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Summary - Using a system of recurrence equations, best linear unbiased prediction
applied to a reduced animal model (RAM) is presented for marker-assisted selection. This
approach is a RAM version of the method with the animal model to reduce the number of
equations per animal to one. The current RAM approach allows simultaneous evaluation
of fixed effects and total additive genetic merit which is expressed as the sum of the
additive genetic effects due to quantitative trait loci (QTL) unlinked to the marker locus
(ML) and the additive effects due to the QTL linked to the ML. The total additive genetic
merits for animals with no progeny are predicted by the formulae derived for backsolving.
A numerical example is given to illustrate the current RAM approach.
marker-assisted selection / reduced animal model / best linear unbiased prediction /
total additive genetic merit / combined numerator relationship matrix

Résumé - Utilisation d’un modèle animal réduit pour prédire la valeur génétique
globale dans la sélection assistée par marqueur. Sur la base d’un système d’équations
de récurrence, la méthode du meilleur prédicteur linéaire sans biais appliquée à un modèle
animal réduit (MAR) est présentée pour la sélection assistée par marqueur. Cette méthode
est une version MAR de celle du modèle animal pour réduire à un le nombre d’équations
par animal. Cette méthode MAR permet d’estimer simultanément les effets fixés et la
valeur génétique globale, qui est la somme des effets génétiques additifs des locus de
caractère quantitatif (QTL) non liés au locus marqueur et des effets additifs des QTL
liés au locus marqueur. La valeur génétique globale des animaux sans descendance est
prédite par un système d’équations reconstitué à partir du système principal. Un exemple
n2imëriqué est donné pour illustrer la méthode MAR présentée ici.

sélection assistée par marqueur / modèle animal réduit / meilleur prédicteur linéaire
sans biais / valeur génétique additive totale / matrice de parenté combinée
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INTRODUCTION

Marker-assisted selection (MAS) is expected to contribute to genetic progress by
increasing accuracy of selection, by reducing generation interval and by increasing
selection differential (eg, Soller, 1978; Soller and Beckmann, 1983; Smith and
Simpson, 1986; Kashi et al, 1990; Meuwissen and van Arendonk, 1992), especially
for lowly heritable traits (Ruane and Colleau, 1995).

Fernando and Grossman (1989) presented methodology for the application of
best linear unbiased prediction (BLUP; Henderson, 1973, 1975, 1984) to MAS in
animal breeding. Using an animal model (AM) with additive effects for alleles at
a marked quantitative trait locus (MQTL) linked to a marker locus (ML) and
additive effects for alleles at the remaining quantitative trait loci (QTL) which are
not linked to the ML, they showed the approach to simultaneous evaluation of fixed
effects, effects of MQTL alleles, and effects of alleles at the remaining QTL. The
number of equations required in the AM approach is f + q(2m + 1) where f, q and
m are the number of fixed effects, the number of animals in the pedigree file and
the number of MQTLs, respectively. Therefore, the application of the AM approach
may be limited to smaller data sets. Accordingly, Cantet and Smith (1991) derived
a reduced animal model (RAM) version of Fernando and Grossman’s approach, by
which the total number of equations to be solved could be considerably reduced.
The total additive genetic merit, ie, the sum of the value for polygenic effects and
gametic effects can be predicted directly by an AM procedure (van Arendonk et al,
1994). The number of equations required in the procedure is f +q since the number
of equations per animal is reduced to one by combining information on the MQTL
and the remaining QTL into one numerator relationship matrix.

BLUP methods for MAS require computation of the inverse of the conditional
covariance matrix of additive effects for the MQTL alleles. Fernando and Grossman
(1989) derived an algorithm to compute the inverse, which requires not only
information on marker genotypes but also information on the parental origin of
marker alleles. Wang et al (1995) extended Fernando and Grossman’s work to
situations where paternal or maternal origin of marker alleles can not be determined
and where some marker genotypes are uninformative.

In this paper, a RAM approach to the prediction of total additive genetic merit is
presented. The number of equations in the system for this RAM approach becomes
of the order f + ql where ql is the number of parental animals. Also, a small
numerical example is given to illustrate the current approach.

THEORY

In the derivations, one MQTL and one observation per animal are assumed for
simplicity. The conditional covariance matrix between additive effects of the MQTL
alleles, given the marker information, is based on the recursive equation which was
presented by Wang et al (1995).



