 2: Table S4).

About 30% of the genetic variance estimates deviated 
by more than 20% from their true values (Table 2). In this 
genetic parameter set with σ2W = σ2Q and rWQ = 0, the rela-
tive standard error of σ̂2W , averaged across both mating 
strategies, was almost equal (20%) to that of σ̂2Q (19%). 
However, with σ2W = σ2Q , but rWQ = − 0.5, the relative 
standard error of σ̂2W increased to 22% while that of σ̂2Q 
decreased to 16% (see Additional file 2: Table S5).

Compared to PS mating, with SS mating, the relative 
standard error of the variance estimates decreased by 
about 11% for both genetic effects (Table  2 and Fig.  3) 



Page 8 of 16Kistler et al. Genetics Selection Evolution           (2024) 56:30 

and the standard error of the estimated rWQ decreased 
by 8%. For the other genetic parameter sets, the relative 
reduction in the standard error of σ̂2W and r̂WQ (but not 
of σ̂2Q ) was generally greater (see Additional file 2: Tables 
S4 and S5).

Simulating SS or PS controlled mating but estimating genetic 
parameters and genetic trends with incorrect sire modeling 
alternatives
In this section, the results were obtained assuming that 
the only known information on a BQ’s mate was the 

Table 2 Errors in the genetic parameter estimates when male mates for controlled mating were correctly modeled in the pedigree

Controlled mating strategy: SS (single sire) and PS (pseudo-sire) mating

σ̂
2
W , σ̂2

Q
 and r̂WQ : estimates of the genetic variances and correlation for worker and queen effect

Strong deviations are those that differ by more than 20% from the true values. The relative bias was calculated as 
(

1

nrep

∑nrep
1

(
σ̂
2
A
−σ

2
A

σ
2
A

)
· 100

)
 . The relative standard 

error was the standard deviation across replicates of the relative difference between estimates and the true value

Simulation Errors in the genetic parameters estimates

Controlled 
mating strategy

σ̂
2
W

σ̂
2
Q

r̂WQ

Relative bias (%) Relative SE (%) % strong 
deviations

Relative bias (%) Relative SE (%) % strong 
deviations

Bias SE

SS − 0.81 18.46 27 − 3.45 17.50 27 0.011 0.152

PS 0.20 20.79 37 − 2.21 19.55 30 0.013 0.165

Fig. 3 Errors on genetic parameter estimates for sire modeling scenarios for controlled mating and parameter set 1. Black diamond-shaped 
points indicate the relative bias on genetic variances, and black lines the regression lines of relative errors of variance estimates of worker effects 
on that of queen effects. The first row of graphs is from scenarios using single sire mating (SS) as the controlled mating strategy in the simulation, 
while the second row is from scenarios using, pseudo sire mating (PS). From left to right, results were obtained with sire pedigree modeling 
scenarios for controlled mating assigning: single sires  (C_SSP); a dummy single sire per dam of DPQs (C_dummySSp/DPQdam); a dummy single sire 
for each mating  (C_dummySSP/Q); and pseudo sires  (C_PSP)
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Table 3 Errors in genetic parameter estimates when sires for controlled mating were not correctly modeled in the pedigree

σ̂
2
W , σ̂2

Q
 and r̂WQ : estimates of the genetic variances and correlation for worker and queen effect

Strong deviations are those that differ by more than 20% from the true values. The relative bias was calculate d as 
(

1

nrep

∑nrep
1

(
σ̂
2
A
−σ

2
A

σ
2
A

))
 . The relative standard error 

(SE) was the standard deviation across replicates of the relative difference between estimates and the true value

Controlled mating strategy in the simulation: SS (single sire) and PS (pseudo-sire) mating

Sire pedigree modeling for controlled mating:  C_SSP,  C_dummySSP/DPQdam,  C_dummySSP/Q,  C_PSP: controlled mated queens are assigned, respectively, in the 
pedigree single sires, dummy single sires per dam of DPQ(s), dummy single sires per mated queen, pseudo-sires

