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Summary - Empirical formulae were derived to approximate selection differentials and
variances of the selected estimated breeding values when the estimated breeding values of
the candidates for directional selection are multinormally distributed and correlated in any
manner. These formulae extended the well-known exact basic form for the equicorrelated
case, taking into account selection pressure, average pairwise correlation coefficient and
average standard deviation of pairwise correlation per observation, through polynomials
fitted to simulated data. Simulations were carried out for different correlation structures

(1, 2 or 3 different intra-class correlations per family, ranging from 0.3 to 0.99), for
different numbers of independent families (1, 2, 5 or 10), for constant or variable family
size and for selection pressures ranging from 0.5 to 50%. On average, 90% of the bias
occurring when ignoring correlations between observations was removed by our prediction
formula of selection differential or variance of selected observations. Comparisons with
other correction methods, which assume special correlation structures, were also carried
out.

selection differential / correlated indices / finite population

Résumé - Approximations empiriques des différentielles de sélection et des variances
pour des indices de sélection corrélés. On propose des formules de calcul approché des
différentielles de sélection et des variances d’index de sélection après sélection direction-
nelle quand les candidats à la sélection ont des index distribués normalement et corrélés de
manière quelconque. Ces formules ont pour base celles établies en cas d’équicorrélation en-
tre observations et font intervenir des polynômes des variables suivantes : taux de sélection,
coefficient de corrélation moyen et écart type moyen de ce coefficient par observation.
Les coefficients des polynômes sont calculés après ajustement à des données simulées.
Les situations simulées font varier la structure des corrélations (1, 2 ou 3 coefficients de
corrélation intra-classe, de valeurs 0,3 à 10,99), le nombre de familles (1, 2, 5 ou 10), la
taille de famille (constante ou non) et le taux de sélection (de 0,5 à 50%). En moyenne,
90% du biais introduit en ignorant les corrélations entre observations est corrigé par nos



formules de prédiction des différentielles de sélection et des variances des observations
sélectionnées. Des comparaisons sont effectuées avec d’autres méthodes de correction pro-
posées pour des structures de corrélation particulières.

différentielle de sélection / indices corrélés / population finie

INTRODUCTION

The relative efficiencies of alternative breeding schemes can be assessed through
deterministic predictions. Both selection and limited size of breeding populations
lead to complex consequences for genetic gains, so that unbiased predictions are
difficult to obtain (see review by Verrier et al, 1991, for example). An important
consequence is that estimated breeding values (EBVs) of candidates are correlated
(through genetic relationships and for statistical reasons, because EBVs are ob-
tained from the same set of observations). However, a very common assumption is
that candidates correspond to independent observations from an infinite popula-
tion. Consequently, genetic gains are overestimated because selection differentials
and variances of EBVs between selected candidates are overestimated. The amount
of bias can differ according to breeding scheme and correctness of comparisons
between schemes can be impaired.

Burrows (1972) provided an accurate, easy to implement, approximation of se-
lection differentials when independent candidates are drawn from a finite popula-
tion. When the number of observations is larger than 5, it leads to errors which
are always smaller than 2%, and usually smaller than 1%. Conversely, no exact
method has been found to take into account any correlated structure among nor-

mally distributed observations. Owen and Steck (1962) gave the exact solution
for equicorrelated multivariate normal distribution. If we define uniform families
as families of identical size and identical within-family correlation structure, Hill
(1976) and Rawlings (1976) provided the exact solution for the case of uniform
independent families of within-family equicorrelated observations. Since this so-
lution uses multiple numerical integration, they proposed ad hoc approximations
which were relatively poor for high intra-class correlations (over 0.6) and severe
selection pressures (below 10%). Rawlings’ empirical formula was based on Owen
and Steck’s result for the equicorrelated case. Perez-Enciso and Toro (1991) pro-
posed a method to account for any variance-covariance structure among indices. For
equal variances, their method corresponded to Rawling’s approximation. Meuwissen
(1991) improved Rawlings’ approximation for the case of several uniform families
and found an extension for uniform full-sib families nested within uniform half-sib
families. His correction was very accurate for the breeding schemes examined, ie
assuming a hierarchical mating design. However, it cannot be generalized to any
correlation structure.

The purpose of this paper is to provide approximation formulae for both the
selection differential and the variance of EBVs of selected candidates, assuming no
specific correlation structure but assuming that variances of EBVs are constant



across candidates. Keeping Meuwissen’s basic idea, these formulae are derived by
fitting an extended Owen and Steck’s formulae to simulated data.

