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Summary - It is demonstrated that the use of equivalent sire and animal models to
describe the underlying variable of a threshold trait leads to different maximum a posteriori
estimators. In the simple example data sets examined in this study, the use of an animal
model shrank the maximum a posteriori estimators towards zero compared with the
estimators under a sire model. The differences between the 2 estimators were particularly
noticeable when the heritability on the underlying scale was high and they increased with
increasing heritability. Moreover, it was shown that even the ranking of breeding animals
may be different when applying the 2 different estimators as ranking criteria.
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Résumé - Inégalité entre des estimateurs du maximum a posteriori avec des modèles
équivalents père et animal pour des caractères à seuil. Il est démontré que l’utilisation
des modèles équivalents père et animal, pour décrire la variable sous-jacente d’un caractère
à seuil, conduit à différents estimateurs du maximum a posteriori. Dans les exemples
simples analysés dans cette étude, en comparant l’utilisation de ces 2 modèles on constate
que les estimateurs du ma!imum a posteriori tendent à se rapprocher de 0 lorsqu’on
utilise le modèle animal. Les différences entre les 2 estimateurs sont particuLièrement
notables quand l’héritabilité sur l’échelle sous-jacente est élevée, et elles augmentent avec
l’héritabilité. De plus, il est aussi montré que même le classement des reproducteurs peut
être différent selon l’estimateur utilisé comme critère de classement.

caractère à seuil / évaluation génétique / estimation du maximum a posteriori

INTRODUCTION

New procedures based on the threshold concept have recently been developed
for the genetic analysis of ordered categorical data in animal breeding. The



methods introduced by Gianola and Foulley (1983), Stiratelli et al (1984) and
Harville and Mee (1984) are essentially the same and were derived mainly in a
Bayesian framework. With these methods, location parameters in the underlying
scale are estimated by maximizing a joint posterior density. The estimators are
therefore designated as maximum a posteriori estimators. Studies on the properties
of maximum a posteriori estimators and comparisons with the estimators and
predictors of linear model methods have previously been based on sire models
to describe the variable on the underlying scale (eg, Meijering and Gianola,
1985; H6schele, 1988; Weller et al, 1988; Renand et al, 1990; Mayer, 1991). For
continuously distributed traits the use of an animal model is the state of the art
for the genetic evaluation of breeding animals. A logical step would be to use an
animal model as well to describe the underlying variable in genetic evaluation with
threshold traits. In the present paper some properties of maximum a posteriori
estimators are studied in the context of applying an animal model to describe the
underlying variable of threshold traits.

METHODS

Example data set

Consider the following simple data structure (2 sires, each with 1 progeny) for a
dichotomous character with the 2 realizations Mo(0) and M, (1):

Progeny 1 exhibits the realization Mo and progeny 2 the realization Ml. Assume
that we want to estimate the breeding values of the sires for the trait M.

Maximum a posteriori estimation

To estimate the breeding values of the sires, the threshold concept is used and we
follow the Bayesian approach along the lines introduced by Gianola and Foulley
(1983), Stiratelli et al (1984), and Harville and Mee (1984). Let the data be

arranged as a 2 x 2 contingency table, where the 2 rows represent, as usual, the
sire effects, and the 2 columns represent the realizations Mo and Mi. The elements
of the contingency table in the ith row and jth column are designated as nij. The
columns indicate mutually exclusive and exhaustive ordered categories of response.



The rth experimental unit in row i is characterized by an underlying continuously
distributed variable, which is rendered discrete through a fixed threshold.

Let us assume that the variance components in the description of the underlying
variable are known, at least to proportionality. Using a ’flat’ prior for the threshold
(t), so as to mimic the traditional mixed model analysis, and assuming that the
sire effects on the underlying scale (ul, u2) a priori are normally, identically and
independently distributed with mean 0 and variance Qu, the joint posterior density
has the form (C1 = constant):

Using a probit-transformation and a purely additive genetic model for the

underlying variable (4l: standardized normal cumulative density function):

The residual standard deviation (Qe) is taken as the unit of measurement on the
underlying scale, so that Qe = 1.