Sire pedigree modeling 
for controlled mating

σ̂
2
W

σ̂
2
Q

r̂WQ

Relative bias (%) Relative SE (%) % strong 
deviations

Relative bias (%) Relative SE (%) % strong 
deviations

Bias SE

Controlled mating strategy: SS

  C_dummySSp/DPQdam − 27.03 14.85 66 − 6.67 17.25 28 0.248 0.174

  C_dummySSp/Q 15.08 25.38 48 2.68 20.06 32 − 0.111 0.168

  C_PSP 6.58 23.88 44 16.15 21.80 42 0.069 0.169

Controlled mating strategy: PS

  C_SSP − 26.90 14.08 68 − 22.71 14.93 60 0.062 0.166

  C_dummySSp/DPQdam − 32.27 12.82 84 − 22.46 15.59 59 0.194 0.176

  C_dummySSp/Q 3.67 22.25 38 − 14.02 17.32 44 − 0.139 0.180

Fig. 4 Genetic trends of worker and queen effects under sire modeling scenarios for controlled mating and parameter set 1. The first row of graphs 
is from scenarios using single sire mating (SS) as the controlled mating strategy in the simulation, and the second row from scenarios using pseudo 
sire mating (PS). From left to right, results were obtained under sire pedigree modeling scenarios for controlled mating assigning: single sires 
 (C_SSP); a dummy single sire per dam of DPQ(s) (C_dummySSp/DPQdam); a dummy single sire for each mating  (C_dummySSP/Q); and pseudo sires 
 (C_PSP)
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dam of the DPQ(s) with whom she had mated. Thus, it 
was assumed that it was not known whether the DPQs 
mated with each BQ jointly, as a PS, or separately, each 
as a SS. Under this hypothesis, when the dam of the 
DPQs was known, but it was not known whether DPQs 
were used as SS or PS, strong biases in the estimated 
variance(s), the estimated rWQ , or both were observed 
for some of the scenarios (Fig. 3). Depending on the sce-
narios, the relative bias that affected the estimate of the 
genetic variances ranged from − 32% to + 16%, and the 
bias that affected r̂WQ , ranged from − 0.14 up to + 0.25 
(Table 3). Likewise, for the estimated genetic trend (see 
Fig. 4 and see Additional file 2: Table S3), incorrect mat-
ing assumptions led to substantial over or underestimates 
of the genetic trend of worker and queen effects (from 
− 13% to + 12% for  BVW and from − 39% to + 26% for 
 BVQ). More extreme results affecting the estimates of 
genetic variances, correlations, and trends were obtained 
for the other parameter sets (see Additional file 2: Tables 
S3, S4, and S5). Regardless of the genetic parameter set, 
the strongest relative bias and relative SE that affected 
the estimates of genetic variances were obtained with PS 
mating and when a single dummy  SSP per DPQ dam was 
assigned in the pedigree file.

Simulation Set II: sire modeling for the open mating 
of drone‑producing queens
In simulation Set II, DPQs were mated with a heteroge-
neous open-mating drone population, simulating two 
distinct subpopulations that differed in their genetic 
level.

The exclusion of DPQ colony records from the genetic 
evaluation (O_NoPheno) did not cause any strong bias in 
the genetic parameter estimates (see Table 4 and Additional 
file 2: Table S6), although family selection was performed 
on these colony phenotypes. Nevertheless, excluding these 

records increased the standard error of the estimated 
genetic variances (about 19% for both genetic effects), 
the genetic correlation (33%), and the residual variance 
(33%), when compared to the scenario that included these 
records and in which a fixed effect for the drone subpopu-
lations was added in the evaluation model (O_FixedGroup) 
(see Fig. 5a, and Additional file 2: Table S6). Furthermore, 
excluding the DPQ colony records also led to an underes-
timation of the genetic trend of queen effects (− 15%, see 
Fig. 5b and Additional file 2: Table S7).

Accounting for the open mating of DPQs by modeling 
a different open-mating PS for each drone subpopula-
tion  (O_TwoPSP) led to a marked overestimation of the 
variance of worker effects (+ 64%, Table 4) and, to a lesser 
extent, that of queen effects (+ 21%). The relative bias for 
both effects was approximately halved in the scenarios 
with a doubled variance of worker effects (see Additional 
file  2: Table  S6). These overestimated variances were 
accompanied by an underestimation of the genetic cor-
relation between worker and queen effects of − 0.25 (see 
Fig. 5a and Table 4). Regarding genetic trend, it was over-
estimated for worker effects (+ 17% see Additional file 2: 
Table S7 for rWQ = 0 and σ2W = 10), while it was underesti-
mated for queen effects to a similar degree (− 13%) as for 
the scenario where DPQ records were excluded from the 
genetic evaluation.