PREDICTION FORMULAE

General form

Selection differential

Rawlings’ (1976) formula consists of using Owen and Steck’s (1962) exact formula
for selection differential when population is split into independent and uniform
families:

! ! ,! , u

Io is the standardized selection differential for finite independent observations and
depends on n (number of candidates), p (selection rate), 7oo (selection differential
for infinite independent observations) through Burrows’ approximation:

r is the average pairwise correlation coefficient and is equal to

for f families of size s with within-family correlation coefficient p.
We suggest here a generalization of Rawlings’ formula for any correlation

structure, taking into account the following parameters:
1) the selection pressure (p $ 0.5);
2) the average pairwise correlation coefficient:

where n is the number of candidates and pi! is the correlation between EBVs of
candidates i and j;
3) the average standard deviation of the pairwise correlation coefficients involving

a given candidate

When variances of EBVs are standardized to 1, the analytical expression of the
approximation proposed is:



where P stands for a polynomial of variates p, r, and ar. In the equicorrelation
situation (ar = 0), Owen and Steck’s exact results still hold with such an approxi-
mation.

Rawlings (1976) compared his approximate correction with exact results ob-
tained from numerical integration and found that the discrepancies between them
increased when correlations increased. This justified a further correction term in-
cluding r. Introduction of parameters Qr and p was basically justified by the fact
that Rawlings’ approximation is less and less accurate when the variability of pg
increases and/or p decreases. The polynomial form of the approximation was con-
sidered to be the simplest to implement when no analytical underlying theory is
referred to.

Variance of selected EBVs

Owen and Steck’s (1962) exact result for the equicorrelated case is Vc = (1 - r)T!o
where Yo is the variance of selected independent observations. Burrows (1972)
showed that population size hardly affects this last variance. Therefore, Uo is
calculated as for an infinite population.

where Xoo is the selection threshold in an infinite population.
The analytical expression of the approximation is:

where Q is a polynomial of variates p, r, ar cancelling out when ar = 0.
Data examination showed that the first part of the approximation, V, = (1 - r)Vo

accounted for the major part of variance reduction induced by a correlated struc-
ture. The second part of the approximation was introduced as a multiplier factor
because observation on calibration data sets showed that this method provided pos-
itive approximations for variances. Expressions ensuring positivity in any situation,
such as (1 - 1’)Va exp(polynomial), were not able to provide a good fit. We will
comment further on this point.

Fitting polynomial coefficients

Different structures were generated to provide variation for r and Qr. For a given
structure, 5 000 replicates were generated. Subsamples corresponding to different
selection rates (p) were extracted. The basic observed values Iobs and Vobs were

respectively the averaged values of selected candidates (selection differentials) and
the pooled value of within-replicate variances of selected candidates.

Only p values equal to or lower than 0.50 were investigated since the following
equations exist:



Therefore, if p were greater than 0.5, the prediction should hold for p* = 1 - p
and back solution for p would be given by the above formulae.

Dependent combined observed values from several combinations of data struc-
ture x selection rate were analysed to test a polynomial regression, using the SAS
procedure ’General Linear Models’ (SAS/STAT User’s Guide, 1990).

To estimate coefficients of the polynomial P, the dependent variate y was such
that:

which corresponded to

For the polynomial Q, dependent variate z was such that Vobs = (1 - r) Va (1 + z)
which corresponded to

Testing goodness of fit

Polynomials of degrees 5 and 6 were tested for P and Q, respectively. They provided
better adjustments (R-square values) than polynomials of lower degrees. Fitting
higher polynomials led to singularities in our data sets.

Only significant polynomial coefficients on p, r, ar and higher degrees of these
variates were considered for use in correction formulae.

In addition to the R-square values provided by the model, relative errors incurred
with different procedures were considered:
- from treating variates as independent

1) for selection differentials UI = 100Jo - Jobs
I.bs

2) for variance of selected observations Uv = 100 Vo - Vo b,;
Vobs

- from correction attempts according to different formulae

1) for selection differentials Fi = 100 Ih - Jobs IJobs
where F is a generic letter corresponding to R, M, P (Rawlings, Meuwissen and
polynomial formulae, respectively)

2) for variance of selected observations Fv = 100 1 VF - Vobsl
!obs

with F corresponding to B (Owen and Steck, 1962) or P (polynomial formula).
Absolute values of ratios are used because correction formulae sometimes lead to

overcorrection, ie negative values of relative errors. Rawlings’ formula often corre-
sponds to overestimation. Regression formulae such as Meuwissen’s and polynomial
formulae lead to overestimates in some cases or underestimates in others.



