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Abstract - A finite locus model to estimate additive variance and the breeding values
was implemented using Gibbs sampling. Four different distributions for the size of the
gene effects across the loci were considered: i) uniform with loci of different effects, ii)
uniform with all loci having equal effects, iii) exponential, and iv) normal. Stochastic
simulation was used to study the influence of the number of loci and the distribution
of their effect assumed in the model analysis. The assumption of loci with different
and uniformly distributed effects resulted in an increase in the estimate of the additive
variance according to the number of loci assumed in the model of analysis, causing
biases in the estimated breeding values. When the gene effects were assumed to be
exponentially distributed, the estimate of the additive variance was still dependent
on the number of loci assumed in the model of analysis, but this influence was much
less. When assuming that all the loci have the same gene effects or when they were
normally distributed, the additive variance estimate was the same regardless of the
number of loci assumed in the model of analysis. The estimates were not significantly
different from either the true simulated values or from those obtained when using
the standard mixed model approach where an infinitesimal model is assumed. The
results indicate that if the number of loci has to be assumed a priori, the most useful
finite locus models are those assuming loci with equal effects or normally distributed
effects. &copy; Inra/Elsevier, Paris 
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Résumé - Comportement des modèles additifs à nombre fini de loci. On a
utilisé, via la méthode de l’échantillonnage de Gibbs, des modèles à nombre fini de
loci pour estimer les variances génétiques additives et les valeurs génétiques. On a
considéré quatre distributions différentes des effets de gènes sur l’ensemble des loci :
i) distribution uniforme avec loci à effets variables, ii) distribution uniforme avec
loci à effets égaux, iii) distribution exponentielle, et iv) distribution normale. La
simulation stochastique a été utilisée pour étudier l’influence du nombre de loci et de
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la distribution supposée de leurs effets. L’hypothèse d’effets différents et uniformément
distribués a entraîné le fait que la variance génétique augmentait quand le nombre
supposé de loci augmentait, ce qui a causé des biais dans l’estimation des valeurs
génétiques. Quand les effets de gènes ont été distribués exponentiellement, l’estimée
de la variance génétique additive a été encore dépendante du nombre de loci supposé,
quoiqu’à un moindre degré. Quand on a supposé que tous les loci avaient les mêmes
effets de gènes ou quand ils ont été normalement distribués, l’estimée de la variance
génétique additive a été la même, quel que soit le nombre de loci supposé dans
l’analyse. Les résultats indiquent que si le nombre de loci est supposé d’après des
considérations a priori, les modèles à nombre fini de loci les plus utiles sont ceux qui
supposent des loci à effets égaux ou à distribution normale. &copy; Inra/Elsevier, Paris
modèle fini / distribution d’effets / échantillonnage de Gibbs / modèle in-

finitésimal

1. INTRODUCTION

Genetic evaluation in livestock has traditionally been carried out using an
infinitesimal genetic model, where the trait is assumed to be influenced by an
infinite number of genes, each with an infinitesimally small effect. Although
such a model is biologically incorrect, its use has been justified because it
allows the handling of the total additive genetic effect as a normally distributed
variable so that standard statistical mixed model techniques can be applied.
Indeed, solutions from the normal approximation appear to be robust enough
for practical selection purposes, provided the trait is not controlled by a small
number of loci, few generations are considered (so that there are no substantial
changes in the alleles frequencies due to selection or drift) and the additive
genetic effect alone is considered !17!.

The arguments justifying the use of the infinitesimal model are, however,
being weakened by the increasing knowledge about the genetic architecture
of quantitative traits. Single genes that have a relatively large effect on

quantitative traits (e.g. Booroola gene, double muscle gene, Callipyge gene)
are expected to have a rapid change in allele frequency due to selection.
Under these circumstances, the infinitesimal model would wrongly predict the
evolution of the genetic variance even when the selected trait is also affected
by a large number of loci with small effects [8]. Moreover, the assumptions
required to describe dominance with the infinitesimal model are unclear [25].
Thus, alternative approaches to incorporating the extra knowledge about the
genetic make-up of quantitative traits should be considered.