Finally, the results indicated that the best strategy to 
account for the heterogeneous open-mating drone pop-
ulation was to add a fixed (O_FixedGroup) or a random 
(O_RandGroup) effect in the evaluation model with one 
level for each drone subpopulation. This modeling led to 
little or no bias and the smallest standard errors for the 
estimates of genetic parameters and genetic trends. The 
differences between these two approaches were generally 
minimal (Fig. 5a). The only notable difference concerned 
the genetic parameter set with equal variances for worker 

Table 4 Errors in genetic parameter estimates for sire modeling scenarios relative to open mating

Sire modelling scenarios: O_NoPheno: modeling a single  PSP and open-mated DPQ’s colony phenotypes excluded;  O_TwoPSP: modeling one open mating  PSP per 
open mating drone subpopulation; O_FixedGroup: modeling a single  PSP and drone subpopulations accounted for by a non-genetic fixed effect; O_RandGroup: 
modeling a single  PSP and drone subpopulations accounted for by a non-genetic random effect

σ̂
2
W , σ̂2

Q
 and r̂WQ : estimates of the genetic variances and correlation for worker and queen effect

Strong deviations are those that differ by more than 20% from the true values. The relative bias was calculated as 
(

1

nrep

∑nrep
1

(
σ̂
2
A
−σ

2
A

σ
2
A

))
 . The relative standard error 

(SE) was the standard deviation across replicates of the relative difference between estimates and the true value

Sire modelling scenario σ̂
2
W

σ̂
2
Q

r̂WQ

Relative bias (%) Relative SE (%) % strong 
deviations

Relative bias (%) Relative SE (%) % strong 
deviations

Bias SE

O_NoPheno − 3.02 23.09 40 1.04 21.74 34 − 0.021 0.195

O_TwoPSP 64.45 22.34 98 21.03 20.75 54 − 0.245 0.110

O_FixedGroup − 3.04 19.39 34 0.83 18.37 24 0.003 0.146

O_RandGroup − 2.49 18.91 33 1.24 17.84 23 − 0.003 0.137
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and queen effects and a negative rWQ (see Additional 
file  2: Table  S6). In that case, considering the heteroge-
neity of the mating of DPQs by adding a random non-
genetic effect prevented convergence in approximately 
one quarter of the repetitions. When they converged, the 
estimates were very similar to those obtained with the 
fixed effect model.

Discussion
This study investigated the impact of sire modeling on 
the estimates of genetic parameters and genetic trends. 
First, we focused on the controlled mating of BQs 
and explored the relevance of knowing how the three 

sister-DPQs of each known dam of DPQs had been 
used (as SS or PS). Second, we studied the open mat-
ing of phenotyped DPQs, accounting for the subpopu-
lations of drones that mate with these queens in three 
ways: first, by excluding the DPQ phenotypes; second, 
through the modeling of genetic effects by assuming 
a separate open-mating PS for each drone subpopu-
lation; and last, by adding a non-genetic effect (fixed 
or random) in the evaluation model for each drone 
subpopulation.

We chose to vary neither the number of drones (e.g. 
from 8 to 16) mating with each queen nor the num-
ber of selected DPQs per DPQ dam (e.g. from three to 

Fig. 5 Errors on estimates of genetic parameters (a) and breeding values (b) under sire modeling scenarios for open mating. Black 
diamond-shaped points indicate the relative bias on genetic variances, and black lines the regression lines of relative errors of variance estimates 
of worker effects on that of queen effects. The controlled mating strategy in the simulation always used single sire mating (SS). DPQs were 
open-mated with a heterogeneous drone population. From left to right, the results were obtained by excluding DPQs colony records (O_NoPheno); 
accommodating for the effect of subpopulations of open-mating drones by: assigning a distinct open-mating pseudo sire in the pedigree for initial 
BQs and each half of the DPQs  (O_TwoPSP); or by adding a fixed (O_FixedGroup) or random (O_RandGroup) non-genetic effect in the statistical 
model describing the phenotypes, with one level per drone subpopulation



Page 12 of 16Kistler et al. Genetics Selection Evolution           (2024) 56:30 

eight), because preliminary trials had shown that they 
had only a marginal impact on the results. In order to 
understand the impact of erroneous assumptions, we 
simulated only systematic errors that affected all mat-
ings. Obviously, in real datasets, a combination of erro-
neous and correct assumptions is likely, thus producing 
less extreme results.

