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Summary — Although the capacity of modern computers is increasing dramatically so
too are the complexity of models that animal breeders employ, with the result that we
still find computers limiting. This paper demonstrates the employment of linked lists for
sparse matrix manipulations and their use in a number of relevant applications.

animal breeding — prediction of genetic merits — numerical methods — sparse matrix

Résumé — Utilisation en génétique animale de ’absorption dans des matrices creuses.
Malgré accroissement de capacité des ordinateurs, la complezité également croissante des
modéles employés en génétique animale nécessite le raffinement des méthodes numériques.
Cet article ezplique l'utilisation de listes liées pour manipuler de trés grandes matri-
ces creuses, et illustre leur usage dans différents types d’application dans le cadre de
l’évaluation des reproducteurs: absorption d’effets fizes, inversion de matrices, estimations
de composantes de la variance par le mazimum de vraisemblance.
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INTRODUCTION

As the capacity of modern computers increases so does the quantity of data and
the complexity of models that animal geneticists wish to use in their analyses. In
the early years of computing when main memory was a major limitation, a variety
of techniques were developed to utilise efficiently that memory which was available
(Bunch and Rose, 1976). This paper illustrates the use of one of these techniques —
linked lists — to store sparse matrices and eliminate (absorb) equations. Examples
are given of how this technique can be useful. :

TYPICAL MODELS

Linear models that are commonly used by animal geneticists have qualities that

lend themselves to efficient methods of storage. Consider the model:
y=Xb+Zu+e

where y is a vector of observations; X and Z are incidence matrices; b is a vector

of fixed effects; u is a vector of random animal (or sire) effects; and e is a vector of

random residuals. Animals (sires) are related.
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The mixed model equations (Henderson, 1974) are
X'RX X'R'Z ] {B] _ [X’R‘ly]

~

Z’R'X ZR1'Z+G'||d Z'R 'y
where G is the covariance matrix of u, and R is a covariance matrix of residuals.
For a univariate analysis G = v A for some y where A is the numerator relationship

matrix.

X'R'X X'R'Z X’R‘ly
Let Q= | ZZR'X Z'R'Z+G! Z'R 'y
le—IX le—lz yIR—ly

be the mixed model array. Because Q is symmetric it is only necessary to store
the upper (or lower) triangle. This means that more equations can be stored in the
memory. When an animal model (or reduced animal model) is employed, then Q
is very sparse. :

LINKED LISTS

A linked list consists of a list of elements linked together by pointers to their physical
locations. The physical location of the first element in the row is stored and every
element has associated with it a pointer to the location in the memory of the next
element in the sequence. The pointer associated with the last element in the list is
zero. Knuth (1968) provided a detailed explanation of linked lists.

When using FORTRAN 3 vectors are required to store a matrix in this way —
one for the element (ars), one for the column (J) and one for the pointer to the
next element. A scalar (NUSED) is used to point to the last occupied location in
these vectors. As the list is being built, new elements are stored in the next available
location in these vectors but the order of the row is maintained by adjusting the
pointers (illustrated in Table I).

Table I. The state of the pointers in a linked list before and after the inclusion of a new
element (J=6).

Memory Before After :

Location Pointer Column Pointer Column
P J P J

1 3 1 3 1

2 0 7 0 7

3 2 3 4 3

4 0] 0 2 6

NUSED =3 NUSED =4

Because matrices such as Q and G~! are sparse, they lend themselves to this
form of storage. To store a matrix of order NV the first N elements in the storage
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vectors are reserved for the first element in each row. Each row forms its own
linked list. Because they are symmetrical, it is possible to store the upper (or lower)
triangle only — thus the first (last) element in any row is the diagonal.

Consider the simple linear model

y=A+B+e

where A and B are systematic effects with 2 classes each. Assign the effects A1, A2,
B1 and B2 to equations (1) to (4) respectively and the right-hand side to equation
(5). Reserve the first 5 elements in the vectors for the first (diagonal) element in
each row. Store the address of the last occupied location (5) in the scalar NUSED.

