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Summary - Arguing from a Bayesian viewpoint, Gianola and Foulley (1990) derived a new
method for estimation of variance components in a mixed linear model: variance estimation
from integrated likelihoods (VEIL). Inference is based on the marginal posterior distri-
bution of each of the variance components. Exact analysis requires numerical integration.
In this paper, the Gibbs sampler, a numerical procedure for generating marginal distri-
butions from conditional distributions, is employed to obtain marginal inferences about
variance components in a general univariate mixed linear model. All needed conditional
posterior distributions are derived. Examples based on simulated data sets containing
varying amounts of information are presented for a one-way sire model. Estimates of the
marginal densities of the variance components and of functions thereof are obtained, and
the corresponding distributions are plotted. Numerical results with a balanced sire model
suggest that convergence to the marginal posterior distributions is achieved with a Gibbs
sequence length of 20, and that Gibbs sample sizes ranging from 300 - 3 000 may be
needed to appropriately characterize the marginal distributions.
variance components / linear models / Bayesian methods / marginalization / Gibbs
sampler

R.ésumé - Inférences marginales sur des composantes de variance dans un modèle
linéaire mixte à l’aide de l’échantillonnage de Gibbs. Partant d’un point de vue bayésien,
Gianola et Foulley (1990) ont établi une nouvelle méthode d’estimation des composantes
de variance dans un modèle linéaire mixte: estimation de variance par les vraisemblances

intégrées (VEIL). L’inférence est basée sur la distribution marginale a posteriori de
chacune des composantes de variance, ce qui oblige à des intégrations numériques pour
arriver aux solutions exactes. Dans cet article, l’échantillonnage de Gibbs, qui est une

procédure numérique pour générer des distributions marginales à partir de distributions
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conditionnelles, est employé pour obtenir des inférences marginales sur des composantes
de variance dans un modèle linéaire mixte univarié général. Toutes les distributions
conditionnelles a posteriori nécessaires sont établies. Des exempdes basés sur des données
simulées contenant plus ou moins d’information sont présentés pour un modèle paternel
à un facteur. Des estimées des densités marginales des composantes de variance et de

fonctions de celles-ci sont obtenues, et les distributions correspondantes sont tracées. Les
résultats numériques avec un modèle paternel équilibré suggèrent que la convergence vers
les distributions marginales a posteriori est atteinte avec une séquence de Gibbs longue de
20 unités, et que des tailles de l’échantillon de Gibbs allant de 300 à 3 000 peuvent être
nécessaires pour caractériser convenablement les distributions marginales.

composante de variance / modèle linéaire / méthode bayésienne / marginalisation /
échantillonnage de Gibbs

INTRODUCTION

Variance components and functions thereof are important in quantitative genetics
and other areas of statistical inquiry. Henderson’s method 3 (Henderson, 1953)
for estimating variance components was widely used until the late 1970’s. With
rapid advances in computing technology, likelihood based methods gained favor in
animal breeding. Especially favored has been restricted maximum likelihood under
normality, known as REML (Thompson, 1962; Patterson and Thompson, 1971).
This method accounts for the degrees of freedom used in estimating fixed effects,
which full maximum likelihood (ML) does not do.
ML estimates are obtained by maximizing the full likelihood, including its loca-

tion variant part, while REML estimation is based on maximizing the &dquo;restricted&dquo;
likelihood, ie, that part of the likelihood function independent of fixed effects. From
a Bayesian viewpoint, REML estimates are the elements of the mode of the joint
posterior density of all variance components when flat priors are employed for all
parameters in the model (Harville, 1974). In REML, fixed effects are viewed as nui-
sance parameters and are integrated out from the posterior density of fixed effects
and variance components, which is proportional to the full likelihood in this case.

There are at least 2 potential shortcomings of REML (Gianola and Foulley,1990).
First, REML estimates are the elements of the modal vector of the joint posterior
distribution of the variance components. From a decision theoretic point of view,
the optimum Bayes decision rule under quadratic loss in the posterior mean rather
than the posterior mode. The mode of the marginal distribution of each variance
component should provide a better approximation to the mean than a component
of the joint mode. Second, if inferences about a single variance component are
desired, the marginal distribution of this component should be used instead of the
joint distribution of all components.