In this paper, an additive finite locus model is defined and implemented
using Gibbs sampling. The effects of the assumptions about the number of loci
and the distribution of the size of their effects are studied, extending the results
previously reported by Pong-Wong et al. !24!. The results obtained with the
finite locus model are compared with those obtained using the mixed model
where an infinitesimal genetic model is assumed.



2. MATERIALS AND METHODS

2.1. Finite-locus genetic model

A quantitative trait is assumed to be genetically controlled by L unlinked
biallelic loci. Following the same notation as Falconer [4], each locus l, has
an additive (a,) effect with a frequency of the favourable allele in the base
population of pi . The additive variance explained by locus l is then 2PI(1-PI)af.
Since the loci are assumed to be unlinked and in linkage equilibrium the total
additive variance (or a 2) is the sum over all the loci. The trait is also assumed to
be affected by an environmental deviation which is normally distributed with
mean zero and variance o,2. Other environmental fixed and random effects may
also be included in the model but, for simplicity, they are not considered here.

In matrix algebra the linear model is expressed as:

where y is the (n x 1) vector of phenotypic records, p the overall mean,
a the (L x 1) vector of additive (a) effects for each locus, e the (n x 1)
vector of environmental deviation, and Wa is the (n x L) matrix of additive
effects associated to the individual’s genotype. Assuming that the genotypes
are denoted as AA, AB and BB (BB the least favourable genotype), the value
in column l of Wa would be 1, 0 or -1, for a phenotypic observation from
an individual with genotype (at the l locus) AA, AB or BB, respectively. The
vector a-, is defined the same as a but excluding the effect at the locus 1.

2.1.1. Distribution of the size of gene effects

Since the size of the effects across the different loci are assumed to be

different, an assumption about how the gene effects are distributed is required.
Here, three possible distributions to model the gene effects are examined:
i) uniform, ii) exponential, and iii) (folded-over) normal.

The probability density functions for the distribution of the size of the
additive effects (0 (a)) when assuming the uniform, exponential and the (folded-
over) normal distributions, respectively, are:

where Aa is the scale parameter for the exponential and the normal distribu-
tion. The density function 0(a) is defined only for the range of the positive
numbers (including zero) since a is, by definition, the effect of the favourable
homozygote genotype. The assumption that the gene effects are either normally



or exponentially distributed is consistent with the general belief that most of
the loci affecting a given quantitative trait would have a small effect, while only
a few genes have a major effect on the trait in question.

2.2. Implementation of the finite locus model using Markov chain
Monte Carlo

Genetic analyses assuming the proposed finite locus model involve the esti-
mation of the gene effect at each locus, the parameter defining the distribution
of the gene effects, the genotype probability for each individual at all the loci
and their allele frequencies. In the model of analysis, the number of loci affect-
ing the trait in question as well as the distribution of their effects are assumed
known. The total additive variance is estimated as a linear function of the effect
and allele frequency across all the loci (i.e. er! = 2 2!(1 -p!a!). A graphical

i

representation of the finite locus model is presented in figure 1.

The main problem in implementing a finite locus genetic model using a
standard likelihood approach is the calculation of the genotype probability for
all the loci. In practice this task is computationally very difficult because of the
large number of possible genotype combinations that need to be considered, a
number which rapidly increases with the number of individuals. This problem
becomes further exacerbated with complex pedigree structures involving loops
and, especially, when assuming multiple loci are present in the model.



In order to avoid this problem, the finite locus model proposed is imple-
mented using a Markov chain Monte Carlo (MCMC) approach based upon
Gibbs sampling algorithms previously suggested for segregation studies of un-
typed single genes in complex pedigree structures (e.g. [16, 18]). These algo-
rithms are simply extended to include L loci accounting for the entire genetic
effects. Because all loci are assumed to be unlinked the sampling of the genotype
at each locus is performed independently.
A sampling protocol for updating the relevant parameters (conditional on

the others) of a finite locus model in the Markov chain would then be as follow:
1) sample overall mean;
2) sample the genotype configurations locus by locus;
3) sample the gene effects locus by locus;
4) sample the scale parameter of the assumed distribution of gene effects

(not needed when assuming a uniform distribution);
5) sample all other environmental fixed and random effects (not included

here);
6) sample non-permanent environmental variance and variance for other

random effects.
The sampling of the allele frequencies for each locus may also be added in

the sampling scheme. In this study, however, they were not estimated but they
were fixed to be 0.5.