AMs for MAS

An AM discussed by Fernando and Grossman (1989) is written as

where y is the n x 1 vector of observations, 8 is the f x 1 unknown vector of fixed
effects, u is the q x 1 random vector with the additive genetic effects due to QTL
not linked to the ML, v is the 2q x 1 random vector with the additive effects of the
MQTL alleles, e is the n x 1 random vector of residual effects, and X, Z and P are
n x f, n x q and q x 2q known incidence matrices, respectively. The expectation
and dispersion matrices for the random effects are assumed to be

where A,! is the numerator relationship matrix for the QTL not linked to the ML,
Av is the gametic relationship matrix for the MQTL, I is an identity matrix, and
a u 2,a2 and or2 are the variance components for the additive genetic effects due to
QTL unlinked to the ML, for the additive effects of the MQTL alleles and for the
residual effects, respectively. The mixed model equations for equation [1] are

where &OElig;u = a£ la£ and &OElig;v = afl lafl.
On the other hand, the total additive genetic merit is expressed as the sum of the

additive genetic effects due to QTL not linked to the ML and the additive effects
of the MQTL alleles, or a = u + Pv. Then, as discussed by van Arendonk et al
(1994), equation [1] can be written as

With the model !3!, the variance-covariance structure for the total additive genetic
merit a is given by

where Aa is the combined numerator relationship matrix, and a 2(= o! + 2a!) is
the variance component of the total additive genetic merit. Assumptions on the
expectation and dispersion parameters for the random effects in the model [3] are
then expressed as



As described by van Arendonk et al (1994), the mixed model equations are

The proposed RAM approach for MAS

The vectors y, u and v in equation [1] can be partitioned as y = [yp’ Yo! ! ,
u = [up’ uo’ !’ and v = ( vP’ V 0’ ]’, respectively, where the subscripts p and o
refer to animals with progeny and without progeny, respectively. Then Cantet and
Smith (1991) discussed the RAM version of the model of Fernando and Grossman
(1989).

In the AM given as equation (3!, the vector a is partitioned as a = [ap’ ao’] ,
where ap and ao represent the total additive genetic merit for the parents and for
the non-parents, respectively. With the similar idea used in y, X, Z and e, the
RAM of equation [3] can be written as

For the RAM, it is necessary that ao is expressed as a linear function of ap. Then
we utilize a system of recurrence equations, as follows

where K is a matrix relating ao to ap and is defined by

and (p is the vector of the residual effects. The vectors ap and ao are expressed
as ap = up + Ppvp and ao = Uo + Povo, respectively. Moreover, Uo and vo can

be represented by linear functions of up and vp, respectively (Cantet and Smith,
1991). The additive genetic effects due to QTL not linked to the ML of an animal
can be described as the sum of the average of those of its parents and a Mendelian
sampling effect, or

where the matrix T has zero elements except for 0.5 in the column pertaining to a
known parent, and m is a vector of the Mendelian sampling effects.

The relationship between Vo and vp is written as

where B is a matrix relating the additive MQTL effects of animals to those of
parents, and E is a vector of the segregation residuals. If the situations where the
parental origin of marker alleles is not determined are considered, as discussed by
Wang et al (1995), B contains at most four non-zero elements in each row. If s



and d stand for the sire and the dam of animal i, respectively, in scalar notation
equation [10] is rewritten, as follows

where v! (1 = 1 or 2 and x = i, s or d) are the corresponding elements of vo and

vp. The coefficients b!k (k = 1,2,3 3 or 4) are the conditional probabilities that Q!,
is a copy of QP (m = 1 or 2 and p = s or d), given the marker information, where
Q! stands for the MQTL allele linked to the allele M! at the QTL (Wang et al,
1995). Also, ei and e? are the segregation residual effects.

Consequently, in equation [8] the vector corresponding to animal i of K can be
computed as

where Aap, Aup and Avp are appropriate submatrices of Aa, Au and Av, respec-
tively, ti is the vector corresponding to animal i of T, qi is the matrix corresponding
to animal i of B, 1 is the vector ( 1 1 )! and 0 stands for the direct product op-
erator.