Sire modeling for the controlled mating of breeding 
queens
Our results demonstrate the importance of knowing as 
precisely as possible how DPQs of a particular dam were 
used: either separately (SS) or jointly (PS). When used 
jointly, which DPQs exactly composed the group has not 
yet been considered in theory [6], since the sisters mak-
ing up a PS are supposed to be unselected and random 
progeny of their dam. However, knowledge of this infor-
mation could be useful when DPQ colony phenotypes are 
used for the estimation of breeding values. If DPQs were 
selected from a sister-group to form a PS, considering 
them as random progeny could create biased estimates. 
Other approaches have been developed to handle pedi-
gree uncertainty regarding sires [28] that might avoid 
such biases but have not yet been implemented in hon-
eybees. However, these approaches would need to assign 
a correct probability to each suspected sire in order to 
weight the relationship coefficient accordingly, which 
seems difficult given that the contribution of each DPQ 
and of each drone [29] to a queen’s offspring is difficult 
to predict.

The most accurate estimates: single sire mating
Knowledge of whether SS mating is used is important 
because the true pedigree relationships between DPQs 
and descendants are known in that situation and there 
is no need to account for them probabilistically. In addi-
tion, the phenotypic information on the single DPQ can 
be better used in the estimation of variance components 
and breeding values, thus further reducing the standard 
errors of estimates. This gain in precision was notable 
(Table 2), although some theoretical flaws existed regard-
ing how SS mating was considered when deriving the 
relationship matrix (as noted by Manual Du, personal 
communication). In fact, for SS mating, we simply used 
the general formulas described by Brascamp and Bijma 
[6]; in particular, we assumed that the probability of two 
female offspring coming from the same DPQ  (p2) fol-
lowed a Poisson distribution, so that  p2 ≈ 1

D +
1
S , where 

S is the number of sister-DPQs contributing the D drones 
mating with a queen. When assuming SS mating in the 
estimation, S equaled 1, leading to  p2 > 1. The new version 
of the software used to derive the inverse relationship 

matrix was corrected for this, and has also been made 
available.

Estimates of genetic parameters and trends with uncertainty 
on how DPQs of each dam were used
Apart from the loss in precision when SS was not 
assumed although it was the true mating strategy, uncer-
tainty regarding the exact way DPQs were used for mat-
ing, and subsequent incorrect assumptions in the genetic 
evaluation, could give rise to strong biases or increased 
standard errors in the estimates of both the genetic 
parameters and genetic trends (Table  3 and see Addi-
tional file 2: Table S3).

The biases observed can be synthesized and inter-
preted as follows. On the one hand, if the assumptions 
of how DPQs were used in mating lead to an average 
overestimation of the genetic relationship between the 
offspring of BQs and DPQs, then the genetic variances 
will be underestimated, while the genetic correlation 
will be overestimated (Fig.  3). Under our simulations, 
this occurred when a dummy  SSP per dam of DPQs was 
assumed (when the mating strategy was  PSP but also  SSP). 
Similarly, but to a lesser degree, the relationship between 
the offspring of BQs and DPQs was also overestimated 
when  SSP was assumed while the actual mating strategy 
was PS. In that case, genetic variances were also mark-
edly underestimated but the genetic correlation was 
much less biased. On the other hand, if the assumptions 
regarding the use of DPQs during mating lead to an aver-
age underestimation of the genetic relationship between 
the offspring of BQs and DPQs, then the genetic variance 
estimates will only be moderately biased, but their stand-
ard error becomes larger, while the genetic correlation 
is underestimated. Under our simulations, this occurred 
when a dummy  SSP per mating was assumed (regardless 
of the mating strategy). Similarly, but to a lesser extent, 
the genetic relationship between the offspring of BQs and 
DPQs was also underestimated when  PSP was assumed 
while the mating strategy was SS. In that case, genetic 
variances were moderately overestimated with interme-
diate standard errors, and the genetic correlation was 
only moderately biased.