Gianola and Foulley (1990) proposed a new method that attempts to satisfy these
considerations from a Bayesian perspective. Given the prior distributions and the
likelihood which generates the data, the joint posterior distribution of all parameters
is constructed. The marginal distribution of an individual variance component is
obtained by integrating out all other parameters contained in the model. Summary



statistics, such as the mean, mode, median and variance can then be obtained from
the marginal posterior distribution. Probability statements about a parameter can
be made, and Bayesian confidence intervals can be constructed, thus providing a
full Bayesian solution to the variance component estimation problem. In practice,
however, this integration cannot be done analytically, and one must resort to
numerical methods. Approximations to the marginal distributions were proposed
(Gianola and Foulley, 1990), but the conditions required are often not met in data
sets of small to moderate size. Hence, exact inference by numerical means is highly
desirable.

Gibbs sampling (Geman and Geman, 1984) is a numerical integration method.
It is based on all possible conditional posterior distributions, ie, the posterior
distribution of each parameter given the data and all other parameters in the model.
The method generates random drawings from the marginal posterior distributions
through iteratively sampling from the conditional posterior distributions. Gelfand
and Smith (1990) studied properties of the Gibbs sampler, and revealed its potential
in statistics as a general numerical integration tool. In a subsequent paper (Gelfand
et al, 1990), a number of applications of the Gibbs sampler were described, including
a variance component problem for a one-way random effects model.

The objective of this paper is to extend the Gibbs sampling scheme to variance
component estimation in a more general univariate mixed linear model. We first
specify the Gibbs sampler in this setting and then use a sire model to illustrate
the method in detail, employing 7 simulated data sets that encompass a range of
parameter values. We also provide estimates of the posterior densities of variance
components and of functions thereof, such as intraclass correlations and variance
ratios.

SETTING

Model

Details of the model and definitions are found in Macedo and Gianola (1987),
Gianola et al (1990a, b) and Gianola and Foulley (1990); only a summary is given
here. Consider the univariate mixed linear model:

where: y: data vector of order n x 1; X: known incidence matrix of order n x p;
Zi: known matrix of order n x qi; p: p x 1 vector of uniquely defined &dquo;fixed effects&dquo;

(so that X has full column rank); ui: qi x 1 &dquo;random&dquo; vector; and ei: n x 1 vector
of random residuals. The conditional distribution which generates the data is.

where R is an n x n known matrix, assumed to be an identity matrix here, and Qe 2
is the variance of the random residuals.



Prior distributions

Prior distributions are needed to complete the Bayesian specification of the model.
Usually, a &dquo;flat&dquo; prior distribution is assigned to J3, so as to represent lack of prior
knowledge about this vector, so:

where Gi is a known matrix and a’. is the variance of the prior distribution of ui.
All ui’s are assumed to be mutually independent, a priori, as well as independent
of p.

Independent scaled inverted x2 distributions are used as priors for variance
components, so that:

Above ve (vu; ) is a &dquo;degree of belief&dquo; parameter, and se (sua ) can be interpreted as a
prior value of the appropriate variance. In this paper, as in Gelfand et al (1990) we
assume the degree of belief parameters, ve and v!;, to be zero to obtain the &dquo;naive&dquo;
ignorance improper priors:

The joint prior density offi,ui(i = 1, 2, ... , c), U2i(i = 1, 2, ... , c) and Qe is the
product of densities associated with (3-7J, realizing that there are c random effects,
each with their respective variances.

The joint posterior distribution resulting from priors [7] is improper mathemati-
cally, in the sense that it does not integrate to 1. The improperty is due to (6J, and
it occurs at the tails. Numerical difficulties can arise when a variance component
has a posterior distribution with appreciable density near O. In this study, priors [7]
were employed following Gelfand et al (1990), and difficulties were not encountered.
However, informative or non informative priors other than [7] should be used T in
applications where it is postulated that at least one of the variance components is
close to O.



