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Summary

A sire evaluation procedure is proposed for situations in which there is uncertainty with
respect to the assignment of progeny to sires. The method requires the specification of the prior
probabilities P;j that progeny i is out of sire j. Inferences about location parameters (« fixed >

environmental and group effects and transmitting abilities of sires) are based on Bayesian statistical
procedures. Modal values of the posterior distribution of these parameters are taken as point
estimators. Finding this mode entails solving a nonlinear system of equations and several algo-
rithms are suggested. The methodology is described for univariate evaluations obtained from
normal or binary traits. Estimation of unknown variances is also addressed. A small numerical
example is presented to illustrate the procedure. Potential applications to livestock breeding are
discussed.
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Résumé

Evaluation des pères dans le cas de paternité incertaine

Une méthode d’évaluation des pères est proposée en situation d’incertitude vis-à-vis de

l’assignation des descendants à leurs pères. La méthode requiert la spécification des probabilités a
priori pij que le descendant i provienne du père j. L’inférence des paramètres de position (effets
« groupe » et de milieu, considérés comme fixes et valeurs génétiques transmises des pères) est
basée sur des procédures statistiques bayésiennes. Les valeurs modales de la distribution a

posteriori de ces paramètres ont été prises comme estimateurs ponctuels. La recherche du mode
nécessite la résolution d’un système d’équations non linéaire pour lequel plusieurs algorithmes sont
proposés. La méthodologie est développée dans le cadre univariate pour des caractères normaux et
binaires. Le cas de variances inconnues est également abordé. Un petit exemple numérique est

présenté à titre d’illustration. Enfin, les applications possibles aux espèces domestiques sont
discutées.

Mots clés : Evaluation des reproducteurs, paternité incertaine, méthodes bayésiennes.



I. Introduction

There are situations such as m multiple-sire matings under pastoral conditions
where sire evaluation is complicated because of uncertainty with respect to the assign-
ment of progeny to sires. Using information from red blood cell types, major histocom-
patibility markers or precise records on breeding period and gestation length, it is

possible to specify the probabilities (p;j) that a given offspring (i = 1, ..., n) has been
sired by different males (j = 1, ..., m). In the absence of such information, it is
reasonable to state that individual males in a given set, e.g., bulls breeding in the same
paddock, are sires with equal probability. This problem was studied by PmVEY & ELSEN

(1984) within the framework of selection index and its restrictive assumptions. The
purpose of this paper is to present a more general and flexible methodology able to
cope with several sources of variation including unknown fixed effects and variance

components. The procedure is along the lines of linear and nonlinear mixed model

methodology (HENDERSON, 1973 ; GIANOLA & FOULLEY, 1983a, b). Continuous and
discontinuous variation are examined in this paper to illustrate the power and generality
of the approach.

II. Normally distributed data

A. Methodology

Consider the usual univariate linear model :

where y is a vector of records, [3 is an I x 1 vector of « fixed » effects (e.g., genetic
groups, « nuisance » environmental factors), u is an m x 1 vector of random transmitting
abilities of sires, X and Z are instance matrices, and e is a vector of residuals. The
matrices X and Z are known (non-random), if the sires of the progeny with records in

y are identified. In other words, the above model holds conditionally on X and Z.

Let Tij define the situation in which male j is the true sire of progeny i. The
conditional distribution of the record y, given Yij, the location parameters p and u and
the residual variance U2 can be written as

where NIID stands for normal, independent and identically distributed ; zij is an m x 1
vector having a 1 in position j and 0’s elsewhere. Put wi, = [x,, zij], 0’ = [(3’, u’] and
define laij = w’,,O. Inferences about 0 can be obtained conveniently via Bayes theorem,
and this has also been done in other genetic evaluation problems (RBNNINGEN, 1971 ;
DEMPFLE, 1977 ; LEFORT, 1980 ; GIANOLA & FERNANDO, 1986). The prior distribution of
0 is « naturally » taken as the conjugate of [1] (Cox & HIINKLEY, 1974) so



where a’ = [8’, 0] and

It will be assumed from now on that prior knowledge about (3 is vague so as to
mimic the traditional mixed model analysis. Hence, the prior distribution of 0 is strictly
proportional to the marginal prior distribution of u. However, the notation of [2] above
is retained to present a more general expression for the posterior distribution of the
vector 0. The matrix Xu = A U2, where A is the matrix of additive relationships between
sires, and u’ is the variance between sires, equal to one quarter of the additive genetic
variance.