Sire modeling for the open mating of drone‑producing 
queens
For open mating, where the drones in each open-mat-
ing subpopulation have different mean breeding values, 
exclusion of DPQ colony records from the analysis did 
not lead to marked biases in the genetic parameter esti-
mates, although these phenotypes had been used for 
selection. This held true even if the selection intensity of 
DPQs was markedly increased (selecting three times less 
DPQs, data not shown).
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Adding a dummy open  PSP to the pedigree for each 
of the two drone subpopulations led to overestimated 
genetic variances. This suggests that the difference of 
one genetic standard deviation (SD) between the two 
subpopulations ended up in the genetic variance esti-
mate. The difference between the two subpopulations, 
and consequently between the worker groups that they 
generated, resulted in two sets of DPQ colonies with a 
systematically different trait value in the data. A differ-
ence of one genetic SD between single individuals in 
the base generation is not unlikely and should not lead 
to inflated genetic parameter estimates. However, the 
dummy PS represented a group of 100 individuals, so 
that the SD of its mean value was much smaller than 
one genetic SD, as reflected by the small coefficient 
for the PS on the diagonal of the relationship matrix. 
Hence, a clear difference between the two PSs could 
only be explained by a large genetic variation in the 
base generation, resulting in an overestimation of the 
genetic variances.

To determine whether increasing the genetic vari-
ability of open-mating drones affected the estimates 
of the genetic parameters and trends, we increased 
the (co)variance of worker and queen effects fourfold 
to generate the BVs of these drones, while maintain-
ing the difference in the mean genetic value of the 
two drone subpopulations. However, the results (not 
shown) were very similar to those presented in this 
study.

In this study, open mating with a heterogeneous 
drone population only concerned DPQs. The mates 
of DPQs only impacted the phenotypes of DPQ colo-
nies, because they did not contribute genetically to the 
breeding population, since they were only the sires of 
the (sterile) worker groups of DPQs. If BQs had also 
been open-mated to a heterogeneous drone population, 
then the effects of their mates should be accounted for 
by genetic effects, as they would contribute fertilized 
eggs to the breeding nucleus. This could be done using 
genetic groups [30], but the derivations would require 
an adaptation to the specific structure of honeybee 
relationship matrices.

Effect of the breeding nucleus size on the estimates 
of genetic parameters and trends
The results obtained with the base genetic parameter 
set and repeated with 12 and 36 maternal families were 
very similar in terms of mean estimated (co)variances 
and genetic trends, with an expected difference of 
smaller (or larger) standard errors of estimates for 
larger (or smaller) nucleus size scenarios. These differ-
ences regarding the genetic variances were close to 

what could be approximated from the results obtained 
with N = 24 maternal families by considering the stand-
ard errors as proportional to 1√

N
 (see Additional file 4: 

Fig. S1).
In addition, the standard errors of the estimates that 

were obtained (calculated from estimated (co)variances 
over replicates) were in good accordance with the mean 
predicted standard errors obtained by AIReML (see 
Additional file 2: Table S8).

Effect of the true genetic correlation between worker 
and queen effects
The standard error of the rWQ estimate was smaller in 
the genetic parameter sets with a negative rWQ than in 
those with a null rWQ . This was consistent with previ-
ous findings in simulated honeybee datasets [19] and 
also agreed with theoretical predictions [31]. For given 
genetic variances of worker and queen effects, a nega-
tive rWQ also decreases the phenotypic variance, lead-
ing to higher heritability values for the worker and for 
the queen effects. Another reason for this observation 
is that we forced the estimated rWQ to be within the 
parameter space of [− 1; 1], resulting in smaller errors 
for true values nearer to the bounds.

