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Summary - Restricted maximum likelihood estimation using first and second derivatives
of the likelihood is described. It relies on the calculation of derivatives without the need
for large matrix inversion using an automatic differentiation procedure. In essence, this
is an extension of the Cholesky factorisation of a matrix. A reparameterisation is used
to transform the constrained optimisation problem imposed in estimating covariance
components to an unconstrained problem, thus making the use of Newton-Raphson
and related algorithms feasible. A numerical example is given to illustrate calculations.
Several modified Newton-Raphson and method of scoring algorithms are compared for
applications to analyses of beef cattle data, and contrasted to a derivative-free algorithm.
restricted maximum likelihood / derivative / algorithm / variance component esti-
mation

Résumé - Estimation du maximum de vraisemblance restreinte pour des modèles in-

dividuels par dérivation de la vraisemblance. Cet article décrit une méthode d’estimation
du maximum de vraisemblance restreinte utilisant les dérivées première et seconde de la
vraisemblance. La méthode est basée sur une procédure de différenciation automatique ne
nécessitant pas l’inversion de grandes matrices. Elle constitue en fait une extension de la
décomposition de Cholesky appliquée à une matrice. On utilise un paramétrage qui trans-
forme le problème d’optimisation avec contrainte que soulève l’estimation des composantes
de variance en un problème sans contrainte, ce qui rend possible l’utilisation d’algorithmes
de Newton-Raphson ou apparentés. Les calculs sont illustrés sur un exemple numérique.
Plusieurs algorithmes, de type Newton-Raphson ou selon la méthode des scores, sont ap-
pliqués à l’analyse de données sur bovins à viande. Ces algorithmes sont comparés entre
eu! et par ailleurs comparés à un algorithme sans dérivation.
maximum de vraisemblance restreinte / dérivée / algorithme / estimation de

composante de variance

* On leave from: EA Engineering, 3468 Mt Diablo Blvd, Suite B-100, Lafayette, CA 94549,
USA



INTRODUCTION

Maximum likelihood estimation of (co)variance components generally requires the
numerical solution of a constrained nonlinear optimisation problem (Harville, 1977).
Procedures to locate the minimum or maximum of a function are classified according
to the amount of information from derivatives of the function utilised; see, for

instance, Gill et al (1981). Methods using both first and second derivatives are
fastest to converge, often showing quadratic convergence, while search algorithms
not relying on derivatives are generally slow, ie, require many iterations and function
evaluations.

Early applications of restricted maximum likelihood (REML) estimation to
animal breeding data used a Fisher’s method of scoring type algorithm, following
the original paper by Patterson and Thompson (1971) and Thompson (1973).
This requires expected values of the second derivatives of the likelihood to be
evaluated, which proved computationally highly demanding for all but the simplest
analyses. Hence expectation-maximization (EM) type algorithms gained popularity
and found widespread use for analyses fitting a sire model. Effectively, these use
first derivatives of the likelihood function. Except for special cases, however, they
required the inverse of a matrix of size equal to the number of random effects fitted,
eg, number of sires times number of traits, which severely limited the size of analyses
feasible.

For analyses under the animal model, Graser et al (1987) thus proposed a
derivative-free algorithm. This only requires factorising the coefficient matrix of the
mixed-model equations rather than inverting it, and can be implemented efficiently
using sparse matrix techniques. Moreover, it is readily extendable to animal models
including additional random effects and multivariate analyses (Meyer, 1989, 1991).

Multi-trait animal model analyses fitting additional random effects using a
derivative-free algorithm have been shown to be feasible. However, they are com-
putationally highly demanding, the number of likelihood evaluations required in-
creasing exponentially with the number of (co)variance components to be estimated
simultaneously. Groeneveld et al (1991), for instance, reported that 56 000 evalu-
ations were required to reach a change in likelihood smaller than 10-7 when esti-

mating 60 covariance components for five traits. While judicious choice of starting
values and search strategies (eg, temporary maximisation with respect to a subset
of the parameters only) together with exploitation of special features of the data
structure might reduce demands markedly for individual analyses, it remains true
that derivative-free maximisation in high dimensions is very slow to converge.

This makes a case for REML algorithms using derivatives of the likelihood
for multivariate, multidimensional animal model analyses. Misztal (1994) recently
presented a comparison of rates of convergence of derivative-free and derivative
algorithms, concluding that the latter had the potential to be faster in almost
all cases, in particular that their convergence rate depended little on the number
of traits considered. Large-scale animal model applications using an EM type
algorithm (Misztal, 1990) or even a method of scoring algorithm (Ducrocq, 1993)
have been reported, obtaining the large matrix inverse (or its trace) required by
the use of a supercomputer or applying some approximation. This paper describes



REML estimation under an animal model using first and second derivatives of the
likelihood function, computed without inverting large matrices.