JOINT AND FULL CONDITIONAL POSTERIOR DISTRIBUTIONS

Denote u’ = ui, ... , u!) and v’ = (Q!1, ... , Qu!). Let
f = (u!...,u!_i,u!i,...,u!) and v’ _ (a2 ’ !2 !z . !2 ) be u’ ’U-i = - U1&dquo;&dquo;,Ui-1,Ui+1&dquo;&dquo;’Uc c an y-i = aU1&dquo;..,aU’-1,aUH1&dquo;..,auc v.! 

e U

and yf with the ith element deleted from the set. The joint posterior distribution
of the unknowns (fi, u, y and ud) is proportional to the product of the likelihood
function and the joint prior distribution. As shown by Macedo and Gianola (1987)
and Gianola et al (1990a, b), the joint posterior density is in the normal-gamma
form:

The full conditional density of each of the unknowns is obtained by regarding all
other parameters in [8] as known. We then have:

Manipulating [9] leads to

I 1

where p = (X’X)-’X’(y - L Ziui). Note that this distribution does not depend
i=l i

on u2 - -on Qu..
The full conditional distribution of each ui (i = 1, 2, ... , c) is multivariate normal:



The full conditional density of Qe is in the scaled inverted X2 form:

c c

with parameters ve = n and sd = (y-Xfi- L Ziui)’(y-X!-! Ziui)/n. Each
:=i :=i

full conditional density of a!, also is in the scaled inverted X2 form:

with parameters vu; = qi and s2 = u!G71 t . ui/qi.
The full conditional distributions [9-12] are essential for implementing the Gibbs

sampling scheme.

OBTAINING THE MARGINAL DISTRIBUTIONS USING GIBBS
SAMPLING

Gibbs sampling

In many Bayesian problems, marginal distributions are often needed to make ap-
propriate inferences. However, due to the complexity of joint posterior distributions
obtaining a high degree of marginalization of the joint posterior density is difficult
or impossible by analytical means. This is so for many practical problems, eg infer-
ences about variance components. Numerical integration techniques must be used
to obtain the exact marginal distributions, from which functions of interest can be
computed and inferences made.
A numerical integration scheme known as Gibbs sampling (Geman and Geman,

1984; Gelfand and Smith, 1990; Gelfand et al, 1990; Casella and George, 1990)
circumvents the analytical problem. The Gibbs sampler generates a random sample
from a marginal distribution by successively sampling from the full conditional
distributions of the random variables involved in the model. The full conditional
distribution presented in the previous sections are summarized below:



Although we are interested in the marginal distributions of Qe and a Ui 2 only, all
full conditional distributions are needed to implement the sampler. The ordering
placed above is arbitrary. Gibbs sampling proceeds as follows:

(i) set arbitrary initial values for p, u, v, U2
(ii) generate ud from (13J, and update U2; 

e

(iii) generate a2i u from (14J, and update O-u2i
(iv) generate ui from (15J, and update ui ;
(v) generate f3 from (16J, and update 13; and
(vi) repeat (ii-v) k times, using the updated values.

We call k the length of the Gibbs sequence, Ask - oo, the points from the
kth iteration are sample points from the appropriate marginal distributions. The
convergence of the samples from the above iteration scheme to drawings from the
marginal distributions was established by Geman and Geman (1984) and restated
by Gelfand and Smith (1990) and Tierney (1991). It should be noted that there are
no approximations involved. Let the sample points be:

( 2) (k) ( 2 ) (k) (i = 1, 2, ... , c), (ui)(k) (i - 1, 2, ... , c) and (f3)lk> respectively,
where superscript (k) denotes the kth iteration. Then:

(vii) Repeat (i-vi) m times, to generate m Gibbs samples. At this point we have:

Because our interest is in making inferences about o, and Qu., no attention will
be paid hereafter to ui and P. However, it is clear that the marginal distributions
of ui and P are also obtained as a byproduct of Gibbs sampling.