The full conditional distributions for the gene effects and the scale parame-
ter for the distribution of gene effects, needed during the sampling process, are
presented below. The conditional distributions of other parameters (e.g. geno-
type configuration, environmental variance, other random and fixed effects) are
not shown here since they have been described in previous studies reported in
the literature. For the description of the algorithms used to sample genotypes
see Guo and Thompson [16] and Janss et al. [18] (the latter algorithm was used
here, since it allows a better mixing in pedigrees with large family sizes). For
the use of Gibbs sampling in more general genetic evaluations and the condi-
tional distributions of other environmental effects, see Firat [7] and Wang et al.
[29, 30].

2.2.1. Joint posterior density
(conditional on the genotype structure)

The full conditional density for the effect at each locus as well as the scale
parameter of the distribution of gene effects are obtained from their joint
posterior density by extracting the terms containing the variable in question.
The joint posterior density of 0’; , a and Aa conditional on the genotype structure

(considered as known to simplify the expression) is of the form:

where Wa depends on the current genotype structures, 0(a) is the probability
density function of the gene effect given the assumed distribution, and P(Aa)



and P(a§) are the prior distributions of Aa and 0’;, respectively. The respec-
tive conjugate prior distribution for Aa when assuming the gene effects being
exponentially and normally distributed is proportional to (Aa)-v-’exp(-vs/Aa)
and (Aa) -,/2- lexp(-0.5vs/Aa), where v is the degree of belief and s the prior
value of Aa. Assuming that v is equal to zero (i.e. there is no belief in any
particular value of s) gives the ’naive’ prior, which is proportional to 1/Aa-
This prior denotes a lack of prior knowledge about the parameter and it has
been used as a prior for variance components including some animal breed-
ing implementations [9, 29!. In this study ’naive’ priors were used for both Aa
and a 2

2.2.2. Conditional distributions for the (size of the) gene effects

The conditional distribution of the gene effects depends on the assumption
of how they are distributed.

!.!.!.1. Uniform and independent

When the additive effects are assumed to be uniformly distributed, the
conditional density depends only on the first term of equation (5) (i.e. the
second term is a constant). Thus, the conditional distribution for the effect of
the locus l is proportional to:

which is equivalent to a truncated normal distribution with mean ii, and
variance or evaluated in the range of positive values. The value for al is the

solution from the linear model equal to (2: YAA - 2: YBB) /(nAA + nBB),
and QZ its error variance equal to 0,2 e /(nAA + nBB), where yg is the adjusted
phenotype of individuals with updated genotype g, and ng is the number of
records from individuals with such a genotype. The solution of the linear model
âl, is equivalent to the coefficient from the regression (passing through the
origin) of the phenotype (adjusted for the effect of other loci and any other
environmental effects) on the genotype value (i.e. 1, 0 or -1 for the record
from an individual sampled to have genotype AA, AB or BB, respectively).
The conditional distribution resulting from assuming a uniform distribution
has been generally used to sample the major gene effect in mixed inheritance
models (e.g. [18]).

2.2.2.2. Uniform and constant

During the estimation of the gene effects, an extra assumption may also be
taken to consider that all loci have the same effect (as assumed in a previous
study by Fernando et al. [6]). For this case, the full conditional distribution
is similar to equation (6), but a and !2 are the regression coefficient and its
error variance, estimated from the regression (passing through the origin) of
the adjusted phenotype on the combined genotype value across all loci (i.e. the



regression is on the number of loci sampled as AA minus the number of loci
sampled as BB for the individual contributing to the record).

