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Summary - Multistage selection index is an important extension to single stage selec-
tion index for genetic improvement of multiple traits. Recently, a multistage selection
procedure, referred to as selection index updating, has been developed. This procedure
combines several desired aspects of independent culling and selection index. In this study,
we directly extend selection index updating to cases of restricted multistage selection in-
dices by imposing restrictions for solving index coefficients. The resulting indices restrict
genetic changes to zero or to some proportion in the chosen characters or linear functions
of characters. As such, it makes multistage selection indices more flexible. The possibility
of imposing restrictions on different stages is also discussed. A numerical example is given
to illustrate the calculation of restricted multistage selection indices.

independent culling / multistage selection / restricted selection index / sequential
selection

Résumé - Index contraints dans la sélection à étapes. L’index de sélection à plusieurs
étapes est une extension importante de l’index de sélection à une seule étape. Récemment,
Xu et Muir ont développé une procédure de sélection à plusieurs étapes appelée index
de sélection avec mise à jour. Cette procédure combine plusieurs aspects intéressants de
la sélection sur index et de la sélection à nivéaux indépendants. Dans cette étude, nous
étendons directement la mise à jour des index de sélection au cas d’index de sélection à
plusieurs étapes en imposant des restrictions pour trouver les coefficients des index. Les
index correspondants contraignent les progrès génétiques à être nuls ou à être dans des
rapports donnés pour des caractères ou des combinaisons de caractères. De la sorte, les
index de sélection multiétapes sont plus souples. La possibilité d’imposer des restrictions
à différentes étapes est aussi discutée. Un exemple numérique est donné pour illustrer le
calcul des index de sélection multiétapes contraints.
sélection à niveaux indépendants / sélection multiétapes / index de sélection con-
traint / sélection séquentielle

INTRODUCTION

The genetic merit of a plant or an animal is often defined as a function of several
traits, and is predicted by an index that combines information on its own and
relatives’ measurements. Smith (1936) and Hazel (1943) presented a linear index



that maximizes the improvement of an overall genetic value for all traits. Later,
Kempthorne and Nordskog (1959) introduced the idea of restricted selection index,
which holds certain characters constant while allowing other characters to increase
freely. Tallis (1962) and Harville (1975) extended this idea to the case where some
traits can be changed by amounts proportional to a predetermined selection goal.
Rao (1962) presented a method for computing an index to improve one trait
while requiring changes in other traits to be in specific directions. James (1968)
showed how restrictions could simultaneously be imposed on the genetic results
of selection and on the index weighting factors. The theory of restricted selection
indexes was further extended by Niebel and Van Vleck (1982). They introduced
fixed and proportional restrictions when more than one selection index is used in a
population. A detailed review of restricted selection indices was given by Brascamp
( 1984) .
When traits have a developmental sequence in ontogeny or there is a large dif

ference in the cost of measuring various traits, independent culling or multistage
index selection for multiple trait genetic improvements is the most efficient proce-
dure with respect to cost saving owing to the possibility of early culling (Young and
Weiler, 1960; Young, 1964; Namkoong, 1970; Cunningham, 1975; Ducrocq and Col-
leau, 1989; Norell et al, 1991). In most cases, the extension of these developments
for independent culling selection to the case of selecting combination of traits at
each stage is straightforward. Recently, Xu and Muir (1991, 1992) developed a mul-
tistage selection procedure, referred to as selection index updating, that combines
several desired aspects of independent culling and selection index. Use of selection
index updating allows breeders to determine the optimum truncation points for the
maximization of genetic gain in aggregate breeding value, economic return in terms
of genetic gain per unit cost, or profit.

In all multistage selection procedures presented by those authors, the selection
goal was to improve all characters without restrictions. However, a breeder may be
interested in increasing the overall genetic gain with restrictions that certain traits
remain constant or change in a predetermined amount. For instance, a poultry
breeder may feel that mean egg size should be kept at a constant intermediate
level while using a multistage selection index to maximize overall economic value.
The breeder may manage this based on body weight and egg weight measured at
the first stage, and production at the second stage. Hence, a two-stage restricted
selection index may arise in practice. The purpose of the present note is to extend
restricted single stage selection indices to the case of restricted multistage selection
indices.

