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Summary - It is well established that when the parameters in a model are correlated, the
rate of convergence of Gibbs chains to the appropriate stationary distributions is faster
and Monte-Carlo variances of features of these distributions are lower for a given chain
length, when the Gibbs sampler is implemented by blocking the correlated parameters
and sampling from the respective conditional posterior distributions takes place in a
multivariate rather than in a scalar fashion. This block sampling strategy often requires
knowledge of the inverse of large matrices. In this note a block sampling strategy is

implemented which circumvents the use of these inverses. The algorithm applies in the
context of the Gaussian model and is illustrated with a small simulated data set.

Gibbs sampling / block sampling / Bayesian analysis

Résumé - Une mise en oeuvre multivariate de l’échantillonnage de Gibbs. Il est

bien établi que, lorsque les paramètres d’un modèle sont corrélés, l’estimation de ces

paramètres par échantillonnage de Gibbs converge lentement lorsque les composantes
du modèle sont traitées séparément. Mais, si l’échantillonnage de Gibbs est conduit en
fixant des valeurs pour les paramètres corrélés et en échantillonnant dans les distributions
conditionnelles respectives, la convergence est plus rapide et les variances de Monte-Carlo
des caractéristiques des distributions sont diminuées pour une chaîne de longueur donnée.
Cet échantillonnage multidimensionnel et non plus scalaire requiert souvent l’inversion
de matrices de grande taille. Cette note présente une méthode d’échantillonnage en bloc
de ce type qui évite le passage par ces inverses. L’algorithme s’applique dans le contexte
d’un modèle gaussien et est illustré numériquement sur un petit échantillon de données
simulées.
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INTRODUCTION

The Gibbs sampler is a numerical technique that has received considerable attention
in statistics and animal breeding. It is particularly useful in the solution of high
dimensional integrations and has therefore been applied in likelihood and Bayesian
inference problems in a wide variety of models.

The Gibbs sampler produces realizations from a joint posterior distribution
by sampling repeatedly from the full conditional posterior distributions of the
parameters of the model. In theory, drawing from the joint posterior density takes
place only in the limit, as the number of drawings becomes infinite. The study of
convergence to the appropriate distributions is still an active area of research, but
it is well established that convergence can be slow when highly correlated scalar
components are treated individually (Smith and Roberts, 1993). In such cases
it is preferable to block the scalars and to perform sampling from multivariate
conditional distributions. Liu et al (1994) show that a block sampling strategy
can lead to considerably smaller Monte-Carlo variances of estimates of features of
posterior distributions.

In animal breeding applications this block sampling strategy can be difficult to
implement because repeated inversions and factorizations of very large matrices are
required in order to perform the multivariate sampling. The purpose of this note is
to describe a block sampling computer strategy which does not require knowledge
of the inverse of these matrices. The results of applying the method are illustrated
using a small simulated data set.

THE MODEL

Let y, a and b represent vectors of data (order n), of additive genetic values
(order q) and of fixed effects (order p), respectively, and let X and Z be design
matrices associating the data with the additive genetic values and fixed effects,
respectively. We will assume that the data are conditionally normally distributed,
that is:

where Qe is the residual variance. Invoking an infinitesimal additive genetic model,
the distribution of additive genetic values is also normal:

where A is the known numerator relationship matrix and o,2 is the additive genetic
variance. For illustration purposes we will assume that the vector of fixed effects

b, and of the variance components Qa and Qe are all a priori independent andthat they follow proper uniform distributions. Under the model, the joint posterior
distribution of the parameters is:

The scalar implementation of the Gibbs sampler consists of deriving from [3] the
full conditional posterior distributions of the scalar parameters pertaining to the
model (eg, Gelfand et al, 1990; Wang et al, 1994).



METHODS

and C = W’W+,f2, where k = e a Then the mixed-model equations associated
with [1] and [2] are:

The implementation of the Gibbs sampler requires sampling 0 from:

and !2 from:

where 9 = E(6!, af, y) satisfies the linear system [4], and C-l(j; = Var(0 )a£ ,
!e!y)!
In [6], Sa = a’A-1 a; va = q - 2; Se = (y-Xb-Za)’(y-Xb-Za); ! = n - 2;

and X;;,2 is an inverse chi square variate with Vi degrees of freedom. In order to
sample the whole vector 0 simultaneously from [5] without involving the inverse of
the coefficient matrix C, we draw from ideas in Garcia-Cortes et al (1992, 1995).
Given starting values for Qa,Qe, apply the method of composition (eg, Tanner,
1993) to solve the following equation:

To obtain samples from p(y!,o!), draw 0* from p (e l(j!(j!) and y* from

p(y!e*,!,er!). Then (y*, 0*) is a drawing from p (y, 0)a£, af) and (y*) from
p (YI!a! !e!’ Further, the pair (y*, 0*) can also be viewed as a realized value from
p ( 0 ) a£ , af , y* ) and from p(YI0*,Qa,QeJ’

By analogy with the identity:

we define the random variable:

where the random variable 0 in [9] has density p(o 10,2, a U2, e y*). The expected value
of 0 in [9] with respect to p(o 10,2, U2, y*) is equal to E ( 0 ) a£ , 0,2, y) and the variance
is C-l(j;, independent_of y*. In addition, the random variable 0 in [9] is normally
distributed; therefore 0 in [9] and 0 in [8] have the same density p!0!!a,ae,Y!,



which is the conditional posterior distribution of interest. Using [4] and !5!, and
replacing the random variable 0 in [9] by its realized values 0*, it follows that

!*

drawings from this conditional posterior distribution, which we denote A , can be
constructed by solving the linear system:

A wide variety of efficient algorithms are available which do not require C-1 to

solve the mixed-model equations (10!. We note in passing that under the assumption
of either proper or improper uniform priors for b, a simple manipulation of [10]
shows that this expression is not a function of b*, where 0*! _ (a*!b*!). Therefore
the drawing of 0* from p (0 )a£af) involves a* only, and b* can be set arbitrarily
to zero. !*

With 0 available, draw from:

The samples Q2 are now used in the new round of iteration as input in (7!.

AN EXAMPLE

As an illustration, the block (multivariate) sampling strategy is compared with
the traditional scalar implementation of the Gibbs sampler. A data file based on a
univariate animal model with 250 individuals (all with one record, 25 individuals
per generation, ten generations) and one fixed-effect factor with ten levels was
simulated. For both strategies, a single chain of length 31 000 was run, and the first
1000 samples were discarded.

Table I shows estimates of the Monte-Carlo variance of the mean of the

marginal posterior distributions of the first level of the fixed-effect factor, of the
additive genetic value of the last individual and of both variance components.
The mean was estimated by summing the samples and dividing by the number
of samples (30 000) and the Monte-Carlo variance was computed using the Markov
chain estimator (Geyer, 1992). Also shown in table I are estimates of the chains
effective length. Briefly, the effective chain length is associated with the amount
of information available in a given chain. This parameter becomes smaller as the
dependence between the samples of the chain increases. When the samples are in
fact independent, the effective and actual chain lengths are equal. Details can be
found in Sorensen et al (1995). The figures in table I show that for this model
and data structure, there is a reduction in the Monte-Carlo variance by a factor of
ten using the block sampling strategy in the case of the fixed effects and breeding
values, and a twofold reduction in the case of the variance components.

In the above example, the reduction of the Monte-Carlo variance using either
the scalar or block sampling strategies was compared on the basis of the simple
estimator of the mean of marginal posterior distributions (the raw average of the
elements of the Gibbs chain). A more efficient estimator is based on the average of
conditional densities (Gelfand and Smith, 1990; Liu et al, 1994). Liu et al (1994)



refer to this as the mixture estimator. For example, let X, Y and Z denote three
parameters and assume that interest focuses on the estimate of the mean of the
marginal posterior distribution of X.

The mixture estimator is given by

where the summation over i is over the n elements of the Gibbs chain, and the
summation over j is over the chosen values of X. Alternatively, when the integral
has a closed-form solution, the mixture estimator can take the form

The Monte-Carlo variances of the mixture estimator of the mean of the marginal
posterior distributions of the first level of the fixed effect factor, of the additive
genetic value of the last individual and of both variance components were respec-
tively 5.11 x 10-3, 7.62 x 10-3, 2.59 and 1.03 for the scalar sampling strategy and
0.13 x 10-3, 0.56 x 10-3, 1.30 and 0.43 for the block sampling strategy. There is a
small increase in efficiency relative to the ’raw means estimator’ in the case of the
location parameters but not in the case of the variance components. The mixture
estimator is especially beneficial when the chain mixes quickly (Liu et al, 1994) and
this is not the case in animal models.

CONCLUSIONS

We have presented an algorithm which allows us to implement the Gibbs sampler
in a multivariate fashion. The development is in terms of the single trait Gaussian
model, but extension to a multiple trait analysis with arbitrary pattern of missing
data is straightforward, provided the procedure is used in conjunction with data
augmentation. The benefit of block sampling relative to scalar sampling in terms of
CPU time was not investigated, since the results will be dependent on the model



and data structure. The important feature of the strategy is that it only involves
the solution of a linear system. This means that either computer time or storage
requirements can be optimized by choice of the appropriate method to solve the
linear system. This is in contrast with the scalar Gibbs sampler which has computer
requirements analogous to Gauss-Seidel iterative methods.
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