Because the observations are conditionally independent, the likelihood function can
be written as :

because I pij = 1. The mean of the distribution in [3B] is
i

where P; = [Pil’ .. , PiP&dquo;&dquo; pi.] is a 1 x m row vector containing the probabilities p,, of 5£i;
(progeny i out of sire j). As shown in Appendix A, the variance of the distribution
[3B] is

The posterior distribution of 0 (assuming that the dispersion parameters are

known, can be written from, [1], [2], [3A] and [3B] as

which is not in the form of a normal distribution. Hence, the mean of this distribution
cannot be a linear function of the data.

The selection rule which maximizes the expected transmitting ability of a fixed
number of selected sires is the mean of the posterior distribution [4] (GOFFINET &

ELSEN, 1984 ; FERNANDO & GIANOLA, 1986). Because the expected value of this
distribution is difficult to obtain in closed form, we calculate the modal value of 8 and
regard the u component of this mode as an approximation to the optimum selection



rule in the sense described above ; this is a reasonable approximation as sample size
increases (ZELLNER, 1971).

B. Computations

Finding the maximum of [4] with respect to 0 requires setting to 0 the first
derivatives of [4] with respect to this vector. Letting L(O) be the log-posterior density,
we obtain :

and (! (.) is the standard normal density function. Observe that q;j is the posterior
probability that progeny i is out of sire j, and that this probability is maximum when
the residual y; - w;!6 is null. This is so because in this instance the model under :£;j
would fit perfectly to the data. Equating [5] to 0 gives a nonlinear system of equations
on 0 so an iterative procedure is required to solve it.

Although several algorithms can be used for this purpose, the simple form of [5]
suggests to implement a functional iteration. Setting [5] to 0 and rearranging yields :

because prior information about (3 is vague and 2q;j = 1 ; ! = u’I(T’! = (4/h 2) _1, where hz 2

is heritability. Note that the coefficient matrix and the right-hand sides depend on 0 as
qi, is a function of (3 and u ; this is clear from [6]. Defining :

Q = {q¡j} : an n x m matrix of posterior probabilities, ..

and :

Dc = Diag {Iq¡J : an m x m diagonal matrix, whose elements can be thought of as the
i

posterior expected value of the number of progeny of sire j,

the above system can be written in terms of the iterative scheme :

where [k] indicates the iterate number. In [8], the matrices Q and Dc are evaluated at
the « current » values of 13 and u, through updating qij in [6].



One possible way of starting iteration is to take q,j! = pij for all values of i and j.
Thus (y = P = {p;!}, and 1)1:’1 = A! = Diag flpijl, and these values can be viewed as the
« natural » ones to adopt prior to the data.

In practice, uncertainty is only with respect to a small subset of the sires that need
to be evaluated. The progeny can be classified into 2 groups : I&dquo; pertaining to

individuals having sires unambiguously identified, and 12 corresponding to progeny with
parentage under « dispute ». Similarly, sires can be allocated to 2 groups : J&dquo; with all
their progeny in set I&dquo; and J,, with some progeny in I, and some progeny in 12. The
data vector can be partitioned into three mutually exclusive and exhaustive compo-
nents :

because the set {i E i, f1 j E J,} is empty. The vector of transmitting abilities can be
partitioned as [u&dquo; u2], corresponding to sires in J, and J,, respectively, so.

Likewise

correspond to the three partitions in [9] above. Further

with Z&dquo; _ lpij = 0 or 11, Z12 = fpij = 0 or 1}, Q22 = 10 < q, < 11, P22 = 10 < pij < 11, as per
the partitions in [9]. Using this notation, equations [8] become :

where D!zz is a diagonal matrix with elements calculated as before but for the progeny
and sires in the third partition of [9]. Again, iteration can be started by replacing the
« posterior » Q and D matrices in [ll], by their « prior » counterparts, P and A, of
appropriate order. The above equations illustrate clearly the modifications needed in
the mixed model equations to take into account uncertain paternity. The portions in the
coefficient matrix and right-hand sides pertaining to records where paternity is unambi-



guous (y&dquo; and yjz) are the usual ones. The incidence matrix Z22 that would arise if

paternity of animals with records in Y22 were certain, is replaced by a matrix Q of
posterior probabilities. These are updated during the course of iteration to take into
account the contribution of the data. Likewise, Z!2Z22 is replaced by the D matrix,
which is a function of the posterior probabilities qij, as already indicated. Because Q22 is

usually a small matrix, [8] or [11] will converge rapidly. If functional iteration is slow to
converge, algorithms such as Newton-Raphson can be employed (Appendix B).