DERIVATIVES OF THE LIKELIHOOD

Consider the linear mixed model

where y, b, u and e denote the vectors of observations, fixed effects, random
effects and residual errors, respectively, and X and Z are the incidence matrices
pertaining to b and u. Let V(u) = G, V(e) = R and Cov(u,e’) = 0, so

that V(y) = V = ZGZ’ + R. Assuming a multivariate normal distribution, ie,
y - N(Xb, V), the log of the REML likelihood (G) is (eg, Harville, 1977)

where X* denotes a full-rank submatrix of X.
REML algorithms using derivatives have generally been derived by differentiating

!2!. However, as outlined previously (Graser et al, 1987; Meyer, 1989), log L can be
rewritten as

where C is the coefficient matrix in the mixed-model equations (MME) pertaining
to [1] (or a full rank submatrix thereof), and P is a matrix,

Alternative forms of the derivatives of the likelihood can then be obtained

by differentiating [3] instead of !2!. Let 0 denote the vector of parameters to be
estimated with elements 9z , i = 1, ... , p. The first and second partial derivatives of
the log likelihood are then

Graser et al (1987) show how the last two terms in !3!, log ICI and y’Py, can
be evaluated in a general way for all models of form [1] by carrying out a series
of Gaussian elimination steps on the coefficient matrix in the MME augmented by
the vector of right-hand sides and a quadratic in the data vector. Depending on the
model of analysis and structure of G and R, the other two terms required in !3!,
log IGI and log IRI, can usually be obtained indirectly as outlined by Meyer (1989,



1991), generally requiring only matrix operations proportional to the number of
traits considered. Derivatives of these four terms can be evaluated analogously.

Calculating logiC! and y’Py and their derivatives

The mixed-model matrix (MMM) or augmented coefficient matrix pertaining to
[1] is

where r is the vector of right-hand sides in the MME.
Using general matrix results, the derivatives of log C ! are

Partitioned matrix results give log IMI = log !C! + log(y’Py), ie, (Smith, 1995)

This gives derivatives

Obviously, these expressions ([7], [8], [10] and [11]) involving the inverse of
the large matrices M and C are computationally intractable for any sizable
animal model analysis. However, the Gaussian elimination procedure with diagonal
pivoting advocated by Graser et al (1987) is only one of several ways to ’factor’
a matrix. An alternative is a Cholesky decomposition. This lends itself readily
to the solution of large positive definite systems of linear equations using sparse
matrix storage schemes. Appropriate Fortran routines are given, for instance, by
George and Liu (1981) and have been used successfully in derivative-free REML
applications instead of Gaussian elimination (Boldman and Van Vleck, 1991).

The Cholesky decomposition factors a positive definite matrix into the product
of a lower triangular matrix and its transpose. Let L with elements lij (l2! = 0



for j > i) denote the Cholesky factor of M, ie, M = LL’. The determinant of a
triangular matrix is simply the product of its diagonal elements. Hence, with M
denoting the size of M,

and from I

Smith (1995) describes algorithms, outlined below, which allow the derivatives of
the Cholesky factor of a matrix to be evaluated while carrying out the factorisation,
provided the derivatives of the original matrix are specified.

Differentiating [13] and [14] then gives the derivatives of log ICI and y’Py as
simple functions of the diagonal elements of the Cholesky matrix and its derivatives.

Calculating logIRI and its derivatives

Consider a multivariate analysis for q traits and let y be ordered according to
traits within animals. Assuming that error covariances between measurements on
different animals are zero, R is blockdiagonal for animals,

where is N the number of animals which have records, and E+ denotes the direct
matrix sum (Searle, 1982). Hence log IRI as well as its derivatives can be determined
by considering one animal at a time.

Let E with elements eij (i ! j = 1, ..., q) be the symmetric matrix of residual or
error covariances between traits. For q traits, there are a total of W = 2q-1 possible



combinations of traits recorded (assuming single records per trait), eg, W = 3 for
q = 2 with combinations trait 1 only, trait 2 only and both traits. For animal i
which has combination of traits w, Ri is equal to Ew, the submatrix of E obtained
by deleting rows and columns pertaining to missing records. As outlined by Meyer
(1991), this gives

where Nw represents the number of animals having records for combination of traits
w. Correspondingly,

Consider the case where the parameters to be estimated are the (co)variance
components due to random effects and residual errors (rather than, for example,

p

heritabilities and correlations), so that V is linear in 0, ie, V = £ 9j0V/09z.
i=l

Defining

with elements dkL = 1, if the klth element ofEw is equal to 9z , and dk! = 0 otherwise,
this then gives

Let e! denote the rsth element of Ewl. For ()i = ekl and 9j = e&dquo;,n, [23] and [24]
then simplify to

where 6rs is Kronecker’s Delta, ie, brs = 1 for r = s and zero otherwise. All other
derivatives of log !R! (ie, for 9j or Oj not equal to a residual covariance) are zero.



For q = 1 and R = (T 2j, [25] and [26] become NQE2 and -N(jE4, respectively (for
oi = oj = U2 E ). Extensions for models with repeated records are straightforward.
Hence, once the inverses of the matrices of residual covariances for all combination
of numbers of traits recorded occurring in the data have been obtained (of maximum
size equal to the maximum number of traits recorded per animal, and also required
to set up the MMM), evaluation of log !R! and its derivatives requires only scalar
manipulations in addition.