Practical implications
Importance of knowing how DPQs were used in controlled 
mating
In breeding plans that involve isolated mating stations, 
a DPQ dam at each station will usually be represented 
by a group of sister-DPQs. However, in the case of arti-
ficial insemination, it is common to use the same dam 
of DPQs in multiple ways, such as by collecting sperm 
from a single DPQ or from a few sister-DPQs. How-
ever, apart from the dam of DPQs, the usage of DPQs 
is often not recorded. We demonstrated that the chal-
lenges associated with obtaining accurate estimates of 
genetic parameters and trends in honeybees are exac-
erbated when we lack information on how DPQs are 
used. Therefore, if the DPQs were used jointly, as a PS, 
this should be recorded. With PS mating, the number of 
sisters composing the group should also be recorded, as 
unpublished results have shown that this latter parame-
ter will impact the genetic evaluation. If the DPQs were 
used separately, as a SS, knowing which particular DPQ 
is used is also important, since assigning dummy DPQs 
also deteriorates the reliability of genetic estimates.

The most reliable estimates for an unknown controlled 
mating strategy
If information on the use of DPQs in controlled mating 
cannot be obtained, the estimates of genetic parameters 
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and trends might become severely biased. Nonethe-
less, if the true mating of BQs is unknown, an assump-
tion must be made as to how DPQs were used in the 
matings (either as  PSP or  SSP). Our results suggest that 
assuming DPQs were used jointly, as a PS, produced 
the highest probabilities of obtaining genetic param-
eter estimates that do not deviate markedly from their 
true values. Compared to other erroneous assumptions, 
assuming  PSP gave the most accurate estimates when, 
of course, PS mating was used in the simulation, but 
also generally when SS was used (see Additional file 2: 
Tables S4 and S5).

However, all assumptions other than  SSP for SS and  PSP 
for PS led to larger errors in the predicted BVs of either 
worker or queen effects, or both (Fig.  4 and see Addi-
tional file 2: Table S3). Assuming  PSP when SS was used 
led to unbiased estimates of the genetic trend of worker 
effects, but tended to overestimate genetic gain on queen 
effects. Although this would deserve more research, we 
suggest that assuming  PSP when the true mating strategy 
is unknown could also be recommended when the main 
focus is on estimating genetic trends.

Recommended strategy to include phenotypes 
of open‑mated DPQs
In the case of artificial insemination, where the drones 
used to inseminate a BQ come from a few sister DPQs, 
their colonies are often phenotyped. These DPQs may be 
open mated, as is common in France [8] or Italy (personal 
communication from Melyos Apicoltura), for example. 
To integrate the phenotypes of DPQs open mated with 
a heterogeneous drone population, we suggest adding a 
non-genetic effect in the evaluation model, with one level 
for each drone subpopulation. These subpopulations 
could, for example, correspond to different geographic 
areas and periods in the season (or across years) where 
the DPQs were mated. With numerous and small drone 
subpopulations, a random effect may be preferred over 
a fixed effect. In contrast to assigning an open-mating 
 PSP as the male mate of these DPQs, including a non-
genetic effect to account for the two drone subpopu-
lations can avoid bias. Using either a fixed or random 
non-genetic effect in the evaluation model produced 
very similar results. However, we modeled a simplistic 
situation in which all the colonies tested in a year were 
affected by the same identified environmental effect. Dif-
ferences between modeling by fixed or random effects 
might appear if there is statistical confounding between 
the mean genetic effect of open-mating drones in an api-
ary and the environmental effects of this apiary, under a 
design where the genetic connectedness between apiaries 
is limited.

Conclusions
When breeding queens are mated with drones that are 
produced by a single DPQ (as sometimes happens with 
artificial insemination) and this mating strategy is appro-
priately modeled, estimates of genetic parameters and 
genetic trends are more precise than in situations where 
queens are mated with drones that are produced by a 
group of sister-DPQs. However, if breeders only record 
which dam of the DPQ(s) is used, but not which particu-
lar DPQ or group of sister-DPQs, erroneous assump-
tions can lead to marked biases that affect these genetic 
estimates. When the true mating strategy is unknown, 
assuming that drones come from a group of sister-DPQs 
leads to the highest probability of obtaining genetic 
parameter estimates that do not markedly deviate from 
their true values. However, marked bias in the estimated 
genetic trend of queen effects is observed. Moreover, if 
the DPQs are open-mated with a heterogeneous drone 
population and their phenotypes are used in the genetic 
analysis, then we recommend the addition of a non-
genetic effect for drone origin in the evaluation model.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12711- 024- 00898-3.