Density estimation

After samples from the marginal distributions are generated, one can estimate the
densities using these samples and the full conditional densities. As noted by Casella
and George (1990) and Gelfand and Smith (1990), the marginal density of a random
variable x can be written as:

An estimator of p(!) is:



Thus, the estimator of the marginal density of Qe is:

The estimated values of the density are thus obtained by fixing Qe (at a number
of points over its space), and then evaluating [21] at each point. Similarly, the
estimator of the marginal density of Qui is:

Additional discussion about mixture density estimators is found in Gelfand and
Smith (1990).

Estimation of the density of a function of the variance components is accom-
plished by applying theory of transformations of random variables to the estimated
densities, with minimal additional calculations. Examples of estimating the densi-
ties of variance ratios and of an intraclass correlation are given later.

APPLICATION OF GIBBS SAMPLING TO THE ONE-WAY
CLASSIFICATION

Model

We consider the one-way linear model:

where (3 is a &dquo;fixed&dquo; effect common to all observations, ui could be, for example,
sire effects, and eij is a residual associated with the record on the jth progeny of
sire i. It is assumed that:

where NiD and NiiD stand for &dquo;normal, independently distributed&dquo; and &dquo;normal,
independently and identically distributed&dquo; , respectively.



Conditional distributions

For this model, the parameters of the normal conditional distribution of ,6Iu, Qu, <7!, y
in [9] are:

Likewise, the parameters of the normal conditional distribution of ul,8, au 2 ,ae 2 y
in [10] are:

with a = a;/a!, and the covariance matrix is:

with cii = 1/(n;. + a). Because the covariance matrix is diagonal, each ui can be

generated independently as:

The conditional density of a; in !11! can be written as:

Because e e XN, it follows that ud - Ns!x&dquo;i/, so [31] is the kernel of a
multiple of an inverted XZ random variable.

Finally, the conditional density of ufl in [12] is expressible as:

Since q s2/0,2 _ X2, then 0,2 - q S!X;2, also a multiple of an inverted X2 variable.



Data sets and designs

Seven data sets (experiments) were simulated, so as to represent situations that
differ in the amount of statistical information. Essentials of the experimental designs
are in table 1. Number of sire families (q) varied from 10 to 10 000, while number of
progeny per family (n) ranged from 5 to 20. The smallest experiment was I, with
10 sires and 5 progeny per sire; the largest one was VII, with a total of 100 000
records. Only balanced designs (ni = n, for i = 1, 2, ... , q) were reported here, as
similar results were found with unbalanced layouts. Data were randomly generated
using parameter values of 0 and 1 for (3 and a!, respectively. Parametric values for
a; were from 1 to 99, thus yielding intraclass correlations (p) ranging from 0.01 to
0.5. From a genetic point of view, an intraclass correlation of 0.5 (Data set I) is not
possible in a sire model, but it is reported here for completeness.

The Gibbs sampler [13-16] was run at varying lengths of the Gibbs sequence
(k = 10 to 100) and Gibbs sample sizes (m = 300 to 3 000), to assess the effects
of k and m on the estimated marginal distributions. FORTRAN subroutines of
the IMSL (IMSL Inc, 1989) were used to generate normal and inverted X2 random
deviates. At the end of each run, the following quantities were retained:



Sample points in [37] and (38), are needed for density estimation, as noted below.

Marginal density estimation

The estimators of the marginal densities of or2and <7! were:

Using the theory of transformation of random variables, we obtained the marginal
density of the variance ratio y = a!/a; by fixing a;, using [40] as:

If inferences are to be made about the intraclass correlation p = ufl /(ufl + a;),
the Jacobian of the transformation from , to p is J = !e/(1 - p)2, so from !40!,
considering a; as fixed, the marginal density of the intraclass correlation is:

Densities of any functions of the variance components can be estimated in a
similar manner. Density [39] can also be used to make the transformations. Note
that the Gibbs sampler [13-16] does not need to be run again to obtain the densities
of the functions of variance components.

Plots were generated using densities [39-42] by selecting 50 to 100 equally spaced
points in the &dquo;effective&dquo; range of the variables; the &dquo;effective&dquo; range of the variable
covers at least 99.5% of the density mass. Summary statistics of the posterior
distributions such as mean, mode, median and variance were calculated using the
composite Simpson’s rules of numerical integration by dividing the effective range of
the variables into 100 to 200 equally spaced intervals. Where appropriate, summary
statistics were calculated using the densities estimated at higher values of m or k.