The mechanics of using a linked list are illustrated by 3 records shown in Table II.
Each record generates 6 contributions to the upper triangle. Each of these is either
an addition to an existing element or a new element. In both cases, it is necessary
to follow the sequence of pointers along the particular row until either the element
is found, or an element which lies to the right of the current contribution is found,
or the end of the row is found. If the element is found in the list then the current
contribution is added to it. If the element is new then it is stored in the next
available location and the pointers (in the row and to the last occupied location)
are adjusted accordingly. A simple algorithm to do this is shown in the Appendix.

Table II. Sample Data set.

Observation  Effect (Equation number)

y A B
3 1(1) 1(3)
4 1(1) 2(4)
5 2(2) 2(4)

The matrix Q derived from the 3 records in Table II is

2 011 70
1 01 50

1 0 30

2 90

symmetric 50.0

Table III illustrates the status of the linked list after each record has been
processed. If iteration (e.g. Gauss-Seidel) is to be the only manipulation involving
Q), then the vectors containing the coefficients and column identities can be sorted
after building Q and the pointers associated with the first N elements can be used
to store the number of elements in each row. However, to implement absorption,
the pointer vector must be maintained.
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Table III. A linked list representation of the matrix Q derived from the three records in
Table 1. Coefficient (C), Column (J), and Pointer (P) to the next element are stored in
Location (L).

Record 1 Records 1 and 2 Records 1, 2 and 3
L c J P c J P c J P
1 1. 1 6 2. 1 6 2. 1 6
2 0. 0 0 0. 0 0 1. 2 11
3 1. 3 8 1. 3 8 1. 3 8
4 0. 0 0 1. 4 10 2. 4 10
5 9. 5 0 25. 5 0 50. 5 0
6 1. 3 7 1. 3 9 1. 3 9
7 3. 5 0 7. 5 0 7. 5 0
8 3. 5 0 3. 5 0 3. 5 0
9 0. 0 0 1. 4 7 1. 4 7
10 0. 0 0 4. 5 0 9. 5 0
11 0. 0 0 0. 0 0 1. 4 12
12 0. 0 0 0. 0 0 5. 5 0
13 0. 0 0 0. 0 0 0. 0 0
14 0. 0 0 0. 0 0 0. 0 0
15 0. 0 0 0. 0 0 0. 0 0

NUSED = 8 NUSED = 10 NUSED = 12

ABSORPTION OF EQUATIONS

Absorption or gaussian elimination is described in Smith and Graser (1986). If the
sparsity of the matrix is to be preserved, as is desirable for a linked list to be useful,
then it is important to choose pivots so that new elements do not proliferate. Gill
and Murray (1974) suggest choosing rows with the least number of off-diagonal
elements first.

As each row is absorbed, the space it occupied is released and can be made
available to new elements that are created in other rows. Before absorbing any
equations, it is useful to link the unoccupied space in the vectors into a separate
linked list. As space is released, it can be added to the list of free space for reuse.
Because the elements in the row are already connected by pointers, the complete
row can be placed at the start of the list of free space by modifying the pointers at
the end of the row and at the start of the free space. If backward substitution is to
be implemented then the row should be written as an exterior file.

After absorbing the first row of Q

0 0 O 0 0.0

1 0 1 5.0

Q1= 0.5 -05 -0.5
1.5 5.5

25.5
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Table IV. A linked list representation of ();, derived from eliminating the first row of Q
(Table III).

Location Coefficient Column Pointer
1 —-0.5 4 8
2 1.0 2 11
3 0.5 3 1
4 1.5 4 10
5 25.5 5 0
6 0.0 0 9
7 0.0 0 13
8 -0.5 5 0
9 0.0 0 7
10 5.5 5 0
11 1.0 4 12
12 5.0 5 0
13 0.0 0 14
14 0.0 0 15
15 0.0 0 0

IHEAP =6

and its linked list representation is shown in Table IV. There is no need to zero
the column and coefficient vectors from the row being absorbed; when this space is
reused they will be assigned new values.

During elimination of each row of Q, it is possible to design the algorithm so
that subsequent rows and elements within rows are modified sequentially; redundant
searching through Q can and should be avoided. If the selected pivot is zero, then
the row can be regarded as having been preabsorbed. An algorithm to absorb
equations in this manner is shown in the Appendix.