2.2.2.3. E!ponential

The full conditional distribution of the effect of locus l is proportional to:

where al and Q2 are defined as in equation (6). Rearranging the previous
equation results in the following:

where the first term is proportional to a normal distribution with mean
a,l - U2.!a and variance Q2, and the second term is a constant. Substitut-

ing the values a, and a as defined in equation (6), the full conditional dis-
tribution is a truncated normal defined for the positive values with mean

(! yAA - £ YBB - 0’;À-1)/(nAA + nBB) and variance oe 2 / (nAA + nBB)

2.2.2.l!. Folded-over normal

Extracting the terms containing a, in equation (5), its conditional distribu-
tion is proportional to:

and when substituting the values of at and !2, the previous expression can be
rearranged as

which is proportional to a truncated normal with mean (2: yAA - 2: YBB)
(nAA + nBB + 0’; À;;:-l) 1 and variance (nAA + nBB + 0’; À;;:-l )-10’;.

2.2.3. Conditional distribution of the scale parameter of the gene
effect distribution

The conditional density of the scale parameter depends only on the second
term of equation (5) and varies according to which distribution of the gene



effects is being assumed. The estimation of this parameter is not required when
assuming that the gene effects are uniformly distributed.

The conditional density of Aa under the assumption that the gene effects are
exponentially distributed and with ’naive’ prior is:

which is equivalent to:

where ’Y(1,L) is a gamma distribution with scale and shape parameters equal to
1 and L, respectively.

Similarly, when the gene effects are normally distributed, the conditional
distribution of Aa assuming a ’naive’ prior is:

which is a scaled inverted chi-squared of the form:

2.3. Simulated population

2.3.1. Population structure

The structure of the simulated population consisted of a base population
of 80 unrelated individuals (40 males and 40 females) plus five other discrete
generations. At each generation five males and 20 females were chosen and
randomly mated to produce four offspring (two males and two females) per
female. Selection of parents was at random unless otherwise noted in the results.
All individuals had one phenotypic record.

2.3.2. Genetic model

The total genetic effects were accounted for by 20 independent and diallelic
loci. All loci were assumed to be completely additive and their initial allele



frequency was 0.5. The genotype at each locus of the base individuals was
sampled from the expected genotype frequency of a locus in Hardy-Weinberg
equilibrium. The genotype of individuals from further generations were sampled
assuming Mendelian inheritance. The total genetic effects of an individual are
the sum of all the genotype effects over all loci.

2.3.3. Parameters used

For all the cases the environmental variance was assumed to be 80, the
additive genetic variance 20. In order to account for the total genetic variance,
the effect of each locus was simulated in two ways: i) assuming that all the 20
loci have the same effect (i.e. a = J2); or ii) that each effect was sampled from
an exponential distribution with scale parameter equal to 1 (which is expected
to yield the correct total genetic variance).

2.4. Situations compared

Data sets simulated using the population structure explained above were
used to study the behaviour of the finite locus model (FIN) in genetic eval-
uations. Each data set (replicate) was analysed with several FIN approaches
varying in the assumptions about the distribution of gene effects and the num-
ber of loci taken in the model of analysis.

These variations in assumptions were the following.
i) The distribution of the gene effects: effects of loci uniformly and inde-

pendently (FIN-UNI), uniformly but constant (i.e. equal effects; FIN-CON),
exponentially (FIN-EXP) or normally (FIN-NOR) distributed.

ii) The number of loci: 5, 10, 20 or 30.
As previously stated, the allele frequencies in the base population for each

locus were not estimated in the analysis. Instead they were fixed at 0.5.
The case when all loci have the same effects (FIN-CON) is similar to the

finite locus model proposed by Fernando et al. !6!.
The same data sets were also analysed using the standard mixed model

approach (MM) where an infinitesimal genetic model is assumed. In order
to make the results comparable with those obtained with the FIN analyses,
the MM was also performed using a Gibbs sampling approach to obtain
the marginal posterior density of each variance component. From a Bayesian
perspective, the variance estimates from MM using a restricted maximum
likelihood (REML) approach are the mode of their joint posterior distribution,
which are not expected to coincide with the mode of their marginal distributions
[11]. The implementation of the mixed model using Gibbs sampling and
its differences from REML approaches have been much studied (e.g. Wang
et al. !30!).