III. Binary data

A. Methodology

The data are now binary responses so yi = 0 or 1. The model used here is based on

the concept of « liability » originally developed by WRIGHT (1934), where it is assumed

that there is an underlying normal variable rendered binary via an abrupt threshold.
Genetic evaluation procedures based on threshold models have been discussed by
several authors (GIANOLA & FOULLEY, 1983a,b ; FOULLEY et aI. , 1983 ; FOULLEY &

GIANOLA, 1984 ; HARVILLE & MEE, 1984 ; GILMOUR et ClI. , 1985 ; HBSCHELE et 11I. ,
1986).

The notation of the preceding section is retained, with the understanding that the
parameters are now those of the underlying distribution. The conditional distribution of
a binary response is taken as :

where <1>(.) is the standardized normal cumulative distribution function. The parameter
IJ-ij is the difference between the threshold and the mean of the statistical « sub-

population » defined by indexes i, j J (GIANOLA & FOULLEY, 1983a) expressed in units of
standard deviation. Assuming the prior distribution is as in [2] and replacing the normal
density in [3B] by [12], the posterior density can be written as :

because the residual standard deviation is equal to 1.

Finding the 9 - mode of [13] involves solving a system with a higher order of
nonlinearity than the one stemming from [5] so Newton-Raphson is used here instead
of functional iteration as done in the previous section. The derivatives needed are :



Letting

the Newton-Raphson equations can be written after algebra as :

where the variance ratio À =0 11 <r. because the residual variance is unity, .:1plkl = plkl - P! ’!,
.:1ulk! = ulkl - U[k-11 , and lm, In are vectors of ones of appropriate order. One possible way
to start iteration would be to use equations [8] with Q replaced by P, D, replaced by
.:1c, and y replaced by a vector of 0 and 1’s indicating the absence or presence of the
attribute in the progeny in question. The values of 13 and u so obtained would be used
to calculate 1T¡j and rij in [16] and [17] to then proceed iterating with [18] above.

B. Analogy with the normal case

Write 7,, in [16] as

The expression q! is directly comparable to qij of [6] for the normal case. Both can be
interpreted as the posterior probabilities that progeny i is out of sire j, and are similar
to formulae arising in multivariate classification problems (LINDEMAN et al., 1980, p.
196). In the discrete case and given Yij, if uij is large progeny i would be expected to
respond with high probability in the first category and q*, will be larger when the

response is actually in the first rather than in the second category. The expression for
vjj (with a minus sign) is the « normal score » discussed by GIANOLA & FOULLEY (1983a,
p. 216 ; 1983b, p. 143).

IV. Estimation of unknown variances

The point estimators of location described above are the modes of posterior
distributions of 0 conditionally on the variances afl and Qe in the normal case, or to uul



in the situation of binary responses. When these variances are unknown, Box & TIAO

(1973) and O’Hncnrr (1976) have given arguments indicating that inferences could be
made from the distribution f(Olul = 8j, u! = 8[), where the variances are replaced by the
modal values of the marginal posterior distribution of the variances. In the absence of
prior information about the variances, these modal values are those obtained from the
method of restricted maximum likelihood (HARVILLE, 1974, 1977). This approach was
employed by GrnrroLn et al. (1986) in the context of optimum prediction of breeding
values and these authors view the resulting predictors as belonging to the class of

empirical Bayes estimators. The general principles involved in finding the modal values
of the posterior distribution of the variances are given below.

