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Summary

A Restricted Maximum Likelihood procedure is described to estimate variance components for
a univariate mixed model with two random factors. An EM-type algorithm is presented with a
reparameterisation to speed up the rate of convergence. Computing strategies are outlined for
models common to the analysis of animal breeding data, allowing for both a nested and a cross-
classified design of the 2 random factors. Two special cases are considered : firstly, the total
number of levels of fixed effects is small compared to the number of levels of both random
factors ; secondly, one fixed effect with a large number of levels is to be fitted in addition to other
fixed effects with few levels. A small numerical example is given to illustrate details.

Key words : Restricted Maximum Likelihood, variance component estimation, nested design,
full sib family structure.

Résumé

Estimation des composantes de la variance par le Maximum de Vraisemblance Restreint
dans un modèle mixte à deux facteurs aléatoires

Une méthode d’estimation des composantes de la variance par le Maximum de Vraisemblance
Restreint est décrite dans le cas d’un modèle mixte à une seule variable avec 2 facteurs aléatoires.
Un algorithme de calcul du type E.M. est présenté avec une reparamétrisation pour accélérer la
vitesse de convergence. Des stratégies de calcul sont abordées pour les modèles d’analyse
génétique les plus courants avec 2 facteurs aléatoires hiérarchiques ou croisés. Deux cas particu-
liers sont décrits : premièrement, le nombre total de niveaux des effets fixés est faible comparati-
vement à celui des facteurs aléatoires ; deuxièmement, un effet fixé avec un grand nombre de
niveaux est ajouté aux précédents. Un petit exemple numérique illustre les détails.

Mots clés : Maximum de Vraisemblance Restreint, estimation des composantes de la variance,
modèle hiérarchique, famille.s de pleins frères.



I. Introduction

Recently Maximum Likelihood (ML) and related procedures to estimate variance
components for unbalanced data have become popular. Restricted Maximum Likelihood
(REML), developed by PATTERSON & THOMPSON (1971), which in contrast to ML
accounts for the loss in degrees of freedom due to fitting fixed effects, has become

accepted as the preferred method to estimate variance components for animal breeding
data.

HENDERSON (1973) described an EM-type ML algorithm for several uncorrelated
random effects, based on the Mixed Model Equations (MME) for Best Linear Unbia-
sed Prediction (BLUP). Its REML analogue (e.g. HARVILLE, 1977 ; HErrDERSON, 1984)
is widely used although it is slower to converge than an algorithm using Fisher’s
Method of Scoring (THOMPSON, 1982). However, it is guaranteed to yield non-negative
estimates (HARVILLE, 1977). THOMPSON (1976) outlined an ML procedure to estimate
direct and maternal variances. Using small examples HENDERSON (1984) illustrated

REML algorithms for a variety of more complex cases, including models accommoda-
ting additive and dominance, direct and maternal effects and a three-way classification
where variance component estimates for one random factor and all random interactions
were required. His algorithm permits a general form of the matrix of residual errors. In
a different context, LAIRD & WARE (1982) discussed ML and REML estimation for

longitudinal data, invoking a two-stage model which accommodated both growth and
repeated measurement models.

In spite of well documented theory, most applications of REML in animal breeding
have been restricted to models which include only a single random factor apart from
the random residual error. This paper describes a univariate REML procedure for
models where three variance components are to be estimated. This encompasses cases
with 2 uncorrelated random effects and situations where the variance components for
one random factor and its random interaction with a fixed effect are of interest. With
an appropriate coding for the interaction, the latter is a special cae of the 2 random
factor model. For animal breeding data, these are commonly sires and dams. Fre-

quently, there are considerably more dams than sires, in particular with artificial

insemination, and sires are used across a wider range of fixed effects than dams. The

algorithm has been developed with such a data structure in mind and will be presented
in terms pertaining to the animal breeding situation.

II. The model

Let y, of length N, denote the data vector and b, of length NF, denote the vector
of fixed effects including any regression coefficients for covanables to be fitted.

Similarly let s, of length NS, and d, of length ND, stand for the vectors of the first

(e.g. sires) and second (e.g. dams) random effect and e, of length N, stand for the
random vector of residuals. X, Z and W are the corresponding design matrices for b, s

and d of order N x NF, N x NS and N x ND, respectively. The model of analysis can
then be written as :



with E(y) = Xb, E(s) = 0, E(d) = 0 and E(e) = 0 and variances and covariances
V(s) = G!s, V(d) = GD, V(e) = R, Cov(s,d’) = 0, Cov(s,e’) = 0 and Cov(d,e’) = 0

Then V(y) = V = ZfisZ’ + WGpW’ + R. Assuming errors to be uncorrelated and
variances to be homogeneous for each random factor, this simplifies to :

where or, = V(sj), a’ D = V(dk) and aw = V(em) for j = 1, ..., NS, k = 1, .. , ND and

m = 1, .. , N. As and AD describe the covariance structure among the levels of each of
the 2 random effects. In animal breeding terms, assuming an additive genetic model,
for sires and dams, these are the numerator relationship matrices.