Using equation [7] in equation [6] gives

and further equation !11! can be arranged as

For this model (12!, the assumptions for expectations and dispersion parameters of
ap and 0 are given by

where the matrix R is expressed as

and then the elements of 0 are calculated by



If we denote 4P + Io0! by Ro, then the inverse matrix of Ro can be obtained, as
follows

with s. = Ro, i-lro, 21, where roj is the subvector corresponding to animal i of Ro,
which contains elements for animals 1 to i - 1.

Thus, the mixed model equations for equation [12] are written as

Backsolving for animals with no progeny

The total additive genetic effects of animals with no progeny can be predicted from
the following equations

The inverse of 0 can be obtained according to equation !14!.

EXAMPLE

We use a small example data set including six animals, four animals having progeny
and two animals with no progeny, as given in table I.

We assume r = 0.1, where r is the recombination rate between the ML and the
MQTL. Then the gametic relationship matrix for the MQTL is as given in table II.
The variance components assumed are a£ = 0.3, Qv = 0.05, Qa = 0.4 and or2 = 0.8.
The incidence matrix X for fixed effects is assumed to be



and the matrix W in equation [12] is

The inverse matrix of R is given as

where s6 in equation [14] is -0.00837552. Therefore, the coefficient matrix in

equation [15] becomes



and the vector of right-hand side is

Consequently, the vector of solutions for equation [15] is given as

and also, the vector of back-solutions in equation [16] is

While the orders of the mixed model equations in the AMs of Fernando and
Grossman (1989) and van Arendonk et al (1994) and in the RAM of Cantet and
Smith (1991) are 20, 8 and 14, respectively, that in the current RAM approach is
6, because animals 5 and 6 are non-parents. The solutions obtained by the current
approach are the same as the corresponding ones calculated according to AMs of
Fernando and Grossman (1989) and van Arendonk et al (1994).

DISCUSSION

For marker-assisted selection using BLUP, the AM approach was presented first
by Fernando and Grossman (1989), and its RAM version was described by Cantet
and Smith (1991). These AM and RAM approaches permit best linear unbiased
estimation of fixed effects and simultaneous BLUP of the additive genetic effects
due to QTL unlinked to the ML and the additive effects due to the MQTL.
On the other hand, van Arendonk et al (1994) discussed an AM method to

reduce the number of equations per animal to one by combining information on
MQTL and QTL unlinked to the ML into one numerator relationship matrix. Their
method allows the prediction of only the total additive genetic merit in addition
to the estimation of fixed effects. Accordingly, however, the size of mixed model
equations required in their method can be smaller than those for the approaches
by Fernando and Grossman (1989) and Cantet and Smith (1991).

The current approach is a RAM version of the method presented by van
Arendonk et al (1994), and is given using a system of recurrence equations. In this
RAM approach, the conditional covariance matrix for the MQTL can be computed
by the method described by Wang et al (1995) which does not require assigning
the origin of the marker alleles and accounts for inbred parents. With the current
approach, there is a reduction expected in the size of mixed model equations since
for the random effects only the equations for parental animals are required and
the number of equations per parental animal is only one. However, one feature
of the current method is that the matrix R defined in equation [13], essentially
Ro = 0 + IoQe, is not diagonal, and needs to be inverted before introduction into
equation (15!. The computing algorithm shown in this paper could be one of the
strategies for the practical calculation. Another feature of our approach is that
sparseness in the coefficient matrix would be more destroyed, which could result
in higher storage requirements. However, this may lead to easier convergence and



reduction of computing time. Further comparisons between the current RAM and
other approaches, for relative computational properties, are needed.

Hoeschele (1993) derived an AM approach considering equations for total addi-
tive genetic merits and additive effects due to the MQTL, where MQTL equations
for animals not typed and certain other animals are absorbed. The method, for
realistic situations, would also lead to a large drop in the number of equations re-
quired. A RAM consideration of Hoeschele’s approach has been given by Saito and
Iwaisaki (1996).

The BLUP methods for MAS, including the current RAM approach, require
the knowledge of the recombination rate (r) between the ML and the MQTL and
the additive genetic variance explained by MQTL (Qv). Since true values of these
parameters are usually unknown in practice, it is necessary that they are estimated.
As discussed, eg, by Weller and Fernando (1991), van Arendonk et al (1993) and
Grignola et al (1994), with the assumption of effects of MQTL alleles normally
distributed, these parameters can be estimated by the likelihood-based methods
such as restricted maximum likelihood (Patterson and Thompson, 1971).
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