THEORY

In subsequent derivations the assumptions and notation will be similar to those of
Xu and Muir (1992). For convenience, the relevant notation is summarized below:
y = an n x 1 vector of phenotypic values of n traits with elements Yi,
g = a k x 1 vector of genetic values of k traits to be improved with elements gi,
w = a k x 1 vector of economic weights with elements wj,
Z = bTy, selection index, where the superscript T denotes matrix transposition,



H = w!g, the aggregate breeding value,
P = Var(y), an n x n phenotypic variance-covariance matrix,
G = Cov(y, gT), an n x k genetic covariance matrix, and
Gr = an n x r matrix corresponding to the r columns (restrictions) of G.

Suppose that n traits are to be selected in m stages (m < n). The phenotypic
values of n traits, y, can be partitioned into m subvectors, Yl, y2 ... Y.&dquo;,,. For
example, if there are four traits to be selected in three stages, yl and y2 are

measured in the first stage, y3 is obtained in the second stage, and y4 is measured
in the third stage, then y = [Yl Y2 y3 y4!T , Yi = [Yl y2)T ! Y2 = [Yl y2 y3)T !
and y3 = !yl y2 Y3 y4!T For simplicity, vector n = {nl, n2, ... , I nn represents the
number of traits measured up to stage m, where ni denotes the number of traits
measured up to the ith stage. Let z = [Zl Z2 Z3!T be a 3 x 1 vector of the updated
selection indices defined by Xu and Muir (1992), then the indices for the above
example are

is a 4 x 3 matrix with the ith column, bi, representing the weights for the selection
indices at the ith stage. Thus, the selection index at the ith stage is

According to Yl, y2, ... , ym, P and G can be correspondingly partitioned as:
- - - -

Let Q be a submatrix of P and A be a submatrix of G, ie, Qij = [P]!
and Ai = [G]i for i, j = 1, 2, ... , m. Note that [G]i differs from Gr defined
before. Selection response based on an index that maximizes the economic values
of selected individuals is proportional to pZH (Kempthorne and Nordskog, 1959),
the correlation between index (Zi) values and genetic merits (H = wTg), that is

where A is the covariance matrix of genetic values of k traits. The bis are found
such that pZH is a maximum or equivalently



is a minimum subject to the restrictions

where gr is a r x 1 vector of genetic values for r restricted traits, kr is a r x 1 vector
of desired values, Z(i-l) = [Zi,..., Z!i-1!! is a vector of selection indices, and B!i_1!
is a submatrix of B that contains index coefficients up to stage i -1. To insure there
exists a solution, it has to be that r < ni, ie, the number of restrictions at a given
stage should be less than the number of characters at the same stage. The first
restriction [6] constrains some characters to be changed in predetermined amounts
(Tallis, 1962). The second restriction !7!, requiring that indices at different stages
are independent, insures the existence of an exact solution for truncation points
without resorting to multiple integration (Xu and Muir, 1991, 1992).

After introducing Lagrange multipliers of A and T (A is an r vector and T is an
m - 1 vector), the optimum bi is found by minimizing the following quantity with
respect to bi:

Vector differentiation gives

where Ri(i-1) = B!i-1)(a(2-1)i! From constraints [6] and !7!, we obtain

where R(2_1)i = Qi(i-1)B(i-1) = RZ!i-i)! After solving equations [lla, b] for A and
T and substituting them into [10], we have

where I is an identity matrix with the same dimension as Qii, and

Equation [12] is the solution for coefficients for a restricted multistage selection
index. It has a form similar to the optimal single stage selection index of Tallis
(1962). Note that when kr = 0, the above expression reduces to:



This is similar to the restricted single stage selection index of Kempthorne
and Nordskog (1959). When r = 0, ie, Gr = 0, equation [14] gives the ordinary
unrestricted multistage selection index presented by Xu and Muir (1992)

Let Ozi be the coefficient of standardized selection intensity for the ith selection
index and Oz = [Azi ... Azi ... Oz.&dquo;,!, then the vector of genetic gains, OG, is

predicted by

where OGi, the ith element of AG, is the genetic gain of the ith trait. The total
genetic change in aggregate breeding value is

where w are the economic values of the traits, and the Ai is defined as before.