Correction inefficiency corresponds to the ratio of errors still remaining after
correction, compared with errors incurred with no correction at all.

Correction inefficiencies for selection differentials correspond to ratios Fj =
FIIUI, where F stands for alternative correction formulae. Correction inefficiencies
for variances correspond to ratios F! = Fv/U!r. When reading tables, small values
are favourable when considering either errors or correction inefficiencies.

SIMULATED DATA SETS

Calibration data sets

Two sets of simulated data were generated and pooled to estimate coefficients of
the polynomials involved in the previous formulae. These data sets were chosen
in order to represent a large variation for the correlation structure among EBVs.
For that purpose, values of intra-class correlations were arbitrarily taken without
considering real breeding scheme structures. An n-candidate layout was simulated
as a set of n correlated standardized normal variates, the basic normal variates
representing EBVs. In such a simulation, there is no need to simulate performances
leading to these EBVs.

Data set 1

In the first data set, 40 candidates for selection were simulated; 1 200 situations
were examined according to the number (1, 2 or 5) of independent groups, called
’families’, and the size of these groups (constant or variable). Possible contributions
of families, when family size is not constant, are shown in table I. Selection pressures
were 50, 40, 30, 20, 10 and 5%. Furthermore, 3 correlation structures were simulated.

In the first correlation structure, candidates of the same family were equicorre-
lated. This could correspond to full-sib of half-sib family structures. Cases with 1
family were not simulated since the exact result is known. Intra-class correlation
values considered are shown in table II.



In the second correlation structure, 2 different intra-class correlations were
considered within each family. This corresponded to the nested full-half sib family
structure analysed by Meuwissen (1991); each family of half-sibs was made up of
several groups of full-sibs. The number of full-sibs was 2 in each group. The 9
considered pairs of intra-class correlation coefficients between full- and half-sibs are
shown in table II.

In the third correlation structure, 3 different intra-class correlation values per
family were considered because each family was split into 2 subgroups. Correlations
within sub-groups were rn and r22 respectively. Correlation between sub-groups
was r12. This could correspond to subgroups with different information, although
strictly speaking, this would lead to heterogeneity of variance. The 6 combinations
(ril, r22, r12) considered are shown in table II. Sub-group 1 represented 25, 50 or
75% of each family.

Data set 2

In the second data set, 315 situations involving many more candidates (200) and
more severe selection pressures (0.5, 1, 5%) were simulated. The number of families
was 1, 2, 5 or 10. Heterogeneity for family size is shown in table I. Correlation
structures varied according to the same principle as in data set 1 but values were
not quite the same (see table II). Sub-group 1 represented 25 or 75% of each family.



Cross-validation data sets

The aim of these data sets is to validate the prediction formulae for correlation
structures different from those used for fitting the polynomials. This is a way to
test the prediction abilities and robustness of the fitted polynomial equations.

Four situations relative to breeding schemes (10 000 replicates per situation) were
considered to derive different structures of correlations among indices. A BLUP
animal model evaluation was used to rank animals.

Beef cattle breeding schemes (2 situations)

Correction formulae were tested on a simulated selection nucleus for beef cross-

breeding on dairy cattle (Phocas et al, 1995, unpublished results).
Generation 1 consisted of 186 dams born from 31 unrelated sires. Generation 2

was produced by mating these dams to 3 sires (1 calf per dam). A BLUP evaluation
was implemented, assuming that males or females of generation 2, females of

generation 1, males of generation 1, and males of generation 0 were recorded for a
single trait.

The first situation corresponded to h2 = 0.25 and the second corresponded to
h2 = 0.10.

The efficiency of our correction formulae was tested on generation 2, when
selecting replacement females (p = 46/93) and males (p = 3/93) and for both
heritabilities. Candidates for selection can be unrelated, half-sibs (same sire), cousin
(same maternal grand-sire) or both at the same time. For h2 = 0.25, values for r
and Qr were 0.176 and 0.246. For h2 = 0.10, the corresponding values were 0.223
and 0.309.

Dairy cattle breeding schemes (2 situations)

Intensive breeding schemes using embryo transfer and putting emphasis on pedigree
selection are likely to induce high correlations between EBVs of candidates and to
reduce effective selection differentials. These schemes are referred to as multiple
ovulation and embryo transfer (MOET) schemes (Nicholas and Smith, 1983).