Calculating loglGI and its derivatives

Terms arising from the covariance matrix of random effects, G, can often be
determined in a similar way, exploiting the structure of G. This depends on the
random effects fitted. Meyer (1989, 1991) describes log IGI for various cases.

Define T with elements tij of size rq x rq as the matrix of covariances between
random effects where r is the number of random factors in the model (excluding
e). For illustration, let u consist of a vector of animal genetic effects a and some
uncorrelated additional random effect(s) c with Nc levels per trait, ie, u’ = (a’c’).
In the simplest case, a consists of the direct additive genetic effects for each animal
and trait, ie, it has length qNA where NA denotes the total number of animals in
the analysis, including parents without records. In other cases, a might include a
second genetic effect for each animal and trait, such as a maternal additive genetic
effect, which may be correlated to the direct genetic effects. An example for c is a
common environmental effect such as a litter effect.

With a and c uncorrelated, T can be partitioned into corresponding diagonal
blocks TA and TC, so that

where A is the numerator relationship between animals, F, often assumed to be
the identity matrix, describes the correlation structure amongst the levels of c, and
x denotes the direct matrix product (Searle, 1982). This gives (Meyer, 1991)

Noting that all 82T/8()i8()j = 0 (for V linear in 0), derivatives are

where DA = 8TA/a9i and D! = 8Tc/8()i are again matrices with elements 1

if tkl = ()i and zero otherwise. As above, all second derivatives for Oi and 9j not

pertaining to the same random factor (eg, c) or two correlated factors (such as
direct and maternal genetic effects) are zero. Furthermore, all derivatives of log G ) I
with respect to residual covariance components are zero.

Further simplifications analogous to [25] and [26] can be derived. For instance,
for a simple animal model fitting animals’ direct additive genetic effects only as



random effects (r = 1), T is the matrix of additive genetic covariances ai! with
i, j = 1, ... , q. For Oi = ax! and Oj = amn, this gives

with ars denoting the rsth element of T-1. For q = 1 and all = QA, [31] and [32]
reduce to NA(jA2 and -NA(jA4, respectively.
Derivatives of the mixed model matrix

As emphasised above, calculation of the derivatives of the Cholesky factor of
M requires the corresponding derivatives of M to be evaluated. Fortunately, these
have the same structure as M and can be evaluated while setting up M, replacing
G and R by their derivatives.

For Oi and Oj equal to residual (co)variances, the derivatives of M are of the
form

with QR standing in turn for

and

for first and second derivatives, respectively. As outlined above, R is blockdiagonal
for animals with submatrices Ew. Hence, matrices QR have the same structure with
submatrices

and (for V linear in 0 so that éPR/8()/}()j = 0)

Consequently, the derivatives of M with respect to the residual (co)variances can
be set up in the same way as the ’data part’ of M. In addition to calculating the
matrices Ewl for the W combination of records per animal occurring in the data,
all derivatives of the E-1 for residual components need to evaluated. The extra
calculations required, however, are trivial, requiring matrix operations proportional
to the maximum number of records per animal only to obtain the terms in [36]
and (37!.



Analogously, for Oi and Oj equal to elements of T, derivatives of M are

with QG standing for

for first derivatives, and

for second derivatives.
As above, further simplifications are possible depending on the structure of G.

For instance, for G as in [27] and [j2G/å()J}()j = 0,

and Qo2 =

Expected values of second derivatives of logc

Differentiating [2] gives second derivatives of logc

with expected values (Harville, 1977)

Again, for V linear in 0, (9’VlaOiaOj = 0. From [5] and noting that aPla0i =

- P(0V /09z )P, ie, that the last term in [43] is the second derivative of y’Py,



Hence, expected values of the second derivatives are essentially (sign ignored)
equal to the observed values minus the contribution from the data, and thus can be
evaluated analogously. With second derivatives of y’Py not required, computational
requirements are reduced somewhat as only the first M &mdash; 1 rows of 82M/8()i8()j
need to be evaluated and factored.

AUTOMATIC DIFFERENTIATION

Calculation of the derivatives of the likelihood as described above relies on the
fact that the derivatives of the Cholesky factor of a matrix can be obtained

’automatically’, provided the derivatives of the original matrix can be specified.
Smith (1995) describes a so-called forward differentiation, which is a straight-

forward expansion of the recursions employed in the Cholesky factorisation of a
matrix M. Operations to determine the latter are typically carried out sequentially
by rows. Let L, of size N, be initialised to M. First, the pivot (diagonal element
which must be greater than an operational zero) is selected for the current row k.

Secondly, the off-diagonal elements for the row (’lead column’) are adjusted ( Ljk
for j = k + 1, ... , N), and thirdly the elements in the remaining part of L (L2! for
j = k+1, ... , N and i = j, ... , N) are modified (’row operations’). After all N rows
have been processed, L contains the Cholesky factor of M.