FOULLEY et al. (1986) and GIANOLA et al. (1986) showed that maximization of f(G.1,
u:.ly) with respect to the variances in the absence of prior information about these

parameters leads to the equations :

where E! indicates expectation with respect to the distribution f(ul<T}, Q;, y). Further,
and now taking expectation with respect to f(6!aj’, Qu, y), we need to satisfy :

The derivation is based on the decomposition of the posterior distribution of all

unknowns, f([3, u, u,2,, cr.21y), into

It should be noted that the likelihood function does not depend on u 2, which is true
both in the normal and binary cases. Also, when flat priors are taken for the variances,
f(I.T!) and f(<7!) do not appear in the above decomposition.

Solving [19} and [20] simultaneously for the unknown variances leads to an iterative
scheme involving the expressions :

where

o k is iterate number,
9 C is the inverse of the coefficient matrix in Newton-Raphson (Appendix B), or

of [18] when observations are binary,
o C!,, is the submatrix of C corresponding to the u-effects,
o M is the coefficient matrix in [8] or [18] without A-’X,
. W = [X, Q]

It should be noted that in the binary case the residual variance is not estimated because
it is taken as equal to one. The derivation of [22] is given in Appendix C. Equation



[21], however, holds in both cases. The conditional expectations are taken as if the
« true » values of the variance components were those found in the previous iteration.
As pointed out by GIANOLA et al. (1986), [20] and [21] arise in the EM algorithm
(DEMPSTER et al., 1977) when applied to estimation by restricted maximum likelihood,
and the resulting estimates are never negative.

V. Numerical application

A small data set from a progeny test of Blonde d’Aquitaine sires carried out in
France was used to illustrate the methods presented in this paper. The data set is the
same as the one utilized by FOULLEY et al. (1983), with some’ modifications, as

illustrated in table 1. There were 47 calving records including information on region of
origin of the heifer, calving season, sex and sire of calf, and birth weight (BW) and
calving ease (CE) as response variables. CE was recorded as an all-or-none trait with
« easy » and « difficult » calvings coded as 0 or 1, respectively. As shown in table 1,
paternity was uncertain in the case of records 1, 2, 3 and 39. For the first three

records, information on breeding periods and gestation lengths led to an assignment to

natural service sires 7 and 8 of probabilities equal to 1 and 3 , respectively. In the
4 4

case of record 39, artificial insemination sires 1 and 2 were assigned probabilities of

1 1

and 2 , respectively.2 2

A. Model

Birth weight was regarded as following a normal distribution, and CE was treated
as a binomial trait. Both traits were analyzed using the model

where H; is the effect of region i of origin of heifer (i = 1, 2), Aj is the effect of the jth
season of calving (j = 1, 2), S, is the effect of sex of calf k (k = 1 for males or 2 for
females), f, is the transmitting ability of the lth sire of heifer (1 = 1, .. , 8), and eijkl is a

residual with variance uj. The vectors p and u were

Prior knowledge about !3 was assumed to be vague. Heritability was .25 for both
traits, and (Te2 was 5 kg for BW and 1 for CE, the discrete trait. In forming the
relationship matrix A, it was assumed that the artificial insemination sires (1 through 6)
were unrelated, and that the natural service sires 7 and 8 were non-inbred sons of 5
and 4, respectively.





In this example, the sets needed to define [9] were : 1, = 11, 2, 3, 39} (with I, being
the complement), J, = {2, 3, 4, 5} and J, = {l, 6, 7, 8}. Thus, the matrix P,, in [10] was

For BW, the nonlinear system [11] was solved using 3 algorithms : functional iteration,
and Newton-Raphson and scoring as described in Appendix B. For CE, computations
were carried out with [18] ; starting values were calculated as discussed earlier.

Iteration stopped when the square root of the average squared correction was less than
10-5. Variance components were estimated for both traits using the procedures outlined
in section III.

Sire evaluations ignoring uncertainty on paternity were also calculated so as to

further illustrate the procedures. This was done by assigning progenies 1, 2, 3 to sire 1

and record 39 to sire 6.

B. Results

Results of the analysis conducted for BW are presented in table 2. Irrespective of
the algorithm used, the stopping rule of 10-1 was satisfied in 4 iterations. The fact that
the algorithms were equally fast to converge is undoubtedly related to the limited
extent of nonlinearity, as only 4 out of 39 records had ambiguous parentage. Further, a

« sharp » assignment of probabilities (&mdash;vs. &mdash;) was made in 3 out of the 4 records. InB4 4 4 /
this data set, from a practical point of view iteration could have stopped at the second
round. Differences between the analyses conducted ignoring uncertainty and taking it
into account were minimal. Sire 1 was the most affected because 3 records assigned to
him in the case of certain paternity were assigned to sires 7 or 8 when paternity was
uncertain.