2.4.1. Criteria of comparison

The criteria of comparison were the estimates of the variance components
(0,2, or2 ) and the correlation between the estimated breeding values (EBV).



3. RESULTS

3.1. Gibbs sampling implementation

The results presented below are the summaries of 50 replicates. The variance
estimates of each evaluation within a replicate is the mean of a Markov chain of
1 000 realisations sampled every 50 cycles after a burning period of 5 000 cycles
(i.e. total length of the chain = 55 000 cycles). This sampling protocol ensured
that the autocorrelation between consecutive realisations was less than 0.1 for
all the parameters studied here.

3.2. True model: the same gene effects across all loci

(random selection)

3.2.1. FIN- UNI

The estimates of the variance components assuming that all loci have
different effects and are uniformly distributed are shown in table 7. These results
were highly dependent on the number of loci assumed in the model of analysis.
The estimate of the additive variance increased when more loci were assumed
in the model of analysis. This trend was consistently observed across all the
replicates. The additive variance estimate closest to the true simulated value
was produced when only five loci were assumed in the model of analysis, which
is substantially less than the true number used to simulate the data.

The increase in the estimated additive variance when assuming more loci in
the model of analysis was also accompanied by a decrease in the estimated en-
vironmental variance. However, this reduction did not completely compensate
for the extra estimated additive variance, thus resulting in an overestimate in
the total phenotypic variance. The estimated total variance increased from 105
when assuming five loci to 129 when the analysis was carried out assuming
30 loci (the simulated value was 100).

The excess of additive variance which appeared when increasing the number
of loci had repercussions on the estimated breeding values. As expected, the
increased additive variance resulted in a higher dispersion of the EBV, so



individuals with extreme EBV became even more extreme when more loci were
assumed in the model of analysis. Additionally, the prediction error variance
associated with the EBV also tended to increase with the number of loci: The
mean prediction error variance of the EBV when using five loci was 16 compared
with 25 when the EBV were obtained assuming 30 loci (for the MM the mean
prediction error variance was 12.5). Nevertheless, it is important to note that
although the EBV were very sensitive to the number of loci, the correlation
between the different estimates was always greater that 0.9 (table II). Thus,
the ranking of individuals was little affected.

The variance estimates when assuming all loci had the same effects is
summarised in table III. Under this assumption the estimates of the additive
variance were the same regardless of the number of loci assumed in the model
of analysis. The results from FIN-CON were not significantly different from
the simulated values or from those obtained with the MM. The EBV and their

prediction error variance were also insensitive to the number of loci assumed
in the model of analysis (results not shown).



3.2.3. FIN-EXP

Table IV shows the summary of the variance components estimated assuming
the gene effects being exponentially distributed. Increasing the number of
loci used in the model of analysis yielded a slight increase in the estimated
additive variance. However, this trend was very small compared with the
results from FIN-UNI. In contrast to the case of FIN-UNI, the estimate of
the total phenotypic variance remained constant. The correlation among the
EBV obtained with the FIN-EXP analyses with different numbers of loci was
always higher that 0.95 (results not shown).

3.2.4. FIN NOR

The results when the gene effects were assumed to be normally distributed
appeared not to be affected by the number of loci used in the model of analysis
(table V). The EBV were also the same regardless of the number of loci used
in the model of analysis. The results obtained with FIN-NOR were similar to
those observed with standard mixed model.



3.3. True model: gene effects simulated as exponentially
distributed

The main purpose of using simulated data assuming the gene effects to be
exponentially distributed was to test whether the observed behaviour of FIN-
EXP is the same even when it corresponds to the true model.

3.3.1. Population under random selection

Table VI summarises the results when the population was under random
selection. The estimated additive variance showed the same trend to increase
when more loci were assumed in the model of analysis. The best estimates were
obtained when using 20 loci, which corresponds to the true genetic model used
to simulate the data. For this case, the variance component estimates were the
same as the values used to simulate the data. The correlations between EBV
obtained when using different numbers of loci have a correlation greater than
0.99 (results not shown).