The maximum a posteriori estimators are the values which maximize the joint
posterior density g(/3). This is equivalent to the maximation of the log-posterior
density, which can be done more easily. The first derivatives of the log-posterior
density with respect to t and ui are not linear functions of these parameters and
must be solved iteratively using numerical techniques such as Newton-Raphson or
Fisher’s scoring procedure. The Newton-Raphson algorithm leads to the following
iterative scheme:

where (0: standardized normal probability density function):

The joint posterior density g((3) is symmetric in the sense that g(t = zi,
U1 = X2,U2 = .r3!!,!,!) = 9(t = -X1,U1 = -X3,U2 = -!2!!,!,!). From
this expression it follows directly that the posterior density has its maximum where
t = 0 and U1 + U2 = 0. Making use of this result, the iterative equation [2] reduces
to:

When using the Fisher-scoring algorithm qi in the above iterative scheme,
equation [3] has to be replaced by:



The estimated breeding values of the sires equal 2u !k) at convergence. For

compatibility reasons with the maximum a posteriori estimators in the following
section, which are based on an animal model to describe the underlying variable
and where the environmental standard deviation (QE) is taken as the unit of
measurement, the estimator in [3] may also be expressed in units of QE by
multiplying u!k) by [(1 - 4c)/(1 - C)]-1/2 or (1 - 3<!)’!, respectively, where c
is the intraclass correlation Qu/(1+Qu). Moreover, it is convenient to express the
maximum a posteriori estimators in terms of the phenotypic standard deviation
ap = (U2 + !e)1!2 by multiplying the estimator from [3] by [1/(l - c)]-l /2 or

( a2 + 1)-1!2, respectively.

Use of an equivalent animal model

Up to now we have dealt with a sire model to describe the underlying variable
for the threshold trait. Let the rows of the contingency table now represent the
progenies in which the observations are made and we use an equivalent animal
model to describe the basis variable and to estimate the breeding values of the
sires. For that purpose let v’ = [!1!2 !3 !4], where vl and v2 represent the additive
genetic values on the underlying scale of the progenies 1 and 2, and v3 and v4
represent the additive genetic effects of their sires 1 and 2.

Under these conditions v is a priori normally distributed with mean 0 and
variance-covariance matrix Acr 2, where A is the numerator relationship matrix
and a2 the additive genetic variance on the underlying scale. For the example data
set the relationship matrix has the following form:

The likelihood function invariably follows a product binomial distribution. So
the joint posterior density is now:

with

and the environmental variance (!E) as the unit of measurement on the underlying
scale.

For the joint posterior density [5] the Newton-Raphson algorithm leads after a
little algebra to the following iterative equation system:



where:

It can be easily seen that for vik) and v2!! respectively, this equation system is
formally very similar to the iterative equation (2!. Further, it shows the result that
Vi - Vi /2 and V4 2 /2, ie the estimated breeding values of the sires equal
half of the estimated genetic effects of their progenies. To express the maximum
a posteriori estimators in units of the phenotypic standard deviation they have to
be multiplied, as in the case of the sire model by [1/(1 - c)!-1!2 or (ua + 1)-1/2,
respectively.

More complex data structure

A more complex data structure, viz the hypothetical data set already used by
Gianola and Foulley (1983) to illustrate the maximum a posteriori estimation
procedure, was employed to demonstrate the differences between the estimators
based on either a sire or an animal model. The data consist of calving ease scores
from 28 male and female calves born in 2 herd-years from heifers and cows mated to
4 sires. Calving ease was scored as a response in 1 of 3 ordered categories (normal
birth, slight difficulty, extreme difficulty). The data are arranged into a contingency
table in table I.
Two different heritability values on the underlying scale (h2 = 0.20 and h2 = 0.60)

were postulated. For the maximum a posteriori estimation of the location parame-
ters of the underlying variable, the computer program package TMMCAT (Mayer,
1991, 1994a) was used.

Different sire rankings

Because of the inequality of estimated breeding values stemming from equivalent
models to describe the underlying variable, there arose the question as to whether



even the ranking of the sires may be different depending upon the model type
chosen. To examine this question, data for 3 sires were systematically generated
and analyzed. The number of observations nij of sire i (i = 1,2,3) in response
category j (j = 1, 2) was varied from 0 to 8. A simple random one-way model (sire
model, animal model) for the underlying variable and a heritability value of 0.60
was postulated. Again for the analyses, the computer program TMMCAT was used.

RESULTS

Example data set

Figure 1 shows the relationship between the estimated breeding value (EBV) of sire
1 and heritability for each of the models. The upper graph represents the estimates
taking the environmental standard deviation as the unit of measurement, while in
the lower graph the estimates are expressed in units of the phenotypic standard
deviation.