The efficiency of the proposed correction formulae was tested on the 192 females
of generation 2, born from 4 sires and 48 dams. Each dam was mated to 2 different
sires (factorial mating design). Each mating produced 2 females (and 2 males). The
48 dams were assumed to be recorded on milk yield (h2 = 0.25) and to be born from
4 sires, unrelated to sires of generation 2. Female candidates of generation 2 were
assumed to be evaluated according to a BLUP procedure, to produce replacement
females or replacement males.
An ’adult’ MOET (first situation) was mimicked assuming generation 2 was

recorded (1 lactation per individual). In this situation, relevant r and a, were 0.160
and 0.220, respectively. If a ’juvenile’ MOET (second situation) was implemented,
females of generation 2 were not recorded before selection. In our layout, all the
progeny (4 individuals) of the same dam had the same EBV. Therefore, selection
was not carried out among 192 individual EBVs but among 48 EBVs groups; the

corresponding r and Qr were 0.137 and 0.251.



RESULTS

Fitting selection differentials

Polynomial P was estimated from the observed data on 1 515 (ie 1200 + 315) basic
situations. However examination of the results showed that high values of r(r > 0.6)
were detrimental to goodness of fit. Therefore, we restricted data adjustment to the
1 383 situations where r was smaller than 0.6.

Coefficients of the polynomial of degree 5 shown in the Appendix were found to
be significant. Similarity of coefficients suggested some grouping and the variate
transformation d = r &mdash; QT. Examination of the new results suggested further
additional variate transformations e = r(l - r) and b = d(1 - 4.2e). This led
to only 5 significant regression coefficients without loss of accuracy, as compared to
the first adjustment. This polynomial was:

with

where estimation standard errors are in parentheses. In these conditions, the R-
square value for this polynomial adjustment was found to be 0.85.

Table III shows that the average relative error (PI) was only 2.5% compared
with 26.4% when no correction is used and with 7.1% when Rawling’s correction
is made. In 96% of cases, relative errors were smaller than 10%, whereas this
occurred in only 20% of cases when no correction was used and 79.5% of cases
when Rawling’s correction was implemented. The average correction inefficiency
rate of the polynomial adjustment (Pj&dquo;) was 10%, which meant that 90% of the
bias occurring with no correction for correlated EBVs was removed. Only 77% of
this bias was removed by Rawlings’ formula.



Table IV shows, however, that quality of adjustment was still dependent on p
values. For small p (p < 5%, ie 478 situations out of 1383), the average relative
error was 3.8%. This value compared favourably with corresponding figures for no
correction (31.1%) or Rawlings’ correction (12.3%).

Comparison with Meuwissen’s formulae was possible on the 681 situations (out
of the 1383 simulated) with 1 or 2 intra-class correlation coefficients. These results
are shown in table V. Average pairwise correlation coefficient was smaller than 0.5
for each situation with constant family size and 1 or 2 correlations (table Va). For
these cases, Meuwissen’s formulae were really better than ours: whereas Meuwissen’s
average error was smaller than 1% with a maximal error of 4%, the average error
incurred with the polynomial formula was nearly 4 and 2% for 1 or 2 correlation
cases, respectively. When family sizes were heterogeneous (table Vb), performances
of our formula were maintained whereas those of Meuwissen’s prediction, assuming
a constant average family size, deteriorated and became worse than ours.

Fitting variances of selected observations

Only 606 situations of data set 1 (40 candidates) corresponding to r < 0.6 and
constant family size were examined to adjust polynomial Q.

The results obtained suggested fitting p &mdash; 0.5 instead of p. Finally, polynomial
Q was:

with

where the values in parentheses are the estimation standard errors. The R-square
value of adjustment was found to be 0.84.

Table VI shows that large relative errors for variance of selected EBVs were
observed on the simulated data. Considering candidates as independent led to an



average relative error equal to 305%. Correction attempts through Owen and Steck’s
or polynomial formulae decreased the amount of errors to 169 and 55%, respectively.
On average, 88% of the error incurred with no correction for correlated EBVs was
removed by our polynomial adjustment, whereas only 65% was removed by Owen
and Steck’s formula.



However, polynomial approximation for variances cannot be considered as safe
as for selection differentials. Firstly, we were unable to find reasonable adjustment
when data sets included variable family sizes. Secondly, in 2 cases out of the 606
analyzed, corresponding to 0.99 intra-class correlations, our correction led to errors
higher than those incurred with no correction. Thirdly, the theoretical form of
equation [2] does not preclude negative predictions.

