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Preamble - When the Editor of Genetics, Selection, Evolution asked me
to translate this paper by the late Professor Gustave MALECOT into French,
I felt flattered and intimidated at the same time. The paper was extensive and

highly technical, and written in an unusual manner for today’s standards, as
the phrases are long, windy and, sometimes, seemingly never ending. However,
this was an assignment that I could not refuse, for reasons that should become
clear subsequently.

I have attempted to preserve MALtCOT’s style as much as possible. Hence,
I maintained his original punctuation, except for a few instances in which I was
forced to introduce a comma here and there, so that the reader could catch
some breath! In those instances in which I was unsure of the exact meaning
of the phrase, or when I felt that some clarification was needed, I inserted

footnotes. The original paper also contains footnotes by MALTCOT; mine are
indicated as "Translator’s Note", following the usual practice; hence, there
should be little room for confusion. There are a few typographical errors and
inconsistencies in the original text, but given the length of the manuscript and
that it was written many years before word processors had appeared, the paper
is remarkably free of errors.

This is undoubtedly one of the most brilliant and clear statements in favor
of the Bayesian position that I have encountered, specially considering that it
was published in 1947! Here, MALECOT uses his eloquence and knowledge of
science, mathematics, statistics and, more fundamentally, of logic, to articulate
a criticism of the points of view advanced by FISHER and by NEYMAN in
connection with statistical inference. He argues in a convincing (this is my

subjective opinion!) manner that in the evaluation of hypotheses, speaking in



a broad sense, it is difficult to accept the principle of maximum likelihood and
the theory of confidence intervals unless BAYES formula is brought into the
picture. In particular, his discussion of the two types of errors that arise in
the usual &dquo;accept/reject&dquo; paradigm of NEYMAN is one of the strongest parts
of the paper. MALECOT argues effectively that it is impossible to calculate
the total probability of error unless prior probabilities are brought into the
treatment of the problem. This is probably one of the most lucid treatments
that I have been able to find in the literature.

The English speaking audience will be surprised to find that the famous
CRAMER-RAO lower bound for the variance of an unbiased estimator is
credited to FRECHET, in a paper that this author published in 1943. C.R.
RAO’s paper had been printed in 1945! The reference given by MALECOT
(FRECHET, 1934) is not accurate, this being probably due to a typographical
error. If it can be verified that actually FRECHET (or perhaps DARMOIS)
discovered this bound first, the entire statistical community should be alerted,
such that history can be written correctly. In fact, some statistics books in
France refer to the FRECHET-DARMOIS-CRAMER-RAO inequality, whereas
texts in English mention the CRAMER-RAO lower bound or the &dquo;information
inequality&dquo; ..

On a personal note, I view this paper as setting one of the pillars of the
modern school of Bayesian quantitative genetics, which would now seem to
have adherents. For example, when Jean-Louis FOULLEY and I started on
our road towards Bayesianism in the early 1980s, this was (in part) a result of
the influence of writings of the late Professor LEFORT, who, in turn, had been
exposed to MALtCOT’s thinking. In genetics, MALECOT had given a general
solution to the problem of the resemblance between relatives based on the
concept of identity by descent (G. MALECOT, Les math6matiques de l’heredite
Masson et Cie., Paris, 1948). In this contemporary paper, we rediscover his
statistical views, which point clearly in the Bayesian direction. With the advent
of Markov chain Monte Carlo methods, many quantitative geneticists have now
implemented Bayesian methods, although probably this is more a result of

computational, rather than of logical, considerations. In this context, I offer a
suggestion to geneticists that are interested in the principles underlying science
and, more particularly, in the Bayesian position: read MALECOT.