It is obvious that the EBV is different whether a sire model or an equivalent
animal model is used to describe the underlying variable. The difference between
the EBVs is noticeable at a heritability of about 0.60 and increases with increasing
heritability. With the phenotypic standard deviation as the unit of measurement,



the EBV based on a sire model shows an almost linear relationship with the
heritability even if with increasing heritability the slope slightly decreases. With a
higher intraclass correlation on the underlying scale as with the animal model, this
phenomenon can have a drastic impact. Thus, with the animal model, the EBV



exhibits a maximum at a heritability value of about 0.81 and decreases rapidly
thereafter.

Hypothetical data set by Gianola and Foulley

Table II shows the maximum a posteriori estimates of the parameters of the
hypothetical data set in table I for the 2 different model types (sire model and
animal model). The estimates are expressed in units of the phenotypic standard
deviation. The estimable linear function h + Hi + Ah + S7&dquo;, represents the baseline.
Further, in table II the estimates of the contrasts t2 - tl (threshold 2 - threshold 1),
H2 - Hi (herd-year 2 - herd-year 1), A!-Ah (cow - heifer calving), 8f -8m (female
- male calf) are shown.

Moreover, table II contains the EBVs of the sires, which in the case of the sire
model, for reasons of comparison, were calculated as twice the estimated sire effects.
If !j + !i represents the estimator of a particular estimable combination i of the
explanatory effects, then the probability of a response in the jth category (pz!) can
be estimated as pil = <1>[(t1 + !i)/Q), pi2 = !!(t2 + .Ài)/u] - <1>[(t1 + !i)/!! and
A3 = 1 - !P[(F2 + !t)/o’]; where 0’ is the error standard deviation (sire model) or the
environmental standard deviation (animal model).

For the heritability value of 0.20 the estimators from the sire model and the
animal model are quite similar. The absolute estimates from the animal model are a
little smaller, with the exception of the estimated distance between the thresholds.
The greatest relative difference is shown by the contrast between cow effect and
heifer effect. When a heritability of 0.60 is applied, the differences between the
2 model types are more substantial. Again, the absolute estimates from the animal



model are smaller, only the estimated distance between the thresholds is greater
and the greatest relative difference is found for the contrast between cow effect and
heifer effect.

Different sire rankings

Table III shows 3 data structures for which different sire rankings under the different
model types (sire model and animal model) were identified.

The estimates based on the animal model are again smaller than the estimates
from the sire model. The different rankings under the 2 model types are interesting.
Under the sire model the EBVs of the sires 3 are clearly greater than the values
of the sires 2, whereas under an animal model it is the other way around and the
EBVs of the sires 3 are clearly smaller than the EBVs of the sires 2. Other data
structures with different sire rankings were identified and table III shows only a
few examples. It might be expected that with higher heritability values and more
complex data designs this topsy-turvy situation would be even more marked.

DISCUSSION

Studies on the properties of maximum a posteriori estimators for threshold traits
have been based on sire models to describe the underlying variable. Interest has
mainly focused on comparisons of maximum a posteriori estimators with the
estimators and predictors of linear model methods. As regards the EBVs, or more
exactly sire evaluation, the comparisons have been based on empirical product-
moment correlations, sire rankings, and the realized genetic response obtained from
truncation selection. Meijering and Gianola (1985) showed that with a balanced
random one-way classification and binary responses, the application of quasi-best
linear unbiased prediction (QBLUP) and maximum a posteriori estimation (MAPE)
leads to an identical ranking. With 4 categories of response and constant progeny
group size, QBLUP and MAPE gave very similar sire rankings; the differences



in the mean true breeding values of sires with either QBLUP or MAPE as
selection rules were not significant. In simulation studies where the data were
generated by a one-way sire model with variable progeny group size, there were
noticeable differences in efficiency between QBLUP and MAPE only when the
incidence was high (> 90 %, binary response) and with high (> 0.20) heritability
(Meijering and Gianola, 1985; H6schele, 1988). When applying mixed models for
data simulation, MAPE was generally found to be superior in comparisons with
QBLUP. This superiority depends on several factors: differences in incidence,
intraclass correlation, unbalancedness of the layout, and differences in the fixed
effects and the proportion of selected candidates (Meijering and Gianola, 1985;
H6schele, 1988; Mayer, 1991). The relationship between the relative superiority of
MAPE and the proportion of selected candidates was not found to be of a simple
kind (Mayer, 1991). Somewhat in contrast to these findings in the simulation studies
were the results of investigations where product-moment correlations between
MAPE and QBLUP estimators were calculated (Jensen, 1986; Djemali et al, 1987;
H6schele, 1988; Weller et al, 1988; Renand et al, 1990). The correlation coefficients
throughout were very high. This is even more astonishing because theoretically there
is no linear relationship between MAPE and QBLUP, and so even with identical
sire ranking the correlation coefficient is smaller than one.