The MME for (1) are then (HENDERSON, 1973) :

with variance ratios ks = (y!1 (y! and ÀD = u2wlag (assumed to be the known parameter
values).

III. REML algorithm

To account for the loss in degrees of freedom due to fitting of fixed effects,
REML, in contrast to ML, maximizes only the part of the likelihood of the data vector
y which is independent of the fixed effects. This is achieved by operating on a vector of
so-called « error contrasts », Sy, with SX = 0 and hence E(Sy) = 0. A suitable matrix S
arises when absorbing the fixed into the random effects in (3) (THOMPSON, 1973).

Differentiating the log likelihood of Sy with respect to the variance components to
be estimated then gives the general REML equations :

where Oi stands in turn for or,’, a1 and u2w. P is a projection matrix :



From (2), the derivatives of V required are :

6v/6u] = ZAsZ’, õv/õab = WApW’ and 8v/8(T’ = IN

This gives the following estimating equations :

where !=y-Xfi-Z&-Wa=S(y-Zfi-Wa) and NDFW=N-NS-ND-rank(X)
denotes the degrees of freedom for residual. Equivalent expressions to (9) to (11) have
been given by HARVILLE (1977), SEARLE (1979) and HENDERSON (1984). Estimates are
usually obtained employing an iterative solution scheme. Above and in the following,
(J&dquo;!, and Xi (or a;) are then thought of as starting values while a superscript « A »

denotes estimates for the current round of iteration. These equations, (9) to (11),
utilize only first derivatives of the likelihood function, resulting in an EM algorithm
(DEMPSTER et C1L., 1977). Alternatively, the right hand side of (6) can be expanded to
include second derivatives, resulting in an algorithm equivalent to Fisher’s Method of
Scoring. Details are given in the Appendix (A).

While the EM algorithm requires only the diagonal blocks (Css and Cpo) of the
inverse of the coefficient matrix for random effects and traces of their simple products
with the corresponding inverse of the numerator relationship matrix, off-diagonal blocks
and more complicated traces are required for the Method of Scoring algorithm (see
(A3) in relation to (9) to (11)). Hence computational requirements per round of
iteration for the latter are considerably higher. Though the EM algorithm can be slow
to converge, in particular for ratios of variance components common to animal breeding
data (THOMPSON, 1982) it is often preferred for its computational ease and the fact that
it guarantees estimates in the parameter space.



IV. Reparameterisation

THOMPSON & MEYER (1986) described a reparameterisation to speed up convergence
of a REML algorithm based on first derivatives of the likelihood function. It was
derived considering the expectations of mean squares, resulting from the orthogonal
partitioning of sums of squares due to factors in the model, in a balanced design. For a
model with one random factor, for instance, where the variance components within
(Qw) and between (U2) random groups are of interest, it was suggested to estimate

parameters aW = (T’ and aB = U2 + <TVK. The latter is the variance of a group mean if K
is the group size. For K - 00, aB reduces to of,. For a balanced design with K equal to
the group size, estimates of ae and a! were obtained in one round of iteration. For the
unbalanced case a value of K equal to the average group size increased speed of

convergence markedly over the EM algorithm on the original scale (K = 00), especially if
Qa was small compared to ot2

A. Nested design

For a model with 2 random factors it is necessary to distinguish between a nested
and a cross-classified design. If the second random factor, for instance dams (d), is

nested within the first, for instance sires (s), expectations of mean squares in a

balanced hierarchical analysis of variance suggest a reparameterisation to aW = Qw,
ap = <T6 + (T2w/K, and as = as + aplKs = Q’-s + <T61Ks + 0!/K.sK!,. THOMPSON & MEYER

(1986) demonstrated for Kp equal to the average dam group size and K, equal to the
average number of dams per sire a considerable reduction in rounds of iteration

required for convergence, as compared to values of KS = Kp = oc. Again, in the balanced
case estimates were obtained in one round.

Differentiating the log likelihood of Sy with respect to the new parameters aS, aD
and aW and equating the resulting expressions to zero, « improved » estimates for the
three variance components can be derived. The first variance component, or2s, is derived

as before, i.e. according to (9), while (10) is replaced by :

The residual variance is then found as :

Clearly, (12) and (13) reduce to (10) and (11) respectively, if Ks and KD are 00.