The analysis of calving< ease is shown in table 3. When paternity was certain, 5
iterates were required to converge. On the other hand, 13 iterations were required
when uncertainty was taken into account. This is so because with a binary trait there
are 2 sources of nonlinearity when paternity is uncertain : one due to the fact that the
model is nonlinear, and the second due to the uncertainty itself. The second source of
nonlinearity was responsible for the 8 additional iterations.

Estimates of variance components in this example were <1! = 0 and <1; = 22.81 for

BW, and afl = .096 for CE. The latter value gives an estimate of heritability of .35 in
the underlying scale. For BW, more than 400 iterates were needed for estimates of
variance components to converge, and 193 iterations were required for CE. It is well
known that the EM algorithm is extremely slow to converge (THOMPSON, 1979),
especially in small samples. However, alternative parameterizations of the model or
numerical shortcuts (e.g., SCHAEFFER, 1979 ; MISZTAL & SCHAEFFER, 1986) can be used
to reduce the computational burden.





VI. Discussion

The impact of the extent of misidentification on sire evaluation and on estimates of
genetic parameters was studied by VAN VLECK (1970a,b) and BoNmTt (1975). These
authors found that misidentification of sires biased downwards estimates of heritability
and of expected genetic progress. Biases in evaluation of sires increased as the fraction
of misidentified animals increased.

The approach followed in the present study, as in PomEY & ELSEN (1984), is to

directly take into account in the analysis uncertainty on the assignment of progeny to
sires so as to improve prediction of breeding values. However, PowEV & ELSEN (1984)
studied the problem in a selection index framework which requires knowledge of means
and variances. The issue was adressed here in a more general manner so as to

accommodate different types of distribution (normal or binomial), and less restrictive
states of knowledge vis-a-vis fixed effects and variance components.

Using the Bayesian paradigm as in GIANOLA et al. (1986), leads to inferences based
on a posterior distribution with the uncertainty « integrated » or averaged out. With the
p and u components of the mode of the posterior distribution taken as point estimators
and predictors of fixed and random effects, respectively, a nonlinear system of equa-
tions is obtained. Algorithms for solving these equations are discussed in the paper.
Variance components were estimated from the joint posterior distribution of the
variances after taking into account uncertainty in the assignment of progeny to sires.
The point estimators chosen were the modal values of this distribution ; expressions for
computing the estimates iteratively were presented.

Is it possible to use directly the mixed model equations to obtain standard best
linear unbiased predictors when paternity is uncertain ? The best linear unbiased

predictor of u is given by

where V is the variance covariance matrix of the records (HENDERSON, 1973). From
results in Appendix A, the diagonal elements of V in the continuous case are

and the off-diagonals are

where ajr is the additive relationship between sires j and j’. It follows that V is not in
theformZGZ’ + R needed to put V-’ = R-1 - R-1Z(Z’R-IZ + G-’)-’Z’R-’ so as to establish
the equivalence between the best linear unbiased predictor above and the results given
by the mixed model equations (HENDERSON, 1984). It is not obvious how to treat the

problem of uncertain paternity using standard techniques. The Bayesian solution pre-
sented here, on the other hand, offers a clear answer. POIVEY & ELSEN (1984) discussed
situations in which the methods presented here could be applied. These include : i)
females exposed simultaneously or successively in time to groups of males ; ii) joint use
of artificial and natural breeding in sheep flocks and cattle herds in conjunction with
estrous synchronization techniques ; and iii) heterospermic progeny testing with ambi-
guous parentage. A requirement of the procedure is the specification of prior probabili-



ties pij which can be based on external information such as biochemical po)ymorphysms
or, more likely under extensive conditions, records on breeding dates and gestation
lengths. In particular, the methods described here may be potentially useful in situa-
tions where natural service sires are used extensively, e.g., pastoral production systems.
The computations are feasible, at least for univariate sire evaluations carried out under
the assumption of normality and with genetic parameters assumed known. Extensions to
the multivariate situation can be done without great conceptual difficulty.
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Appendix A