Pseudo-code given by Smith (1995) for the calculation of the Cholesky factor
and its first and second derivatives is summarised in table I. It can be seen that
the operations to evaluate a second derivative require the respective elements of
the two corresponding first derivatives. This imposes severe constraints on the
memory requirements of the algorithm. While it is most efficient to evaluate the

Cholesky factor and all its derivatives together, considerable space can be saved by
computing the second derivatives one at a time. This can be done by holding all
the first derivatives in memory, or, if core space is the limiting factor, storing first
derivatives on disk (after evaluating them individually as well) and reading in only
the two required. Hence, the minimum memory requirement for REML using first
and second derivatives is 4 x L, compared to L for a derivative-free algorithm.

Smith (1995) stated that, using forward differentiation, each first derivative

required not more than twice the work required to evaluate log G only, and that
the work needed to determine a second derivative would be at most four times that
to calculate log G.

In addition, Smith (1995) described a ’backward differentiation’ scheme, so

named because it reverses the order of steps in the forward differentiation. It is

applicable for cases where we want to evaluate a scalar function of L, f (L), in our
case log I C + y’Py which is a function of the diagonal elements of L (see [13] and
!14!). It requires computing a (lower triangular) matrix W which, on completion of
the backward differentiation, contains the derivatives of f (L) with respect to the
elements of M. First derivatives of f (L) can then be evaluated one at a time as
tr(W 8M/ 8()r)’

The pseudo-code given by Smith (1995) for the backward differentiation is shown
in table II. Calculation of W requires about twice as much work as one likelihood
evaluation, and, once W is evaluated, calculating individual derivatives (step 3 in
table II) is computationally trivial, ie, evaluation of all first derivatives by backward





differentiation requires only somewhat more work than calculation of one derivative
by forward differentiation. Smith (1995) also described the calculation of second
derivatives by backward differentiation (pseudo-code not shown here). Amongst
other calculations, this involves one evaluation of a matrix W as described above,
for each parameter and requires another work array of size L in addition to space
to store at least one matrix of derivatives of M. Hence the minimum memory
requirement for this algorithm is 3 x L + M (M and L differing by the fill-in
created during the factorisation). Smith (1995) claimed that the total work required
to evaluate all second derivatives for p parameters was no more than 6p times that
for a likelihood evaluation.

MAXIMISING THE LIKELIHOOD

Methods to locate the maximum of the likelihood function in the context of
variance component estimation are reviewed, for instance, by Harville (1977) and
Searle et al (1992; Chapter 8). Most utilise the gradient vector, ie, vector of first
derivatives of the likelihood function, to determine the direction of search.

Using second derivatives

One of the oldest and most widely used methods to optimise a non-linear function
is the Newton-Raphson (NR) algorithm. It requires the Hessian matrix of the
function, ie, the matrix of second partial derivatives of the (log) likelihood with
respect to the parameters to be estimated. Let 0’ denote the estimate of 6 at the
tth round of iteration. The next estimate is then obtained as



where H’ = {å2log£/å()iå()j} and g’ = 10logLI,90il are the Hessian matrix

and gradient vector of log £, respectively, both evaluated at 0 = 0!. While the
NR algorithm can be quick to converge, in particular for functions resembling a
quadratic function, it is known to be sensitive to poor starting values (Powell, 1970).
Unlike other algorithms, it is not guaranteed to converge though global convergence
has been shown for some cases using iterative partial maximisation (Jensen et al,
1991).

In practice, so-called extended or modified NR algorithms have been found to
be more successful. Jennrich and Sampson (1976) suggested step halving, applied
successively until the likelihood is found to increase, to avoid ’overshooting’. More
generally, the change in estimates for the tth iterate in [46] is given by

for the extended NR, B’ = &mdash;T!(H!) !, where T’ is a step-size scaling factor. The
optimum for Tt can be determined readily as the value which results in the largest
increase in likelihood, using a one-dimensional maximisation technique (Powell,
1970). This relies on the direction of search given by H-lg generally being a ’good’
direction and that, for -H positive definite, there is always a step-size which will
increase the likelihood.

Alternatively, the use of

has been suggested (Marquardt, 1963) to improve the performance of the NR
algorithm. This results in a step intermediate between a NR step (! = 0) and
a method of steepest ascent step (K large). Again, ! can be chosen to maximise the
increase in log G, though for large values of K the step size is small, so that there is
no need to include a search step in the iteration (Powell, 1970).

Often expected values of the second derivatives of log G are easier to calculate
than the observed values. Replacing -H by the information matrix

results in Fisher’s method of scoring (MSC). It can be extended or modified in the
same way as the NR algorithm (Harville, 1977). Jennrich and Sampson (1976) and
Jennrich and Schluchter (1986) compared NR and MSC, showing that the MSC was
generally more robust against a poor choice of starting values than the NR, though
it tended to require more iterations. They thus recommended a scheme using the
MSC initially and switching to NR after a few rounds of iteration when the increase
in log G between steps was less than one.

Using first derivatives only

Other methods, so-called variable-metric or Quasi-Newton procedures, essentially
use the same strategies, but replace B by an approximation of the Hessian matrix.
Often starting from the identity matrix, this is updated with each round of iteration,
requiring only first derivatives of the likelihood function, and converges to the
Hessian for sufficient number of iterations. A detailed review of these methods
is given by Dennis and More (1977).