Additional file 1: Text S1. Infinitesimal model applied to the honeybee. 
The main equations for the infinitesimal model applied to the honeybee 
as described by Kistler et al. [20] are shown and describe the generation 
of base queens and drones, colony phenotype modelling, and lastly BV 
inheritance for queens, drones, and worker groups. 

Additional file 2: Table S1. Input parameters for the simulations. The 
table shows the main input parameters for all the simulations, including 
genetic parameter sets other than that used for the main text. σ2: variance 
of worker (W), queen (Q) or residual (e) effects in the base population. 
The only environmental fixed effect was a year effect with variance σ2year
.rWQ

 : genetic correlation between worker and queen effects. BQs: breed-
ing queens, DPQs: drone-producing queens. Table S2. AIReML starting 
parameter values and convergence criteria. The table shows the initial 
values used to estimate (co)variances σ2

W
 , σ2

Q
 , σ2e and σWQ

 , respectively, 
for the worker, queen and residual effects, and the covariance between 
worker and queen effects. The true values for genetic variances σ2

W
 and σ2

Q
 

were 10 and 20, respectively, and for the covariance 0, − 5, or approxi-
mately − 7, respectively, depending on the genetic parameter set. The 
true σ2e was always equal to 30. Table S3. True and estimated genetic 
trends for all genetic parameter sets and sire modeling scenarios of 
controlled mating. σ2

W
 , rWQ

 : genetic variance of worker effects and genetic 
correlation between worker and queen effects. The genetic trends (true 
and estimated) were calculated as the linear regression coefficients of 
true breeding values (BV) and estimated breeding values (EBV) for worker 
(W) and queen (Q) effects over breeding years (after the fifth year of the 
breeding program, when the nucleus became closed). Controlled mating 
strategy under the simulation: SS (single sire) and PS (pseudo sire) mating. 
Sire pedigree modeling for controlled mating:  C_SSP,  C_dummySSP/Q, 
 C_dummySSP/DPQdam,  C_PSP: controlled mated queens are assigned 
respectively in the pedigree single sires, dummy single sires per dam of 
DPQ(s), dummy single sires per mated queen, pseudo sires. Table S4. 
Errors affecting estimates for genetic parameter sets with a null rWQ

 and 
all sire modeling scenarios for controlled mating. σ2

W
 , σ2

Q
 , rWQ

 : genetic vari-

ances and correlation for worker and queen effects. σ2e : residual variance. 

https://doi.org/10.1186/s12711-024-00898-3
https://doi.org/10.1186/s12711-024-00898-3


Page 15 of 16Kistler et al. Genetics Selection Evolution           (2024) 56:30  

Estimates are denoted by ‘^’; strong deviations differ by more than 20% 
from the true values. Controlled mating strategy under the simulation: 
SS (single sire) and PS (pseudo sire) mating. Sire pedigree modeling for 
controlled mating:  C_SSP,  C_dummySSP/DPQdam,  C_dummySSP/Q, 
 C_PSP: controlled mated queens are assigned respectively in the pedigree 
single sires, dummy single sires per dam of DPQ(s), dummy single sires 
per mated queen, pseudo sires. Table S5. Errors affecting estimates for 
genetic parameter sets with a negative rWQ

 and all sire modeling scenarios 
for controlled mating. σ2

W
 , σ2

Q
 , rWQ

 : genetic variances and correlation for 

worker and queen effects. σ2e : residual variance. Estimates are denoted 
by ‘^’; strong deviations differ by more than 20% from the true values. 
Controlled mating strategy under the simulation: SS (single sire) and PS 
(pseudo sire) mating. Sire pedigree modeling for controlled mating:  C_SSP, 
 C_dummySSP/DPQdam,  C_dummySSP/Q,  C_PSP: controlled mated queens 
are assigned respectively in the pedigree single sires, dummy single sires 
per dam of DPQ(s), dummy single sires per mated queen, pseudo sires. 
Table S6. Errors affecting estimates for all genetic parameter sets and sire 
modeling scenarios for open mating. σ2