RESULTS

The estimated marginal densities of variance components and of their functions
(q and p) are depicted in figures 1 to 7, in which solid curves correspond to densities
estimated at higher values of m or k and vice versa for the dotted ones. These
figures correspond to the 7 designs given in table I. Figure 1 represents a situation
where 50% of the total variance is &dquo;due to sires&dquo;, ie, a high intraclass correlation;
as noted earlier, this is not possible genetically. All posterior distributions were
unimodal, and convergence of the Gibbs sampling scheme to the appropriate
marginals was achieved with k = 20 and k = 300, as it can be ascertained from
direct inspection of the curves. Because of the limited information contained in data
set I(q = 10, n = 5), posterior densities were not symmetric, so the mean, mode
and median differ. The median was closer to the true values of the parameters than
the mean and the mode; this was true for all 4 distributions considered.

For data sets II-IV, with heritabilities ranging from 20-80%, and number of sires
from 50 to 1000, the posterior densities (figs 2-4) were nearly symmetric, so the
3 location statistics were very similar to each other. In figure 4, corresponding to
a! = 1, Qe = 10 and to a data set with 1000 sires and a total of 20 000 records,
the posterior coefficients of variation were approximately 1% for or and 9% for the
remaining parameters. This illustrates the well known result that Qe is less difficult
to estimate than or or functions thereof. The plots suggest convergence of the Gibbs
sampler at values of k as low as 10-20.

Some difficulties were encountered with the Gibbs sampling schemes in designs
V and VI (fig 5 and 6, respectively). These designs correspond to situations of
low heritability and of mild information about parameters contained in the data.
While there was no problem in general with the posterior distribution of Qe, this
was not so for the remaining 3 parameters. Typical problems were bi-modality or
lack of smoothness in the left tail of the estimated densities. These were found to
be related to insufficient Gibbs sample size, and were corrected by increasing the
Gibbs sampling size (m). Compare, for example, the dotted (m = 300) with the
solid (m = 3 000) curves in figure 6. A more awkward distribution requires more
samples to be characterized accurately. Recall that each of the density estimators
[40]-[42] was obtained by averaging m conditional densities. In the case of badly
behaved marginal distributions, which are associated with low heritability and small
data sets, it is possible to obtain &dquo;outlier conditional densities&dquo;. The outliers can be
influential and distort the values of the estimated density unless m is large enough.
It is clear from the figures that smooth posterior estimated densities for awkward
distributions, eg, for heritability as low as 4%, can be obtained by increasing Gibbs
sample size, albeit at computational expense. At this level of heritability, when the
number of sire families was increased to 10 000, posterior distributions were nearly
symmetric (fig 7), and there was little variability about the parametric values.

















DISCUSSION

Gianola and Foulley (1990) gave approximations to the marginal distribution of
variance components, which should be adequate provided that the joint posterior
density of the ratios between variance components is sharp or symmetric about its
mode. As in any approximation, its goodness depends on the amount of information
contained in the data, and on the number of parameters in the model. An important
practical question is to what extent the approximations hold. From our experiments,
the information in data sets I, II, V and VI is not sufficient to justify use of the
approximation, even in a model with 2 variance components; this is so because
the marginal distribution of the variance ratio was neither sharp nor symmetric.
However, the approximation would hold in the remaining data sets. A more detailed
comparative study between the exact and the approximate method is needed to
ascertain when the latter can be used confidently. In the meantime, the Gibbs
sampling provides a way to estimate the marginal distributions without using
complicated numerical integration procedures.

The present work is an extension of that of Gelfand et al (1990), in which
they illustrated the Gibbs sampler with several normal data models, including
variance component estimation in a balanced one-way random effects layout. In
our paper, formulae were presented to implement Gibbs sampling in a more general
univariate mixed linear model. With these extensions, a full Bayesian solution to
the problem of inference about variance components, and functions thereof in such
a mixed linear model is possible. Gibbs sampling turns an analytically intractable
multidimensional integration problem into a feasible numerical one.

