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Summary

Threshold model equations are modified to account for unequal variances of residual effects in
the underlying scale. Modifications are simple and can be easily incorporated in programs that
conduct a threshold model analysis under the usual assumption of homoscedasticity.
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Résumé

Les modèles à seuils à variance résiduelle hétérogène
du fait d’une information incomplète

Les équations relatives au modèle à seuils peuvent être modifiées afin de prendre en compte
des variances résiduelles inégales des effets mesurés sur l’échelle sous-jacente. Les modifications à
apporter sont simples et peuvent être aisément incorporées dans les programmes effectuant une
analyse par modèle à seuil sous l’hypothèse habituelle d’homoscédasticité.

Mots clés : modèle à seuil, évaluation des pères, variance hétérogène.

I. Introduction

Threshold model equations (GIANOLA & FOULLEY, 1983 ; HARVILLE & MEE, 1984)
were originally derived assuming that the residuals of the model for the underlying
normal variable have constant variance. This may not be true in general. Also, even if
the assumption holds, there are certain genetic evaluation models where lack of some
information leads to heterogeneity of residual variance. For example, consider a sire -
maternal grandsire model (EVERETT et al., 1979 ; QUAAS et al., 1979). Here, the residual



variance depends on whether or not the sire or maternal grandsire is identified. If any
of these ancestors is not identified, its effect is not included in the model, but its
variance is added to that of the residual effect. A similar problem arises in « reduced »
animal models (QUAAS & POLLAK, 1980), when the dam is not identified.

The objective of this note is to present modifications of the threshold model

equations needed to account for varying, but known, residual variance.

II. Methods

Consider, for example, a sire-maternal grandsire model. This can be written as :

where Y¡jk is an observation on individual k, with sire i and maternal grandsire j. The

scalars s; and 2 1 s, are the random effects of sires and maternal grandsires, respectively,
and (3 is a vector of fixed effects, which relate to Y¡jk via the incidence vector xii,. In
practical applications, the pedigree may be incomplete so the identification of the sire
or of the maternal grandsire may be missing. In these cases, one can define a

« generalized » residual, cij,, which can take the values :

if the sire is missing,

if the maternal grandsire is missing.

In the threshold model, due to non-observability of yij,, it is assumed that 0-; = 1,
so all parameters and random variables are expressed in units of residual standard
deviation. Thus, depending on the situation :

With this in mind, the underlying variable in the threshold model can be written
as :

!..... ---

where u includes both sire and maternal grandsire effects, and z¡ is an incidence vector
with elements appropriately defined to take into account presence or absence of the
effect. As usual (GIANOLA & FOULLEY, 1983) :

and now

where CT7 = 1, 1 + o!, or 1 + ! o!, depending on the situation.
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Let m be the number of categories as described by GIANOLA & FOULLEY (GF,
1983) and HARVILLE & MEE (1984). The conditional probability that observation j is in
category k, given IL¡, can be written as : 

’

where t, < t2 < ... < t.-, is a set of fixed thresholds which partition the real line into m
mutually exclusive and exhaustive intervals. The log posterior density function of

9’ = (t’,(3’,u’), with t being the vector of thresholds is :

where s is as in GF.

This function is then maximized with respect to 0 using Fisher’s scoring algorithm :

where [i] is round number and 41il = 6lil - 61HI. Let at, = 6/u¡, and note that P,, in [6]
is as in GF, but allows for heterogenous variance. Then :

This vector is exactly as in GF except for two aspects : (1) the scalar o-’’ appears,
and (2) Pik is evaluated as in [6], as opposed to taking (Ii = 1 for all observations.
Thus :

where p* and v* are similar to p and v in GF :

Similarly, the second derivatives of L(0) with respect to 0 can be written as :



Again, this matrix is as in GF except for the factor o,,’ and with PI- calculated as
in [6]. Hence, after taking expectations in Fisher’s scoring :

where each element of T*, L*, and W* is evaluated as in GF with the following mo-
difications : (1) replace <)) (tk - 11-) by 40 [(tk - 11-)/oJ, (2) calculate P!k as in [6], (3)
multiply each elementary term (the « contribution » of each row in the contingency
table) by U¡2. Using [10] and [12], iteration proceeds with [8].

From a computational viewpoint, it is useful to observe that [8] is usually built

summing « contributions » from each observation or each row in the contingency table.
Let q¡-IJ and r¡i-II be the « contributions » of the row j in round i - 1 to the coefficient
matrix and the right-hand sides, respectively. The modified system of equations is

then :

III. Numerical example

A hypothetical example involving two unrelated sires from the same population,
appearing also as maternal grandsires, was considered. It was assumed that the

offspring of these sires were recorded in the same testing environment. The response
was binary and the 15 observations available are as shown below :

Because of the assumptions, fixed effects need not be considered, and the model
for the underlying variable is :

1
Above, s; and 2 s! are the random effects of sire i and maternal grandsire j,

2 f

respectively. Under additive inheritance, aj = cr!/4, where Qa is additive genetic va-
riance.



In the contingency table, there are three situations corresponding to each of the
rows. The residual variances for these cases are :

where uj is environmental variance. Setting the residual variance corresponding to a
sire model equal to 1 (row 2), and assuming a heritability (hl) of 0.25, one obtains
= 0.9833, ai = 1, and !3 = 1.05.

Equations [13], using null starting values for threshold t and sire transmitting
abilities s, and Sz, are :

and after summation become :

where till and sill are the solution for t and s, at round 1 ; the number 15 is the ratio of
residual to sire variance corresponding to h2 = 0.25. Collecting terms and solving
yields :

The solutions stabilize to 4 digits after the decimal point at the second round of
the scoring algorithm :
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