An interesting variation has recently been presented by Johnson and Thompson
(1995). Noting that the observed and expected information were of opposite sign
and differed only by a term involving the second derivatives of y’Py (see [5] and
[45]), they suggested using the average of observed and expected information (AI)
to approximate the Hessian matrix. Since it requires only the second derivatives of
y’Py to be evaluated, each iterate is computationally considerably less demanding
than a ’full’ NR or MSC step, and the same modifications as described above for the
NR (see [47] and [48]) can be applied. Initial comparisons of the rate of convergence
and computer time required showed the AI algorithm to be highly advantageous
over both derivative-free and EM-type procedures (Johnson and Thompson, 1995).

Constraining parameters

All the Newton-type algorithms described above perform an unconstrained
optimisation. To estimating (co)variance components, however, we require variances
be non-negative, correlations to be in the range from -1 to 1 and, for more than
two traits, for them to be consistent with each other; more generally, estimated
covariance matrices need to be (semi-) positive definite. As shown by Hill and
Thompson (1978), the probability of obtaining parameter estimates out of bounds
depends on the magnitude of the correlations (population values) and increases
rapidly with the number of traits considered, in particular for genetic covariance
matrices.

For univariate analyses, a common approach has been to set negative estimates
of variance components to zero and continue iterating. Partial sweeping of B to
handle boundary constraints, monitoring and restraining the size of pivots relative
to the corresponding (original) diagonal elements has been recommended (Jennrich
and Sampson, 1976; Jennrich and Schluchter, 1986). Harville (1977; section 6.3) dis-
tinguished between three types of techniques to modify unconstrained optimisation
procedures to accommodate constraints on the parameter space. Firstly, penalty
techniques operate on a function which is close to log L except at the boundaries
where it assumes large negative values which effectively serve as a barrier, deflecting
a further search in that direction. Secondly, gradient projection techniques are suit-
able for linear inequality constraints. Thirdly, it may be feasible to transform the
parameters to be estimated so that maximisation on the new scale is unconstrained.

Box (1965) demonstrated for several examples that the computational effort to
solve constrained problems can be reduced markedly by eliminating constraints so
that one of the more powerful unconstrained methods, preferably with quadratic
convergence, can be employed. For univariate analysis, an obvious way to eliminate
non-negativity constraints is to maximise log L with respect to standard deviations
and to square these on convergence (Harville, 1977). Alternatively, we could
estimate logarithmic values of variance components instead of the variances. This
seems preferable to taking square roots where, on backtransforming, a largish
negative estimate might become a substantial positive estimate of the corresponding
variance. Harville (1977) cautioned however that such transformations may result
in the introduction of additional stationary points on the likelihood surface, and
thus should be used only in conjunction with optimisation techniques ensuring an
increase in log G in each iteration.



Further motivation for the use of transformations has been provided by the
scope to reduce computational effort or to improve convergence by making the
shape of the likelihood function on the new scale more quadratic. For multivariate
analyses with one random effect and equal design matrices, for instance, a canonical
transformation allows estimation to be broken down into a series of corresponding
univariate analyses (Meyer, 1985); see Jensen and Mao (1988) for a review.
Harville and Callanan (1990) considered different forms of the likelihood for both
NR and MSC and demonstrated how they affected convergence behaviour. In
particular, a ’linearisation’ was found to reduce the number of iterates required
to reach convergence considerably. Thompson and Meyer (1986) showed how a
reparameterisation aimed at making variables less correlated could speed up an
expectation-maximisation algorithm dramatically.

For univariate analyses of repeated measures data with several random effects,
Lindstrom and Bates (1988) suggested maximisation of log £ with respect to
the non-zero elements of the Cholesky decomposition of the covariance matrix
of random effects in order to remove constraints on the parameter space and
to improve stability of the NR algorithm. In addition, they chose to estimate
the error variance directly, operating on the profile likelihood of the remaining
parameters. For several examples, the authors found consistent convergence of the
NR algorithm when implemented this way, even for an overparameterised model.
Recently, Groeneveld (1994) examined the effect of this reparameterisation for
large-scale multivariate analyses using derivative-free REML, reporting substantial
improvements in speed of convergence for both direct search (downhill Simplex)
and Quasi-Newton algorithms.

IMPLEMENTATION

Reparameterisation

For our analysis, parameters to be estimated are the non-zero elements of the lower
triangle of the two covariance matrices E and T, with T potentially consisting of
independent diagonal blocks, depending on the random effects fitted. Let

The Cholesky decomposition of U has the same structure

Estimating the non-zero elements of matrices Lu. then ensures positive definite
matrices Ur on transforming back to the original scale (Lindstrom and Bates, 1988).
However, for the Ur representing covariance matrices, the ith diagonal element of
LUr can be interpreted as the conditional standard deviation of trait i (for random
factor r) given traits 1 to i-1. Conceptually, this cannot be less than zero. Hence, it



is suggested to apply a secondary transformation, estimating the logarithmic values
of these diagonal elements and thus, as discussed above for univariate analyses of
variance components, effectively forcing them to be greater than zero.