Generally, a sire model can be considered as a special case of an animal model,
making very restrictive supositions. For continuously distributed traits, the use of
an animal model is currently the state of the art for genetic evaluation of breeding
animals. Basically, all the practical and theoretical reasons in favour of the use of
an animal model instead of a sire model for traits showing a continuous distribution
are also valid for threshold traits.

However, in the present paper it was clearly shown that with threshold traits, the
maximum a posteriori estimators of the parameters of the underlying variable or the
estimators of the breeding value are different whether a sire model or an equivalent
animal model is used to describe the underlying variable. This is, of course, an
unfavourable behaviour of the estimation method, but as long as the ranking of
breeding animals is not affected, it would not be so problematic from a breeding
point of view. As mentioned above, QBLUP and MAPE yield exactly the same
ranking of sires for a one-way random model with binary responses and constant
progeny group size although there is no strict linear relationship between QBLUP
and MAPE. However, as was shown in this study, with maximum a posteriori
estimation, even the ranking of breeding animals may depend on the model type
chosen.

The result that the use of equivalent sire and animal models for the underlying
variable and the use of the same estimation method lead to different estimators may
be counterintuitive. Under the animal model the maximum a posteriori estimators
are obtained by computing the mode of the joint posterior distribution of the
’environmental’ effects and the breeding values of all the animals. Under the sire
model the mode of the marginal posterior density for the sires is computed. In
the analyses of the simple example data set in this study, the ’marginal’ posterior
density for the sires equals the joint posterior density, after integrating out the
genetic effects of the progenies (vl, v2): g(t, U1, u2lnij, h2) = !(!!3!4!!,!) =



JJ g(t, Vl, V2, V3, !4 !! h2)8v18v2’ It is well known that the posterior densities in

this study are only asymptotically normal and generally do not have typical forms
of distribution (see, for example, Foulley et al, 1990). Therefore the mode of the
marginal posterior density function is different from the mode of the joint posterior
distribution. The situation is different in the linear model case or more precisely
when the likelihood follows a normal distribution. As shown by several authors
(eg, Gianola et al, 1990) then, under the assumption that the variance components
are known, the joint posterior density is multivariate normal, ie modes and means
are identical and marginal means can be derived directly from the vector of joint
means.

If the maximum a posteriori estimates depend on the model type used to describe
the underlying variable, as shown in this paper, there may arise the question as to
which is the better estimator. In animal breeding, the best selection rule, in the
sense of maximizing the expected value of the mean of the breeding values of a
fixed number of individuals selected from a fixed number of candidates, is the
mean of the marginal posterior distribution of the breeding values (Goffinet, 1983;
Fernando and Gianola, 1986). Only because its calculation is usually thought to be
unfeasible for threshold traits (Foulley et al, 1990; Knuiman and Laird, 1990), are
joint posterior modes or maximum a posteriori estimators considered and regarded
as an approximation to the posterior mean. For convenience and simplicity, let us
assume that in the analysis of the simple example data set in this study, the value
of the threshold is known to be t = 0. The marginal posterior mean can then be
calculated, not only by numerical means, but also analytically. Under the conditions
that the breeding values and the environmental effects are normally, identically
and independently distributed with mean 0 and variances Qa and uf respectively,and mutually independent, it follows from well-known statistical properties of the
normal distribution that the marginal expected value E[alMo] is:

Using the additive-genetic transmission model, where p is a progeny of sire s
and dam d, and am is a random variable with mean 0 and variance u’12 describing
the Mendelian sampling:

the marginal breeding value of sire 1 (U1), conditional to his progeny exhibiting the
realization Mo(n2!) is:

In table IV this marginal mean estimator is compared with the maximum a
posteriori estimators under the 2 different model types (sire model and animal
model).

In the simple example data set of this study the maximum a posteriori estimator
under the sire model is much closer to the marginal mean estimator. This is

especially true for heritabilities greater than 0.25. With heritabilities greater than
0.50 the maximum a posteriori estimator under the animal model proved to be



very poor when compared with the marginal mean estimator. In a more thorough
study of marginal mean estimation by Mayer (1994b), similar results were found
in the analysis of the calving ease data set presented in table I. Thus, a normal
density approximation may not be justified for posterior distributions when nij
values are small as under an animal model. Further Mayer (1994b) showed that
the standard deviation of the marginal posterior density was clearly greater than
the approximate standard deviation of the maximum a posteriori estimates derived
from the observed or estimated Fisher information matrix.
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