Alternatively, an estimator of the general form :

can be used to determine Oi = as, aD and aw, where BL/Oi denotes the partial derivative
of the log likelihood of Sy with respect to 6,. M stands for the number of levels or



degrees of freedom pertaining to the respective random factor (see THOMPSON & MEYER

(1986) for a reasoning for the latter). Estimates of the variance components are then
found as 81 = &w, 8) = aD - aw/kD and â-! = &s - aD/Ks.

This implies that, in contrast to the scheme above (i.e. (12) and (13)), estimates of
ar’w and or2D rather than the starting values are used in back transforming from the
reparameterised to the original scale. This appears to be advantageous. For Oi = as, aD
and aw in turn, this gives (from 14) :

/

Obviously, with aW = u! rearranging (17) yields (13).

B. Crossclassified design

Repitrameterised variables for the crossclassified design are &OElig;W (T , 2 &OElig;D = (T + u!1
KD and as = as + CF2 w /Ks where suitable values for KD and Ks may be the average
number of records per dam and sire, respectively. From (14),

/

for Oi = aD and aW, respectively, and (15) for Oi = as. Estimates of crw and ap are then
determined as for the nested design and as = as - aw/Ks.

V. Computing strategy

The REML algorithm as described so far centres around the matrix S which is of
order equal to the number of observations. For most applications, S cannot be
calculated directly but often special features of the data structure can be exploited to
obtain the required terms indirectly.

A. Few fixed effects

Consider a model where the total number of levels of fixed effects, including any
regression coefficients for covariables, is small compared to the number of levels of the
first random effects.



Assume further that :

i) there are more levels for the second than for the first random effect

ii) AD ! IND

iii) As = INS

The steps are then :

1) Absorb d into s and b. This gives MME

with K = IN - W(W’W + BoAD’)’’W

If AD = ’NII (W’W + apAp’) is diagonal and d can be absorbed one level at a time.

2) Absorb s into b giving

If d is nested within s, Z’KZ is diagonal and, for As = INS, (Z’KZ + ksas’) is easily
inverted.

3) Obtain solutions for the fixed effects as :

and backsolutions for the random effects

4) The REML algorithm requires traces involving the diagonal blocks, Css and Cpp, of
the inverse of the coefficient matrix. These can be derived using partitioned matrix
results, utilising inverses and matrix products arising during the absorption steps.



The traces are then :

Hence, 3 additional symmetric matrices have to be determined to calculate the

required traces indirectly : LSpAp’L’Sp of order equal to the number of levels of s, and
1-xsAs !L!xs and T, both of order equal to the total number of levels of fixed effects

including any regression coefficients. These can efficiently be calculated when absorbing
the random effects.

The quadratics in the vector of random effects, s’ Asls and d’Ap’d, can be

calculated directly. The corresponding term for residuals is then determined as :

B. One fixed effect with many levels

Often the model of analysis includes one fixed effect with many levels, too many
to pursue the approach described above. Usually, however, there are still considerably
more levels of d so that it appears appropriate, first to absorb d and then to absorb the
major fixed effect into s and any additional fixed effects or covariables to be fitted.
This strategy requires that the levels of d are nested within the levels of the major





fixed effect or at least within a sufficiently small group thereof. Only then can the

inverse required to absorb the fixed effect be calculated. A typical example is the

analysis of dairy data where a large number of herd-year-season (HYS) effects has to
be taken into account. Assuming cows do not change herds, repeated records for a
cow, for instance for milking speed or calving ease, are nested within herds. Details for
this case are outlined in the Appendix (B).

VI. Numerical example

Consider records on progeny of 5 sires and 30 dams, subject to 3 treatments in 2
time periods, as summarized in table 1. Dams are nested within sires and within time

periods. Let the model of analysis include the 6 time x treatment subclasses (hh) and two
sexes (b;) as fixed effects, litter size (Xh;jkl) as linear covariable and sires (Sj) and dams
(dj as random factors,

where b, denotes the regression on litter size and eh;;&dquo; the residual error associated with

Yhijkl, the record for the 1-th progeny of dam k and sire j and sex i in treatment x time

class h. Assume both sires and dams are unrelated, i.e. As = INS and Ap = INo

A. Absorption strategy for few fixed effects

For cfl = 10, Qo = 12 and (T2 = 120, submatrices for time x treatment classes in period I
are :



Absorbing all dams,

With dams nested within sires, the coefficient matrix for sires absorbing dams is

diagonal.

Z’KZ = Diag. {24.954 25.875 28.599 29.119 33.865},

(Z’Ky)’ _ (2 786.4 2 762.2 3 017.0 3 246.8 3 745.0) and

LSpAp’LSp’ = Diag. {1.3186 1.3776 1.4239 1.2901 1.6867}

The first term required to calculate tr(Cpp) is tr(Ap’Hp) = 1.57588.

Absorbing sires, (sub)matrices corresponding to X!’KX! are :



The first term in (27) is then tr(As’Hs) = 0.1752778, and the second term in (28) is

tr(HsL!.A.’Ls.’) = 0.1242176.