3.3.2. Population under truncation selection

Table VII shows the results of FIN-EXP when the population was under-
going selection. The results showed the same trend for the additive variance, but



surprisingly, the magnitude was smaller than that observed with random
selection. The correlation between EBV calculated assuming different numbers
of loci was always greater than 0.97 (results not shown).

4. DISCUSSION

In this paper a genetic model assuming a finite number of loci affecting a
quantitative trait was implemented using Gibbs sampling. The behaviour of the
results when changing the number of loci and the distribution of the gene effects
assumed on the model of analysis were studied using stochastic simulation.

The use of genetic models assuming a finite number of loci has so far been
hardly studied. Chevalet [3] proposed a genetic model which allows the estima-
tion of the effective number of loci affecting a quantitative trait, but this model
is still based upon the same Gaussian assumptions made with the infinitesimal
model. A model which does not depend on normal theory was proposed by
Fernando et al. [6] and is known as the hypergeometric model [20]. In this
model the calculation of the multilocus genotype probability is simplified by
not treating the genotype at each locus independently, but by identifying their
combined genotypes as the total number of favourable alleles present across all
loci. This simplification, however, forces the assumption that all loci must have
the same effect, and the model is not strictly consistent with Mendelian trans-
mission [6, 20!. However, the main purpose of the hypergeometric model has
been to mimic the results of the infinitesimal model but with a lower complex-
ity when calculating the likelihood, thereby greatly reducing the computational
difficulties of segregation and linkage analyses of single major genes (28!. More
recently, Goddard [14] and Pong-Wong et al. [24] studied the feasibility of es-
timating dominance using a finite locus model assuming that the gene effects
were uniformly distributed.

The results from this study show a remarkable interaction between the
distribution of gene effects and the number of loci assumed in the model of

analysis. When the gene effects were assumed to follow a uniform distribution
(FIN-UNI), the estimate of the additive variance sharply increased when adding
more loci to the model of analysis. A less marked trend was also observed
when assuming that the gene effects were exponentially distributed (FIN-
EXP). When the model of analysis assumed the allelic effects to be normally
distributed (FIN-NOR) or constant over all loci (FIN-CON), the results were
the same regardless of the number of loci assumed in the model. However,
despite the similarity in the trend of the additive variance, the results from
FIN-UNI and FIN-EXP are qualitatively different. The slight increase in the
additive variance observed with FIN-EXP was only due to differences in the
partition of the total variance, whereas with FIN-UNI there was also an increase
in the total phenotypic variance observed in the system. From this point of view,
the behaviour of FIN-EXP is more similar to FIN-NOR than to FIN-UNI.

This difference in the behaviour of FIN-UNI compared with FIN-EXP or
FIN-NOR is, perhaps, not surprising when examining the statistical meaning
of these models. From a strictly statistical point of view, it can be seen that
the gene effects in FIN-UNI are treated as fixed effects while with FIN-EXP
and FIN-NOR they are considered to be random variables (drawn from an
exponential and a normal distribution, respectively). Thus, the estimation of



the gene effects using FIN-UNI is expected to yield different answers to those
obtained with FIN-NOR and FIN-EXP, and thereby, the total additive variance
which is calculated as a linear combination of the gene effect estimates.

The consequences of adding more loci to the model of analysis when treating
their effects as fixed appears to create an overparameterised model. The extra
gene effects (fixed effects) that need to be estimated in the model result in
some of them being confounded and explaining spurious effects. Thus, the more
loci fitted in the model, the more spurious effects are estimated, increasing
both the genetic and the total variance. Hence, the reduction in the number of
parameters to be estimated by assuming that all the loci have the same effects
(only one effect is estimated compared with L effects estimated when assuming
all loci having different effects) may avoid this overparameterisation, which
would explain why the results of FIN-CON are insensitive to the number of loci.
On the other hand, the possibility of spurious effects arising when increasing the
number of loci in FIN-EXP or FIN-NOR is better controlled since the estimates
of the gene effects (random effects) are regressed towards zero, restricting their
dispersion accordingly to their scale parameter (Aa). The difference between
treating a variable as fixed or as random is well known in animal breeding. For
example, the variance of the estimated sire effects obtained after treating them
as fixed would be greater than the estimated inter-sire variance when assuming
them to be random normal variables.