Let v denote the vector of parameters on the new scale. In order to maximise log G
with respect to the elements of v, we need to transform its derivatives accordingly.
Lindstrom and Bates (1988) describe briefly how to obtain the gradient vector and
Hessian matrix for a Cholesky matrix LUr from those for the matrix Ur (see also
corrections, Lindstrom and Bates (1994)).

For the ith element of v,

More generally, for a one-to-one transformation (Zacks, 1971)

where J with elements 8()d8vj is the Jacobian of 9 with respect to v.

Similarly,

with the first part of [53] equal to the ith element of (0J’/0vj )(0 10g £/09k) and
the second part equal to ijth element of J’ {ô2log L/ Ô()iÔ()j}J.

Consider one covariance matrix Ur at a time, dropping the subscript r for

convenience, and let u,t and lwx denote the elements of U and LU, respectively.
From U = LL’, it follows that

where min(s, t) is the smaller value of s and t. Hence, the ijth element of J for
()i = Ust and vj = lwx is

For w # x and s, t ! x, this is non-zero only if at least one of s and t is equal to
w. Allowing for the log transformation of the diagonal elements (and using the fact
that 8lmm/8log(lmm) = Lmm for log values to the base e), this gives four different



cases to consider :

For example, for q = 3 traits and six elements in B (ull, ulz, U13, uzz, U23 and

U33) and v (log(lil), lzi, lsi, log(<22), 132, log(l33))

Similarly, the ijth element of {å2()k/ åViåvj} (see [53]) for 9k = u,t, vi = lwx and

1/! = lyz is

Allowing for the additional adjustments due to the log transformation of diago-
nals, [56] is non-zero in five cases (for w 7! t ! x and x, t < w):

For the above example, this gives the first two derivatives of J

In some cases, a covariance component cannot be estimated, for instance, the
error covariance between two traits measured on different sets of animals. On the
variance component scale, this parameter is usually set to zero and simply not
estimated. On the reparameterised (Cholesky) scale, however, the corresponding



new parameter may be non-zero. This can be accommodated by, again, not

estimating this parameter but calculating its new value from the estimates of the
other parameters, similar to the way a correlation is fixed to a certain value by
only estimating the respective variances and then calculating the new covariance
’estimate’ from them.

For example, consider three traits with the covariance between traits 2 and

3, U23, which are not estimable. Setting u23 = 0 gives a non-zero value on
the reparameterised scale of !32 = -121131 /122. Only the other five parameters
(lii, 121, 131, 122, and l33) are then estimated (ignoring the log transformation of
diagonals here for simplicity) while an ’estimate’ of l32 is calculated from those of

121, l31 and l33 according to the relationship above. On transforming back to the
original scale, this ensures that the covariance between traits 2 and 3 remains fixed
at zero.

Sparse matrix storage

Calculation of log £ for use in derivative-free REML estimation under an animal
model has been made feasible for practically sized data sets through the use of
sparse matrix storage techniques. These adapt readily to include the calculation of
derivatives of L. One possibility is the use of so-called linked lists (see, for instance,
Tier and Smith (1989)). George and Liu (1981) describe several other strategies,
using a ’compressed’ storage scheme when applying a Cholesky decomposition to a
large symmetric, positive definite, sparse matrix.

Elements of the matrices of derivatives of L are subsets of elements of L, ie, exist
only for non-zero elements of L. Thus the same system of pointers can be used for L
and all its derivatives, reducing overheads for storage and calculation of addresses of
individual elements (though at the expense of reserving space for zero derivatives
corresponding to non-zero l2!). Moreover, schemes aimed at reducing the ’fill-in’

during the factorisation of M, should also reduce computational requirements for
determining derivatives.

Matrix storage required in evaluating derivatives of log £ can be considerable: for

p parameters to be estimated, there are p first and p(p+1)/2 second derivatives, ie,
up to 1!-p(p+3)/2 times as much space as for calculating log £ only can be required.
Even for analyses with one random factor (animals) only, this becomes prohibitive
very quickly, amounting to a factor of 28 for q = 2 traits and p = 6 parameters, and
91 for q = 3 and p = 12. However, while matrices aLla0i are needed to evaluate
second derivatives, matrices 82L/8()i8()j are not required after a2log ICI/8()i8()j
and 82y’Py / 8()i8()j have been calculated from their diagonal elements. Hence,
while it is most efficient to evaluate all derivatives of each li! simultaneously, second
derivatives can be determined one at a time after L and its first derivatives have
been determined. This can be done by setting up and processing each 82M/8()i8()j
individually thus reducing memory required dramatically.