Note that equation [17] provides the linear relationship between OH and Az,
but does not indicate how to select the optimal set of Az so that OH is maximized.
Let ui be the truncation point corresponding to selection intensity Ozi and

q2 = 1-!(ui) be the proportion selected for the ith index, where 4) is the cumulative
distribution function of the standard normal distribution. The interrelationship
among Azi, ui and qi is

Substituting equation [18] into [17] and using Newton’s method, the optimum
AH can be found by maximizing AH with respect to u = [Ul u2 ... umV under
the constraint

where p is a predetermined total proportion selected (Xu and Muir, 1992; Xu et al,
1995).

NUMERICAL EXAMPLE

Data from a classical example of index selection given by Hazel (1943) and
Cunningham (1975) are used to illustrate the computation of restricted multistage
selection indices. The information used in a swine selection scheme comprises the
five traits: pig’s own market weight (yl), pig’s own market score (y2), productivity
of dam (y3), average market weight of pig and littermates (y4), and average market
score of pig and littermates (Y5). Only the first three traits are assumed to be
economically important (by Hazel, 1943; Cunningham, 1975). The economic weights



are w = !1!3,1, 2!. The estimated phenotypic and genotypic variance-covariance
matrices for the five traits are:

The overall proportion selected is set to p = 6%, having a standardized selection
differential, Az = 1.98538.
A three-stage selection is performed with yl and y2 selected at the first stage, y3

at the second stage, and y4 and y5 at the third stage. This selection procedure is
simply denoted as n = {2, 3, 5}. We now assume that the selection goal is to keep y2
constant or change at a desired level, while allowing yl and y3 to increase without
constraints. The unrestricted three-stage selection has index coefficients that are
determined by equation !15!, ie,

A multidimensional Newton’s iterative equation system is used to search for the
optimal truncation points (uis) (Xu and Muir, 1992). The sets of truncation points
(ui), standardized selection differentials (Azi), and the proportions selected in each
stage (qi) are:

The gains for three traits predicted from this index are AG = [18.98569 0.63881
0.33699]T and the aggregate economic value is AH = 7.64128.



Assume now that we want to maximize the response from selection with the
restriction of no change (ky2 = 0) in attribute y2, where the subscript y2 is used to
denote the corresponding values for the second trait (Y2) and the same thereafter.
For this case, Gy2 = [13.5093 2.2391 0.0000 8.1056 1.3435]!. That is, Gy2
consists of the second column of G. The restricted index coefficients computed
from equation [14] are:

Using the same sets of uis, Azis and qis as those obtained from the unrestricted
selection indices, we obtain genetic gains, AG = [15.5069 0.0000 0.3247]T,
and aggregate economic value, OH = 5.81835. Therefore, selection on restricted
multistage indices should result in zero gain in y2 as expected. As a further check,
it can be verified that Cov(gy2, Zi) = Gy b2 = 0, when ky2 = 0.

As a final example, we demonstrate an index that maximizes economic gain while
allowing y2 to reach a predetermined value (Tallis, 1962, 1968). Let COV(gy2, Zi) =
- 0.2. Then the restricted selection procedure has index coefficients,

A summary of genetic gains and aggregate breeding values from single- or multi-
stage selection with or without restrictions is shown in table I. The genetic gain
from one-stage selection is used as a standard for comparing the two- or three-stage
selection procedure. The unrestricted two-stage selection presented here is the same
as Cunningham’s selection procedure 4 except that the actual truncation point in
the first stage selection is predetermined in Cunningham’s procedure 4(u = 1.2338)
with a proportion selected on h of 38% and is optimized in selection index updating
(u = 1.5091) with a proportion selected on Zl of 6.56%. This leads to the aggregate
breeding value of 8.0773 in this note and of 7.8675 presented by Cunningham (1975).