The trend of 0’; when using FIN-EXP was also observed when the true model
also assumed the gene effects to be exponentially distributed. Surprisingly,
this trend was smaller when the population was undergoing selection. This
consistency of results across simulated data sets assuming different genetic
models suggests that the overall trend observed with FIN-EXP is more likely
to be a true characteristic of this model of analysis rather than being a Monte
Carlo error due to a small number of replicates. Another interesting result is the
fact that the mean estimate of the genetic variance when assuming ten loci was
marginally closer to the true simulated value than when 20 loci were assumed
(table V7). Intuitively, the latter would be expected to yield better answers as
it corresponds exactly to the model used to simulate the data. However, the
difference in results is too small to firmly conclude which is the better model
of analysis, so their rating should not be based only on the average estimate
(across the replicates) relative to the true simulated value. The estimation of
the Bayes factor to assess the goodness of fit of these models should also be
considered before concluding which one better describes the data.

The difference in the results between FIN-EXP and FIN-NOR prompts the
need for further studies to evaluate the behaviour of finite locus models assum-

ing other distributions of gene effects. The assumption of a normal distribution
appears to yield robust/consistent results, but ideally the distribution to be
assumed should be one closely reflecting the reality of the trait in question.
Although the characterisation of the distribution of gene effects for economi-
cally important traits in farm animals is still incomplete, some knowledge in
this area may be obtained from studies of mutation effects in Drosophila. For
instance, Keightley [19] suggested that the gamma distribution may be suitable
for modelling the gene effects since it depends on few parameters (note that
the exponential distribution is a special case of gamma distribution) and can



be parameterised to display leptokurtosis. Other alternatives have also been
proposed by Caballero and Keightley !2!.
An alternative way to avoid the problem of uncertainty on the true distri-

bution of gene effects may be to select the distribution during the analysis.
Using the Markov chain framework, Green [15] proposed a technique, called
the reversible jump, which allows for model choice during the analysis. For this
particular situation, a set of distributions may be predefined and a Markov
process built allowing the chain to move among these distributions according
to their probabilities. Using the same principle, one may also be able to sample
the number of loci !27!. Obviously, the complexity of a Markov chain implemen-
tation allowing for model choice in several of the parameters would be higher,
and greater care should be taken when assessing the convergence of the chain
as well as when interpreting the results. Another alternative means to conclude
which set of parameters (e.g. distribution of gene effects, number of loci) fit
best the data would be the estimation of Bayes factors !9!.

One of the consequences of assuming other distributions of gene effects, such
as gamma, is that the resulting full conditional distribution may be of unknown
form with no standard sampling routine available. The full conditional density
of the gene effects resulting from the three distributions examined in this study
are proportional to a truncated normal, for which standard sampling routines
are available. The use of techniques such as adaptive rejection sampling [12, 13]
and ’slicing-the-density’ [23] allow sampling from non-standard distributions,
but the computational cost is also expected to increase.

Because of the computational demand of Gibbs sampling implementations,
the study of the properties of finite locus models should also be complemented
with the proposal of efficient algorithms to improve the mixing and convergence
of the Markov chain. Several approaches to improving the efficiency of sampling
the genotype structure in complex pedigree are now available (e.g. [10, 21, 22]),
and their use may prove beneficial in reducing the computational demand of a
finite locus model.

In this study, allele frequencies were not estimated but were assumed to be
0.5. However, the frequencies are only fixed in the base population, so the model
is able to account for changes in the genetic level due to drift or directional
selection. Although the estimation of the allele frequencies does not add much
extra complexity to the model, practical problems in the Gibbs implementation
were encountered (unpublished). Allowing variable allele frequencies can result
in slow mixing with problems arising from loci becoming temporally fixed. Since
inferences from MCMC are valid only when convergence has been obtained,
poor mixing requires the length of the chain to be considerably increased,
with consequences in computing time. A preliminary analysis of a non-selected
population where the allele frequencies were estimated but restricted to between
0.2 and 0.8 (to avoid the Gibbs sampling problem due to fixation) yielded
similar results as when analysis was performed assuming the frequencies to be
0.5. Obviously, this restriction on the gene frequency estimation may need to
be relaxed when considering populations with deeper pedigree structure and
undergoing selection.
A positive characteristic of the finite locus model proposed here is its ability