W
 , σ2

Q
 , rWQ

 : genetic variances and 

correlation for worker and queen effects. σ2e : residual variance. Estimates 
are denoted by ‘^’; strong deviations differ by more than 20% from the 
true values. The controlled mating strategy was single sire mating  (SSS). 
Sire modeling for open mating: O_NoPheno: open-mated DPQ colony 
phenotypes are excluded from the genetic analysis;  O_PSP,  O_TwoPSP: 
open-mated DPQs are assigned in the pedigree respectively a single open 
mating pseudo sire, or one for each open-mating drone subpopulation 
(initial BQs and each half of the DPQ); O_FixedGroup or O_RandGroup: 
the effect of drone subpopulations mating DPQs is accounted for by 
adding a fixed or a random non-genetic effect in the statistical model 
that describes the phenotypes. Table S7. True and estimated genetic 
trends for all genetic parameter sets and sire modeling scenarios for 
open mating. σ2

W
 , rWQ

 : genetic variance of worker effects and genetic 
correlation between worker and queen effects. The genetic trends (true 
and estimated) were calculated as the linear regression coefficients of 
true breeding values (BV) and estimated breeding values (EBV) for worker 
(W) and queen (Q) effects over breeding years (from the fifth year of the 
breeding program, when the nucleus became closed). The controlled 
mating strategy was single sire mating (SS). Sire modeling for open mat-
ing: O_NoPheno: open-mated DPQ colony phenotypes are excluded from 
the genetic analysis;  O_PSP,  O_TwoPSP: open-mated DPQs are assigned 
in the pedigree respectively a single open mating pseudo sire, or one for 
each open-mating drone subpopulation (initial BQs and each half of the 
DPQ); O_FixedGroup or O_RandGroup: the effect of drone subpopulations 
mating DPQs is accounted for by adding a fixed or a random non-genetic 
effect in the statistical model that describes the phenotypes. Table S8. 
AIReML predicted and realized standard errors (SE) of genetic (co)vari-
ances. Predicted SE: mean prediction (by the inverse averaged informa-
tion matrix) of the SE of genetic (co)variance estimates over repetitions. 
Realized SE: SD over repetitions of the error on the variance estimates of 
worker (σ̂2

W
) and queen (σ̂2

Q
) effects, as well as the covariance ( ̂σWQ) . Con-

trolled mating strategy in the simulation: SS (single sire) and PS (pseudo 
sire) mating. Sire pedigree modeling for controlled mating:  C_SSP,  C_dum-
mySSP/DPQdam,  C_dummySSP/Q,  C_PSP: controlled mated queens are 
assigned respectively in the pedigree single sires, dummy single sires per 
dam of DPQ(s), dummy single sires per mated queen, pseudo sires. 

Additional file 3: Text S2. Implementation of open-mating pseudo sires 
for the estimation of genetic parameters and breeding values. Details are 
given on how open-mating sires, which are dummy individuals in the 
pedigree, were modeled, with a description of how their relationship coef-
ficients are calculated in the honeybee specific relationship matrix [6, 21]. 
A minimalistic example is shown. 

Additional file 4: Figure S1. Realized and predicted (from 24 family 
scenario results) standard errors of the genetic variance estimates. The first 
row of graphs is from scenarios using single sire mating (SS) as the 
controlled mating strategy in the simulation, and the second row from 
scenarios using pseudo sire mating (PS). From left to right, results were 

obtained from sire pedigree modeling scenarios for controlled mating 
assigning single sires  (C_SSP); a dummy single sire per dam of DPQs 
 (C_dummySSP/DPQdam); a dummy single sire for each mating 

 (C_dummySSP/Q); and pseudo sires  (C_PSP). se ( σ2a ) is the standard error 
of estimated genetic variance, for either worker or queen effects (see color 
legend). Dashed lines link the standard error predicted for N = 12 and 
N = 36 maternal families, using the values obtained with 24 maternal 

families, and dividing it by 

√
N

2
 . Continuous lines link standard errors 

obtained when running simulations with all three breeding nucleus sizes: 
12, 24 and 36 maternal families. Simulations used genetic parameter set 
one, with a null genetic correlation between worker and queen effects 
and equal variances for both effects, using 200 replicates. The predicted 
and realized standard errors are similar.
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