For large problems, it is possible and desirable to divide Q into 2 parts: an
exterior file and a linked list. Absorption of a row entails: reading the row from the
exterior file; merging the input with the linked list; and absorbing the row in the
linked list. When the linked list is full, it can be merged with the exterior file so as
to create a new exterior file. This clears the vectors for a new iteration.

APPLICATIONS
All the following examples have the form of manipulating a matrix
r W]
T W
by abéorbing U row by row to give
W'=W-TU-T
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Row by row absorption is equivalent to repeated application of the formula for W*,
where U is a scalar (the pivot) and T is a column vector.

1) Sparse matrix inversion

For example, find E~! given the positive definite and symmetric matrix of E.
Set U = E,zn

T = Im:n
W = On:cn
then W* = —E-!

Sometimes only the diagonal of E~! may be required, in which case the calculation
and storage of off-diagonal elements of E~! can be neglected.

2) Estimation of (co)variance components by maximum likelihood (ML)
or restricted maximum likelihood (REML)

Many of the arrays in this section can be found in Searle (1979).

a) Evaluate V-1 = R'-R"'Z(Z’'R'Z+ G !)"Z'R™! in ML

Set U =2Z'R1'Z+G™!

T =Z'R!
W =R!
then W* =V-!
b) Evaluate P= V~! - V-I1X(X'V-1X)~X'V~1 in REML
= X'R'X X'RZ

SetU = [Z’R“IX Z’R'Z+G™!

X'R1
- [2]
W =R"!
then W* =

c¢) Evaluate Z'PZ in REML : method 1
& [XRIX X'RZ
" |2Z’R'X Z'R'Z+G!

X'R'Z
T= [z'R—lz]
W=ZR'Z

then W* = Z'PZ
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d) Evaluate Z'PZ in REML : method 2
i = X'R1X Z'R'Z
T |ZR'X Z'R'Z+ G

r-[ 2]

W =¢G"!
thenW* = Z'PZ

e) Evaluate the log-likelihood (L) for REML using the derivative free search of
Graser et al. (1987).

X'R'X X'R'Z

SetU = [Z'R—lx Z'R'Z+G™!

_[X'Rly
T= [Z’R‘IY]
W =y'R7ly

thenW* = y' Py
To evaluate L we note that

1 -
L= —5{log|Rl +log |G| +1og |U| + y' Py}

where |U]| is the determinant of one of the largest non-singular submatrices of U;

and |ff| is evaluated by the product of the non-zero pivots.
To implement a derivative-free search sometimes we need rank(X) which is the
number of non-zero pivots minus the order of G~!.

3) Calculating the exact A~! for sub-populations

When a sire model is used it is possible to build A~! for the full pedigree of the sires
and then absorb all female relatives. Some sires may be absorbed as well if they are
not part of the subpopulation. Partition A~1into 2 parts: animals to be absorbed in
U, and animals that are to remain in W. The W* is the exact inverse relationship
matrix for the remaining selected animals. Experience has shown that absorption
seems to create many elements that are essentially zero. Linked-list absorption
works well when these zero elements are released from storage, particularly from a
row before it is absorbed.

4) Conducting secondary absorptions

Sometimes it is necessary to absorb 2 groups of factors out of the model. The model
used by Smith (1987) included 2765 effects representing contemporary groups, 2611
fixed sire effects and 539 random sires. Rows representing contemporary groups were
absorbed as the data were read. Then rows representing fixed sires were absorbed in
a reasonable time using sparse matrix techniques. The absorption of the fixed-sire
effects would have been impossible using matrix inversion.
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The order used for the secondary absorption was determined by the size of the
diagonals after the primary absorption. Rows with smaller diagonals were absorbed
first. This order is opposite to the usual practice, however, it minimizes the creation
of non-zero elements and hence preserves the efficient use of memory. Use of the
traditional approach would have been as impossible as matrix inversion.

5) Partial absorption prior to iteration

Sometimes it may be advisable to absorb some equations prior to iteration, such as
is implicitly done using the reduced animal model (Quaas and Pollak, 1980).