Software

Extended NR and MSC algorithms were implemented for the ten animal models
accommodated by DFREML (Meyer, 1992), parameterising to elements of the



Cholesky decomposition of the covariance matrices (and logarithmic values of their
diagonals), as described above, to remove constraints on the parameter space.
Prior to estimation, the ordering of rows and columns 1 to M - 1 in M was

determined using the minimum degree re-ordering performed by George and Liu’s
(1981) subroutine GENQMD, and their subroutine SBMFCT was used to establish
the symbolic factorisation of M (all M rows and columns) and the associated
compressed storage pointers, allocating space for all non-zero elements of L. In

addition, the use of the average information matrix was implemented. However,
this was done merely for the comparison of convergence rates without making use
of the fact that only the derivatives of y’Py were required.

For each iterate, the optimal step size or scaling factor (see [47] and !48!) was
determined by carrying out a one-dimensional, derivative-free search. This was done
using a quadratic approximation of the likelihood surface, allowing for up to five
approximation steps per iterate. Other techniques, such as a simple step-halving
procedure, would be suitable alternatives.

Both procedures described by Smith (1995) to carry out the automatic differenti-
ation of the Cholesky factor of a matrix were implemented. Forward differentiation
was set up to evaluate L and all its first and second derivatives to be as efficient as

possible, ie, holding all matrices of derivatives in core and evaluating them simulta-
neously. In addition, it was set up to reduce memory requirements, ie, calculating
the Cholesky factor and its first derivatives together and subsequently evaluating
second derivatives individually. Backward differentiation was implemented storing
all first derivatives of M in core but setting up and processing one second derivative
of M at a time.

EXAMPLES

To illustrate the calculations, consider the test data for a bivariate analysis given
by Meyer (1991). Fitting a simple animal model, there are six parameters. Table III
summarises intermediate results for the likelihood and its derivatives for the starting
values used by Meyer (1991), and gives estimates from the first round of iteration
for simple or modified NR or MSC algorithms. Without reparameterisation, the
(unmodified) NR algorithm produced estimates out of bounds of the parameter
space, while the MSC performed quite well for this first iterate. Continuing to use
expected values of second derivatives though, estimates failed to converge.

Figure 1 shows the corresponding change in log G over rounds of iteration. For
this small example, with a starting value for the additive genetic covariance (QA12)
very different from the eventual estimate, a NR or MSC algorithm optimising the
step size (see equation !47!) failed to locate a suitable step size (which increased
log G) in the first iterate. Essentially, all algorithms had reached about the same
point on the likelihood surface by the fifth iterate, with very little changes in log £
in subsequent rounds. Convergence was considered achieved when the norm of the
gradient vector was less than 10-4. This was a rather strict criterion: changes in
estimates and likelihood values between iterates were usually very small before
it was met. Using Marquardt’s (1963) modification (see [48]), six iterates plus 25





likelihood evaluations were required to reach convergence using the observed
information compared to eight iterates and 34 likelihood evaluations for the average
information while the MSC (expected information) failed in this case. Optimising
the step size (see !47)), 7 + 40, 10 + 62 and 10 + 57 iterates + likelihood evaluations
were required using the observed, expected and average information, respectively.

As illustrated in Figure 2, use of the ’average information’ yielded a very similar
convergence pattern to that of the NR algorithm. In comparison, using an EM
algorithm for this example, 80 rounds of iteration were required before the change
in log £ between iterates was less than 10-4 and 142 iterates were needed before
the average changes in estimates was less than 0.01%.

a 

(T Aij: additive genetic covariances; (T Eij : residual covariances; b log likelihood: values
given differ from those given by Meyer (1991) by a constant offset of 3.466 due to absorp-
tion of single-link parents without records (‘pruning’). Components of first derivatives
of log ,C; see text for definition. d First derivative of log G with respect to Bi. e Second
derivative of log £ with respect to Bi. f Expected value of second derivative of log £ with
respect to Bi. second derivatives of log G with respect to Oi and 0j: observed values
below, expected values above diagonal. h Modification factor for diagonals of matrix of
second derivatives; see [48] in text. Parameter on transformed scale. Asymptotic lower
bound sampling error, derived from inverse of observed information matrix.



Table IV gives characteristics of the data structure and model of analysis for
applied examples of multivariate analyses of beef cattle data. The first is a bivariate
analysis fitting an animal model with maternal permanent environmental effects as
an additional random effect, ie, estimating nine covariance components. The second
shows the analysis of three weight traits in Zebu Cross cattle (analysed previously;
see Meyer (1994a)) under three models of analysis, estimating up to 24 parameters.

For each data set and model, the computational requirements to obtain deriva-
tives of the likelihood were determined using forward and backward differentiation

!NR: Newton-Raphson; MSC: method of scoring; MIX: Starting as MSC, switching
to NR when change in log likelihood between iterates drops below 1.0; and DF: derivative-
free algorithm. b CB: Cannon bone length; HH: hip height; WW: weaning weight; YW:
yearling weight; FW: final weight. !1: simple animal model; 2: animal model fitting
dams’ permanent environmental effect; and 5: animal model fitting both genetic and
permanent environmental effects. d A: Forward differentiation, processing all derivatives
simultaneously; B: Forward differentiation, processing second derivatives one at a time;
C: Backward differentation. 0: No reparameterisation, unmodified; S: reparameterised
scale, optimising step size, see [47] in text; T: reparameterised scale, modifying diagonals
of matrix of second derivatives, see [48] in text. f Using backward differentiation to obtain
derivatives.





as described by Smith (1995). If the memory available allowed, forward differentia-
tion was carried out for all derivatives simultaneously and considering one matrix
82M/8()i8()j at a time. Table IV gives computing times in minutes for calcula-
tions carried out on a DEC Alpha Chip (DIGITAL) machine running under OSF/1 I
(rated at about 200 Mflops). Clearly, the backward differentiation is most compet-
itive, with the time required to calculate 24 first and 300 second derivatives being
’only’ about 120 times that to obtain log L only.