With more than one fixed effect fitted, the coefficient matrix is not of full rank.
Hence the row and column of X’MX pertaining to the first level of each additional, i.e.
other than the first, fixed effect are set to zero. Obtaining a generalized inverse gives
tr(HFLxsAsILxs’) = 0.0634841, tr(HrT) = 0.1160263, tr(AS’Cs,) = 0.1877017 and

tr(AD’C,,) = 1.867190.

Corresponding results pursuing a computing strategy suitable for a model with one
fixed effect with many levels are given in the Appendix (C).

B. Solutions

For both computing strategies, solutions (or backsolutions) for the fixed effects are
h = [112.672 112.862 111.485 110.480 111.532 111.116] and bA’ _ [0 11.349 - 0.71834],
while sire and dam effects are predicted as s’ = [2.4608 - 1.3884 - 2.8995 1.4868

0.3403] and d = [0.1614 0.6646 0.930 ... 0.1335 3.5630]. This gives products of solutions
and right hand sides bA’XAy = - 85,022.4, h’By = 3,576,705.2, s’Zy = 285.5 and

d’Wy = 2 636.4. With a total sum of squares (SS) of 3,526,153, the residual SS is
31,548.2. The quadratics required in the estimation equations are then

&dquo;s’As’&dquo;s = 18.716404, d’Aõld = 119.472337 and e’e = 30,128.9.

The EM algorithm on the original scale gives estimates u) = 8.2481 (first line of (9))
or u2 = 6.8120 (second line of (9)), Qp = 11.4512 (first line of (10)) or (T2 = 10.5465
(second line of (10)) and Qw = 110.7988 (eq. (11)). The average number of progeny per
dam is k,, = 294/30 = 9.8 and the average number of dams per sire k, = 30/5 = 6.0. This
gives aD = 24.2449 and as = 14.0408. Using estimators of form (14) then gives
as = 9.72366, aD = 21.89974 and aW = 81 = 110.70115 (from (15), (16) and (17)) with
estimates of the original components of 8§ = 10.6037 and 8) = 6.0737. Estimates for
subsequent rounds of iteration are given in table 2 for both the reparameterisation
(using (15), (16) and (17)) and the « better version of the EM algorithm on the
original scale (using (11) and the second lines of (9) and (10)).
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Appendix

A. Method of scoring

Utilizing that PVP = P and that V is linear in the parameters to be estimated (see
(2)), (6) can be rewritten as :

This yields a system of linear equations to be solved simultaneously :

with 0 = 10il the vector of parameters to be estimated, q = {q;} = {y’PõV 1õ6¡Py} a vector of



quadratics and B = {b;j} = (tr(P6V/60i P6V/60j) a symmetric matrix of coefficients. Apart
from a factor of 1/2, B is equal to the information matrix for 0. The elements of B for
the model considered here are :

The quadratics required are equel to those in the EM algorithm :

B. Computing strategy for a model including a fixed effect with many levels

Partition the vector of fixed effects and the design matrix in (1), according to the
« major » fixed effect h with many levels and any additional fixed effects and covaria-
bles. 

! --Ir -,

Let the subscript h denote the submatrix or vector for the hth group of levels of h.
The MME absorbing d, (20), can then be rewritten as :

NH

with B’KB = 2! B’,K,B,, where &dquo; I+ 
&dquo; denotes the direct matrix sum (SEARLE, 1966) and

h=l

NH the number of groups of the major fixed effect. This holds only if Ap has a
corresponding block structure, i.e. if all covariances between levels of d in different

groups are zero.

Absorbing h then gives the MME for sires and additional fixed effects as :



with N = K - KB(B’KB)-B’K. From (AS) it follows that N is block diagonal,
i.e. N = 2, Nh with :

h!1

Absorbing any additional fixed effects then leaves :

with F = N - NXA (XA’NXAtXA’N. Hence a direct inverse of order NS, equal to the
number of levels of s, is required,

to obtain solutions :

After backsolving for any additional fixed effects or covariables,

backsolutions for h and d can be obtained group by group.

The quadratic forms and traces for REML are the same as before except :



C. Numerical example : absorbing a fixed effect with many levels

Absorbing treatments for one time period after the other, intermediate results are
as follows.

Processing data for period I gives :

and tr(HBLBpAp’LBp’) = 0.0497559. After absorbing all dams and treatments,

tr(HBLBpAp’LBp’) = 0.1089976,



Again, setting the first level of each additional effect to zero and obtaining a
generalized inverse, yields tr(HXTXX) = 0.0469752. Absorbing the additional fixed effects
and covariables into sires,



and the fourth term Of (A14) is tr(CS$T) = 0,!3!3313.
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