For a given stage, the index is computed from Zi = bi Yi’ As selection stages
advance, more and more information is incorporated into the index. In practice, it
is necessary that restrictions on some characters should be incorporated into the
index at a later stage when the trait measurements become available. This problem
is solved by modifying Gr and kr of equation [12] for each stage of selection since



the index is derived with Cov(Zi, Z!) = 0 for i !4 j. For example, suppose we desired
no genetic changes for y2 and y3 in a three-stage selection with n = {2, 4, 5}. Thus,
the constraint on y2 would begin at the first stage and would begin on y3 at the
second stage. Under such a selection procedure, the restricted selection indices give
genetic gains of AG = !15.28095 0.0000 O.OOOO!T whereas the unrestricted selection
indices produce genetic gains of AG = [18.90569 0.65909 0.41079]T. From this
it can be seen that selection on restricted multistage indices where restrictions are
incorporated into index at different stages results in zero gains as expected.

DISCUSSION

There are a number of practical situations to which the techniques of the previous
sections could be applied. For example, in the selection of dual-purpose bulls for
use in artificial insemination, the bulls are first selected using information from
their parents; they are subsequently screened for their own performance, and finally
selected on the basis of a progeny test of their daughters. In that case, selection can
be regarded as a stochastic process in continuous time. For practical and economic
reasons the selection is performed in several stages in such situations (Cunningham,
1975; Niebel and Van Vleck, 1982; Norell et al, 1991; Xu et al, 1995).
When selection uses all information collected from a number of traits performed

in several stages, the selection objective usually remains constant. That is, we are
interested in the quantity associated with primary product. In some situations,
certain growth patterns may be more economical, or otherwise more desirable,
than others. For instance, in the example given by Tallis (1968) one desirable
characteristic in fat lamb production is rapid and early increase in body weight.
On the other hand, if the body weight increases too much, some production
and marketing problems may arise. Hence, selection is a process to use available
information to push breeds towards the optimum growth pattern (Tallis, 1968;
Harville, 1975; Niebel and Van Vleck, 1982). The technique of restricted selection
index is justified as a means to achieve a prespecified selection goal (Lin, 1989).

The procedure given here either restricts genetic changes to zero or to propor-
tional changes in chosen characters or linear functions of characters. In this note,
the restrictions are achieved by calculating bi under certain constraints and are
unrelated to economic weighting factors. The restrictions also might be achieved by
modifying economic weighting factors (James, 1968; Lin, 1989).

The effect of restricted multistage selection indices is similar to restricted sin-
gle stage selection indices. For instance, the restriction is obviously achieved at
the expense of total aggregate genetic gain as compared with unrestricted indices
(table I). Selection on restricted multistage indices produces an even lower gain
than that on restricted single stage index. This is similar to cases of unrestricted
selection where the multistage selection index would result in less genetic gain
than the single stage selection index owing to early culling (Xu and Muir, 1991).
However, reduction in genetic gains, as one referee pointed out, is not necessarily
coupled with restricted index selection. Because economic weights in the numerical
example are assumed to be known, then one of the traits was restricted to a less op-
timum level. As such, genetic gain for the restricted index is significantly less than
that obtained with the optimum index (table I). Nevertheless, in many situations





knowledge of economic values is vague, especially over the long term (Pesek and
Baker, 1969; Niebel and Van Vleck, 1982; Itoh and Yamada, 1988a, b). Under
these circumstances, it may be more efficient to give relative values or to assign
predetermined amounts of genetic gains to the traits (Tallis, 1962; Itoh and Yamada,
1988a, b).

The coefficients for the restricted index presented in this note are found so that
the correlation between Zi and H at each stage is maximum with constraints

Cov(Zi, Z!) = 0 for i =1= j. An index constructed in that manner will have ex-
plicitly determined solutions for the truncation points. However, genetic gain will
be somewhat less than that obtained without constraints (Xu and Muir, 1992).
But Xu and Muir (1991) also showed that under certain conditions the efficiency
of restricted multistage index selection may greatly exceed that of conventional
multistage selection because the latter dose not incorporate information from pre-
vious stages of selection into the current stage. Owing to computational advantages
over best linear unbiased prediction (BLUP) under selection models, this procedure
can be used to effectively design performance testing and selection programs that
will optimize profit in commercial breeding (Xu et al, 1995). For situations with
phenotypic variances and covariances, heritabilities, economic values, and costs of
measurement known, the breeder can investigate many options relative to choices of
traits and stages with respect to maximizing either total economic value of genetic
change or profit.
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