Starting values used were usually ’good’, using estimates of variance components
from corresponding univariate analyses throughout and deriving initial guesses
for covariance components from these and literature values for the correlations
concerned. A maximum of 20 iterates was carried out, applying a very stringent
convergence criterion of a change in log L less than 10-6 between iterates or a value
for the norm of the gradient vector of less than 10-4 as above.

The numbers of iterates and additional likelihood evaluations required for each
algorithm given in table IV show small and inconsistent differences between them.
On the whole, starting with a MSC algorithm and switching to NR when the change
in log G became small and applying Marquardt’s (1963) modification (see !48!)
tended to be more robust (ie, achieve convergence when other algorithm(s) failed)
for starting values not too close to the eventual estimates. Conversely, they tended
to be slower to converge than an NR optimising step size (see !47)) for starting
values very close to the estimates. However, once the derivatives of log G have
been evaluated, it is computationally relatively inexpensive (requiring only simple
likelihood evaluations) to compare and switch between algorithms, ie, it should be
feasible to select the best procedure to be used for each analysis individually.

Comparisons with EM algorithms were not carried out for these examples.
However, Misztal (1994) claimed that each sparse matrix inversion required for
an EM step took about three times as long as one likelihood evaluation. This
would mean that each iterate using second derivatives for the three-trait analysis
estimating 24 highly correlated (co)variance components would require about the
same time as 40 EM iterates, or that the second derivative algorithm would be
advantageous if the EM algorithm required more than 462 iterates to converge.

DISCUSSION

For univariate analyses, Meyer (1994b) found no advantage in using Newton-type
algorithms over derivative-free REML. However, comparing total cpu time per
analysis, using derivatives appears to be highly advantageous over a derivative-
free algorithm, for multivariate analyses, the more so the larger the number of
parameters to be estimated. Furthermore, for analyses involving larger numbers of
parameters (18 or 24), the derivative-free algorithm converged several times to a
local maximum, a problem observed previously by Groeneveld and Kovac (1990),
while the Newton-type algorithm appeared not be affected.

Modifications of the NR algorithm, combined with a local search for the optimum
step size, improved its convergence rate. This was achieved primarily by safe-
guarding against steps in the ’wrong’ direction in early iterates, thus making the
search for the maximum of the likelihood function more robust against bad starting
values. With likelihood evaluations requiring only a small fraction of the time



required per NR iterate, this generally resulted in reduction in the total cpu time
required per analysis. Similarly, a reparameterisation removed constraints on the
parameters, and thus reduced the incidence of failure to converge because estimates
were out of the parameter space. However, for cases where maximisation on the
original scale was successful, this tended to increase the number of iterates required.

Recently, the rediscovery of an efficient algorithm to invert a large sparse matrix
(Takahashi et al, 1973) has made the use of algorithms which require the direct
inverse of the coefficient matrix in the mixed-model equations feasible for large
animal model analyses. Hence we now have a range of REML algorithms of
increasing complexity available. These range from derivative-free procedures to
first derivative methods (with or without the approximation of second derivatives,
either by finite differences or consecutive updates) to algorithms for which second
derivatives of the likelihood (observed, expected or their average) are calculated.
Each has its particular computational requirements, in terms of cpu time and

memory required, and convergence behaviour. There is no globally ’best’ method;
the choice in a particular case is determined by the resources available, model to
be fitted and size of the data set to be analysed.
On the whole, the more parameters are to be estimated and the stronger sampling

correlations between parameters are (eg, for models including direct and maternal
effects and direct-maternal covariances), the more advantageous second derivative
methods tend to become.

CONCLUSIONS

Evaluation of derivatives of the likelihood for animal models without the need to
invert large matrices is feasible. This is achieved through a straight extension of the
methodology applied in calculating the likelihood only. Smith’s (1995) automatic
differentiation procedure adds a valuable tool to the numerical procedures available.
A simple reparameterisation transforms the constrained maximisation problem

posed in the estimation of variance components to an unconstrained one. This allows
the use of an (extended) NR algorithm to locate the maximum of the likelihood
function. It is equally useful for Quasi-Newton algorithms approximating second
derivatives.

Experience so far has shown second derivative algorithms to be highly advanta-
geous over derivative-free procedures for multiparameter problems, in terms of both
computing time required and robustness against convergence to local maxima. Sav-
ings in computing time, however, are obtained at the expense of extra memory
required.
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