CONCLUSION

Some of the applications we have described may not be practical. For example,
evaluating V~!, P and Z'PZ may be beyond current computing capabilities even
with a linked list. However, some of the applications (e.g., evaluating L, constructing
A~ for sub-populations, and secondary absorptions) are realistic and have been
tested on real data structures. Without linked lists these applications may not be
feasible.

A common misconception is that evaluating Q! is about as difficult as absorbing
all rows of Q. For non-sparse matrices, inversion requires 3 times the work of
absorption. For sparse matrices the comparison is typically much more extreme.
Inversion can be prohibitive even with a linked list, while absorption of the same
matrix may be a relatively simple operation.
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APPENDIX
Subroutines LINKAILJ, LINKFREE and ABSROW

The following storage is required for these subroutines: ELEMENT(LENGTH) is
a vector of elements. POINTER(LENGTH) is a vector holding pointers to the
next element in the row. JAY(LENGTH) is a vector holding the column (J) of the
element. NUSED is a pointer to the last occupied location in these vectors. ITHIS
and NEXT are pointed to this and the next element respectively.

Subroutine LINKAIJ stores the contribution to the element a;; which are passed
as parameters.

SUBROUTINE LINKAIJ(INI,INJ,AIJ)
If (INI=0) or (INJ=0) stop ' error message'
If (INI=INJ) then
ELEMENT (INI)=ELEMENT(INI)+AIJ
else
I=MIN(INI,INJ) ;J=MAX(INI,INJ);:ITHIS=I;NEXT=POINTER(I)
While (NEXT>0) and (J>JAY(NEXT)) do
ITHIS=NEXT ; NEXT=POINTER(NEXT) ; Endwhile
If (J=JAY(NEXT)) then
-ELEMENT (NEXT ) =ELEMENT (NEXT)+AIJ
else
NUSED=NUSED+1
JAY(NUSED)=J
ELEMENT (NUSED )=AI1J
POINTER(NUSED)=POINTER(ITHIS)
POINTER(ITHIS)=NUSED
endif
endif
end

Subroutine LINKFREE links up the free space in POINTER and initialises
IHEAP before ABSROW is called. IHEAP points to the next available location
in the vectors.

SUBROUTINE LINKFREE

IHEAP=NUSED+1

LAST=LENGTH-1

DO I=IHEAP,LAST
POINTER(I)=I+1

ENDDO
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Subroutine ABSROW absorbs the it" row. The ith row is transferred to two
work vectors (WORK which contains the elements and JWORK which contains
the columns). Space released by this transfer is placed in the available heap and
then the row is absorbed. OPZERO is the operational zero (if the absolute value of
the element is less than OPZERO it is treated as being zero).

SUBROUTINE ABSROW(I)
K=0; NEXT=POINTER(I) ; ITHIS=I;DIAG=-1.0/ELEMENT(I)
While (NEXT>0) do

If (ABS(ELEMENT (NEXT))>OPZERO) then

K=K+1; WORK(K)=ELEMENT ( NEXT) ; JWORK(K)=JAY(NEXT)

Endif

ITHIS=NEXT ; NEXT=POINTER(NEXT) ; Endwhile
POINTER(ITHIS)=IHEAP; IHEAP=I

If (ABS(WORK(1)>0PZERO) then
Do IK=1,K
I=JWORK(IK) ;FACTOR=WORK(IK)*DIAG;ITHIS=I;NEXT=POINTER(
ELEMENT(I)=ELEMENT(I)+WORK(IK)*FACTOR; IK1=IK+1
Do JK=IK1,K
J=JWORK (JK)
While (J>JAY(NEXT)) and (POINTER(NEXT)>0) do
ITHIS=NEXT ; NEXT=POINTER(NEXT) ; Endwhile
If (J=JAY(NEXT)) then
ELEMENT ( NEXT ) =ELEMENT ( NEXT ) +WORK(JK) *FACTOR
Else
NEW=IHEAP
IHEAP=POINTER{IHEAP)
IF (IHEAP=0) stop 'list full'
JAY (NEW)=J
ELEMENT (NEW)=WORK(JK) *FACTOR
POINTER(NEW)=POINTER(ITHIS)
POINTER(ITHIS)=NEW
ITHIS=NEW
Endif
Enddo
Enddo
Endif
End
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