Gibbs sampling is relatively easy to implement. Given the likelihood function
and the priors, one can always obtain the joint posterior density of the unknowns
under consideration. From this density, at least in the normal linear model, one can
directly get the full conditional distribution of a particular variable by fixing the
rest of the variables in the joint posterior distribution. The set of all full conditional
densities gives the expressions needed for implementing the Gibbs sampler. The full
conditional densities in this case are in families, such as normal and inverted x2,
where generating random numbers is not exceedingly complicated. The limiting
factor is the efficiency with which random numbers can be generated, because the
method requires generating a large quantity of random numbers; m x k x r, where
r is the number of parameters in the model; r = q + 3, in our case. It is difficult
to specify the values of m and k, a priori. Gelfand et al (1990) described a method
for assessing convergence under different values of m and k, and suggested using
k = 10 &mdash; 20 and m = 100 for a variance component problem in a balanced one-
way model. However, they increased m to 1000 when the variance ratio was under
consideration. Our numerical results for the same model support their suggestion for
the value of k, but indicate that Gibbs sample sizes of 2 000 to 3 000 may be needed
for badly behaved marginal distributions (figs 6, 7). The most difficult situation
encountered in our experiments was when intraclass correlation and sample size
were both small. In general the appropriate values of m and k depend on the
number of variables in the model, the shapes of the marginal distributions and the
accuracy required to estimate densities.



An appealing aspect of Gibbs sampling is its flexibility. For example, densities
of functions of the original variables included in the posterior distribution can be
estimated using standard theory of random variable transformation, with minimal
additional calculations.

Gibbs sampling is iterative. In this respect, there are 2 issues of concern: con-
vergence and uniqueness. However, Geman and Geman (1984) showed that under
mild regularity conditions, the Gibbs sampler converges uniquely to the appropri-
ate marginal distributions. Casella and George (1990) discuss numerical means to
accelerate convergence. Another way to speed up convergence is to integrate out
analytically some nuisance parameters from the joint posterior distribution before
running the Gibbs sampler. In our case, inference is sought on variance components
and on their functions. Here, u and P would be integrated out before running the
Gibbs sampler. The necessary conditional distributions are given by Gianola and
Foulley (1990).

The finite mixture density estimators of ae and Qu in [39] and [40] can be
thought of as average of a finite number of inverted X2. This ensures that &dquo;point
estimates&dquo; of variance components, eg, mean, mode and median will always be
within the allowable parameter space. Likewise, interval estimates are also within
the parameter space, in contrast to the asymptotic confidence intervals obtained
from full or restricted maximum likelihood, which may include negative values.

Once the marginal densities are obtained, it is easy to calculate summary
statistics from the posterior distributions. From a decision theoretical viewpoint, the
optimum Bayes estimator under quadratic loss is the posterior mean; the posterior
median is optimal if the loss functions is proportional to the absolute value of the
error of estimation and the posterior mode is optimal if a step loss function is
adopted.

Some caution is needed in variance component problems in genetics. For example,
some genetic models dictate bounds for a particular variable. If one employs a &dquo;sire&dquo;

model, the intraclass correlation (p) must lie inside the [0, 1/4J interval, because
heritability is between 0 and 1. This implies that the variance ratio a!/a; is between
0 and 1/3, and that 0 ! a! :0;:; a; /3. Hence, use of truncated inverted X2 densities
in the Gibbs sampler would be more sensible in such a model. On the other hand,
if one considers an &dquo;animal&dquo; model, the bounds for p and a u 2!U2 are from 0 to 1,
and from 0 to oo respectively, and the variance components are unbounded. Since
any &dquo;sire&dquo; model is expressible as an &dquo;animal&dquo; model, this would solve the problem
mentioned above, though at some computational expense.

Gibbs sampling is computer intensive, but in some simple models, such as the
sire model employed here, large data sets can be handled (eg, data set VII and
fig 7). The feasibility of Gibbs sampling in large &dquo;animal&dquo; model is a subject for
further research.
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