Variance-covariance structure of the data (frequentist viewpoint)

The starting point is [3B]. As shown in the text, omitting the conditioning on (T.2
for the sake of simplicity :

The variance of the distribution can be obtained by writing :

which follows from [1] and [All. Likewise

where the covariance is taken with respect to the joint distribution of -Tii and Y,.,. The
first term in the above equations is clearly null because the observations are conditio-
nally independent. Assuming P(:£¡j fl :£i’k) = Pi(Pik’ we get

We consider now the variance-covariance structure unconditionally on 0. Applying
the same strategy, one can write : 

’

The second term is the variance of jn; taken with respect to the distribution of 0.
Arguing from a classical viewpoint (P fixed, u random) we have :

From !A2]

because Z’j A Z, = 1 (if sires are not inbred), and Ypijzij = p, Collecting [A5] and [A6]
into [A4] gives



Finally, we consider the unconditional covariances between records y; and y;..

Writing :

we observe as before that the first term is null. Also, from [All :

It should be observed that Var(y) cannot be written as RQe + PAP’u! because the
diagonal elements of this last matrix expression are not equal to [A7] except in the
trivial case P = Z, i.e., when paternity is certain.

Appendix B
I

Newton-Raphson and scoring algorithms for normal data

The Newton-Raphson algorithm consists in iterating with :

where 0!&dquo;! = Olk) - 8!’&dquo; and Olk) is the solution at iteration k. The first derivatives are

given in [5] and the second derivatives are :

From the definition of q;! in [6], we have :

Using this in [B2] above and rearranging gives :

Using [B3] and [5] from the text in [B1] yields, after rearrangement :



Some simplification in the calculations can be achieved by replacing r;! by its

expectation taken conditionally on 0, Q? and ;£ij’ From [B4] we obtain directly :

This used in [B5] above yields a « scoring » algorithm for solving the nonlinear
system of equations.

The system [B5] can be written in matrix notation using the matrices R, E!, and E,
of page 89 with r,j as in [B4] instead of [17]. Also, define matrices

The system [B5] becomes then

The algorithm is also described for the case where uncertain paternity is only with
respect to a small proportion of the sires evaluated. Here, we partition R in the same
way as Q in [10], except that Q22 is replaced by R22. Also, put



With the above notation, the system in B6 can be written as :

The above equations indicate the parts of the system that need to be amended to
take uncertain paternity into account. As before, the nonlinearity stems from the

contribution of the vector Yn to information about the unknown parameters. In order
to start iteration, one may take RIOj = P, E!OI = A,, E’&dquo;’ = A!, and values of the vectors (3, u,
and u, obtained by applying linear mixed model methodology upon the vectors Y and

Yi,-

Appendix C

Derivation of the algorithm used for estimating Qr with normal data

The estimator of a,2 needs to satisfy [20]. From [3A] and [3B]



Using this result in [Cl] and then in [201 gives :

where qij is as in [6], and where E, indicates expectation taken with respect to the
conditional distribution f(Olu,, a!, y). The expectation in [C2] is difficult to obtain
because qij is a function of 0. If qij is regarded as a constant a rearrangement of [C2]
gives :

As done by HARVILLE & MEE (1984) in the context of threshold models, we replace
E(¡L;, = w’, 6!j’, a’, y) by the mode 6 calculated using equations [8] (or the expressions
described in Appendix B). Thus, the formula above becomes :

Now, Var(0(y) = C uj, where C is the inverse of the coefficient matrix in [B6] or
[B7] evaluated at 6. Further, at the maximum, [5] must be null which is satisfied when

[7] is satisfied. Multiplying both sides of [7] by 6 (and remembering that a flat prior is
used for !3) yields

With this in mind, we obtain the following for the components of [C3]

where M is the coefficient matrix in [8J without A-’. ’.

Using these results in [C3] leads directly to [22J.


	Summary
	Résumé
	I. Introduction
	II. Normally distributed data
	A. Methodology
	B. Computations
	VI. Discussion

	III. Binary data
	A. Methodology
	B. Analogy with the normal case

	IV. Estimation of unknown variances
	V. Numerical application
	A. Model
	B. Results


	Acknowledgements
	References
	Appendix A
	Appendix B
	Appendix C