Examination of values of Q according to p and ar showed that positive values of
approximated variances are obtained for any selection rate as soon as ar is smaller
than 0.35, and for selection rates higher than 2% for Qr between 0.35 and 0.5. The

polynomial approximation should not be used for ar greater than 0.5.

Cross-validation

The examples chosen correspond to situations where ignoring correlation between
EBVs would lead to substantial relative errors: 10-20% for selection differentials
and 30-130% for variances of the selected candidates (table VII). Rawlings’ formula
was found to be satisfactory (relative errors about 2%) when estimating selection
differentials from moderate selection pressures (25-50%). Relative errors increased
(6-12%) when selection was more severe (p around 2-4%). Owen and Steck’s
formula for predicting variances decreased biases but relative errors were still high
(5-100%).

The efficiency of the polynomial formula was comparable to that of Rawlings’
for moderate selection rates but was clearly superior for more severe selection,
because relative errors by our formula in that case did not increase very much and
were around 1-3%. Our polynomial formula for approximating variances was not
entirely satisfactory but succeeded in giving better results than Owen and Steck’s.
The range of relative errors for variances was 0-50%; variances were overestimated
for moderate selection pressures and underestimated for severe selection pressures.

DISCUSSION AND CONCLUSION

The objective of this work was to provide approximate expressions for selection
differentials and corresponding variances on EBVs, easy to calculate and robust for
any correlation structure between EBVs which are multinormally distributed. Hill
(1977) proved that selection differential can be used to predict selection response
when animals are ranked and selected on an optimum selection index.

Although no absolute proof can be given of the validity of our empirical approach
for any situation, the moderate prediction errors observed on the calibration data
sets (involving a very large diversity of situations) and on the cross-validation data
sets (quite different from the former ones) lead one to think that these formulae
are relatively robust and might be used for deterministic prediction on breeding
schemes, especially when factorial mating designs are implemented and/or family
sizes are variable (see, for instance, artificial insemination and natural service

families).
However, particular situations should be addressed:

1) When r, the average pairwise correlation coefficient, is greater than 0.6, the
situation corresponds to a population with all members closely related (for





instance, a family with many full-sibs without own peformance information)
and Rawlings’ formula should be used.

2) With moderate selection pressures (p greater than 20%), although the polynomial
approximation led to similar results, Rawlings’ formula is recommended for the
sake of simplicity.

3) With a hierarchical mating design leading to full-sibs nested within half-sibs,
with families of constant size and constant intra-class correlation coefficients,
Meuwissen’s formula is preferred.
The situation is quite clear for variance corrections since our methods is much

better than Owen and Steck’s formula and the major part (88%) of the bias

occurring with no correction is removed. However, the errors are still large.
Important restrictions are that family size should be constant and that ar, the
average standard deviation of the pairwise correlation coefficients involving a given
candidate, should not exceed 0.5. For these reasons, further improvement should
be investigated.

Additional heuristic research is needed to provide relevant approximations for
selection differentials and variances of the selected candidates when variances are
not constant (Perez-Enciso and Toro, 1991) and/or when EBVs of candidates
do not have the same expectation, due to mixing of age cohorts, for instance.
Such problems are very commonly encountered when attempting to implement
deterministic predictions of genetic response.
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APPENDIX. ESTIMATING POLYNOMIAL REGRESSION
COEFFICIENTS

Using the SAS procedure ’General Linear Models’, dependent variate y (see text)
corresponding to observed selection differentials for 1 383 situations, an R-square
value equal to 0.86 was obtained from a polynomial of degree 5 involving the
following predictive variates.

Each of these 20 coefficients was found to be significant (I%o level). Coeffi-
cients were very similar but with opposite sign when examining coefficients of
r vs Qr, r(}&dquo;rvsr2, r2(}&dquo;rvsr3, rp vs arp, 1’(}&dquo;rPvs1’2p, r2QTp vs r3p, rp2VS 0rp2 and

rOrrP2vsr r2p2. This suggested replacing the corresponding 16 original variates by
8 new variates d(= r - or,), rd, r2d, dp, rdp, r2dp, dp2, rdp2, leading to a new poly-
nomial with 12 coefficients (8 + 4). Further factorization were performed twice on
this polynomial. The final polynomial was that of our formula, with the correspond-
ing final combined variates d = r - Qr, e = r(1 - r), b = d(1 - 4.2e). The cost of
such a simplification was moderate because the final R-square value was 0.85.
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