to account for the linkage disequilibrium between loci built up during selection
[1]. This disequilibrium creates a correlation between loci in the offspring



generation which results in a reduction of the total observed genetic variance
(i.e. the genetic variance in the offspring generation estimated using their total
genetic effects across all loci is smaller than the sum of the variances explained
by each individual locus). For the case of selection presented in this study,
the loss in variance due to disequilibrium for the first three generations from
selected parents was 6.3, 7.2 and 9.5 %, respectively.

Conversely, it is also desirable that the genotypes of individuals from the
base population being sampled are in linkage equilibrium to avoid potential
bias in the estimation of 0’; (as the formula used to estimate it assumes no
correlation between loci). Considering the impact on the results if linkage
disequilibrium in the base population being built up due to sampling, Qa was
also estimated using the total breeding value of each individual reconstructed
given their genotypes and the gene effects across all loci (thus accounting for
any correlation appearing due to sampling). With the exception of the cases of
FIN-UNI assuming 20 and 30 loci, the estimate of 0’; was the same as when not
accounting for any potential correlation. For instance, or estimated from the
total breeding values using FIN-EXP assuming 10, 20 and 30 loci were 21.58,
23.36 and 25.12, respectively, which are very similar to the values reported in
table IV. When the analysis was performed using FIN-UNI with 20 or 30 loci,
the estimation of 0’; from the total breeding values yielded smaller results than
when assuming the loci being independent (i.e. 53.34 and 67.4, respectively,
compared with results from table 7), but these differences explain less than
10 % of the total overestimation of 0’;. Thus, the conclusion that the estimates
of both the genetic and the total variance when using FIN-UNI are largely
dependent on the assumed number of loci still remains valid (i.e. FIN-UNI is
still a questionable model to be used).

Here we considered only the case of a complete-additive genetic model where
the results from the mixed model are expected to be robust, and a finite locus
model would add little improvement to practical genetic evaluations. However,
there are other situations where departing from the infinitesimal model may
prove to be beneficial. For instance, a finite locus model may provide a more
natural approach to extending marker-assisted selection (MAS) accounting for
multiple quantitative trait loci (QTL). Genetic maps in most farm animals are
becoming very dense so that the use of MAS to exploit information of only
one QTL at a time seems to be a waste of resources and time. Approaches to
studying linkage between a QTL and a genetic marker using Gibbs sampling
have been suggested in the literature (e.g. [16, 18!), and their implementation
in a finite locus model seems to be straight forward. From the mixed model
approach, multiple QTL may also be accounted for by extending the MAS
method using a BLUP framework [5]. This method, however, presents the
problem that it does not account for changes in gene frequency due to selection.
Additionally, since each QTL is modelled with two normal variables, the
method becomes computationally complex as the rank of the resulting linear
model increases by twice the number of individuals per each QTL included in
the model.

Another potential use of a finite locus model is the estimation of dominance.
Although the mixed model has been used to estimate dominance deviance, the
assumptions justifying this approach are not well understood [25]. Despite the
substantial increase in complexity to estimate dominance, in some situations



the results of a mixed model analysis may be difficult to interpret (for an
example, see !26!). Preliminary results have shown that inclusion of dominance
in a finite locus model adds very little extra complexity to the model whilst
maintaining a relationship between both the dominance variance and the
inbreeding depression (24!.

Finally, another benefit of finite locus models is that they offer a more
’biologically appropriate’ genetic model which would provide a greater under-
standing of quantitative traits. For example, it would be possible to examine
characteristics of these traits (e.g. the distribution of the gene effects, effective
number of loci). Moreover, unlike the infinitesimal model, some of the newly
gained knowledge about the architecture of these traits could easily be included
in a finite locus model to improve the prediction in genetic evaluations.
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