Daniel Gianola, Department of Animal Sciences, Department of Biostatis-
tics and Medical Informatics, Department of Dairy Science, University of
Wisconsin-Madison, Wisconsin 53706, USA

1. BAYES FORMULA

The fundamental problem of acquiring scientific knowledge can be posed
as follows. Given: a system of knowledge that has been acquired already
(certainties or probabilities) and which we will denote as K; a set of mutually
exclusive and exhaustive assumptions Bi, that is, such that one of these must be
true (but without knowing which); and an experiment that has been conducted
and that gives results E: what new knowledge about Oi is brought about by E?
A very general answer has been given in probabilistic terms by Bayes, in

his famous theorem; let P (01 [K) be the probabilities of the Oi based on K, or



prior probabilities of the hypotheses; P (01 [ EK) be their posterior probabilities,
evaluated taking into account the new observations E; P (ElOiK) be the
probability that the hypothesis Oi, supposedly realized, gives the result E, a
probability that we call the likelihood of Bi as a function of E (within the system
of knowledge K); the principles of total and composite probabilities give then:

the denominator P (ElK) = ¿i P (E[ 01K) P (91 [ K) does not depend on i. One
can say, then, that the probabilities a posteriori (once E has been realized) of
the different hypotheses are respectively proportional to the products of their
probabilities a priori times their likelihoods as a function of E (all this holding
in the interior of system K). The proportionality constant can be arrived at
immediately by writing that the sum of posterior probabilities is equal to 1.
The preceding rule still holds in the case where one cannot specify all possible
hypotheses Bi or all the probabilities P (E[01K) of their influence on E, but
then the sum of posterior probabilities P (01 [EK) of all the hypotheses that
one has been able to formulate their consequences would be lesser and not equal
to 1.

We will show how BAYES formula provides logical rules for choosing one
Bi over all possible Bi, or among those whose consequences can be formulated;
further, it will be shown how the rules adopted in practice cannot have a logical
justification outside of the light of this formula.

2. THE RULE OF THE MOST PROBABLE HYPOTHESIS

We shall begin a critical discussion of the methods proposed by FISHER’s
school by posing the rule of the most probable value: choose the hypothesis
Bi having the largest posterior probability, with the risk of error given by the
sum of the probabilities of the hypotheses discarded (when one can formulate
all such hypotheses)(the risk will be small only if this sum is small; it may
be reasonable to group together several hypotheses having a total probability
close to 1, without making a distinction between them; this we shall do in
Section VII)

In order to apply this rule, it is necessary to determine the Bi giving the
maximum of P (E[91K) P (91[K). It follows that the choice of Bi depends
not only on the likelihoods of the Bi but also on their prior probabilities,
often subjective and variable between individuals, even within individuals
depending on the state of their knowledge or of their memory. However, it
must be noted that the presence of the prior probability in the formula is in
perfect agreement with the rule, admitted by most experimenters, of combining
(weighted naturally) all observations that provide information about a certain
hypothesis. Suppose that after the experiments E, another set of experiments
E’ is carried out: collecting all such experiments one has:



and the rule leads to choosing the 91 that maximizes the numerator; however,
the first term represents the likelihood of Oi as a function of Ef within the

system EK, and the product of the last two is proportional to the probability
of Oi within the system EK, that is:

which is the probability a priori of Oi before realization of E’; it follows then
that one would obtain the same result maximizing P (E’ [9jEK) x P (9j [EK) ,
that is, the product of the likelihood times the new prior probability.

The rule of the most likely value, as stated, takes into account all our knowl-
edge, at each instant, about all hypotheses examined, and every new observa-
tion is used to update their probabilities by replacing the probabilities evaluated
before such observation by posterior probabilities. The delicate point is what
values should be assigned to the probabilities a priori before any experimenta-
tion providing information about the hypotheses takes place. LAPLACE and
BAYES proposed to take the prior probabilities of all hypotheses as equal,
which makes the posterior probabilities proportional to the likelihood, leading
in this case to the rule of maximum likelihood proposed by Mr. Fisherl, a rule
that, unlike him, does not seem possible to me to adopt as a first principle,
because of the risk of applying it to a given group of observations without
considering the set of other observations providing information about the hy-
potheses considered. A striking example of this pitfall is the contradiction,
noted by Mr. Jeffreys2, between the principle of maximum likelihood and the
underlying principle of &dquo;significance criteria&dquo;. In this context, the objective is
to determine if the observed results are in agreement with a hypothesis or with
a simple law (the &dquo;null hypothesis&dquo; of Mr. Fisher), or if the hypothesis must be
replaced by a more complicated one with the the alternative law being more
global, including the old and the new parameters. To be precise, if the old
law depends on parameters &OElig;l,..., &OElig;p, the new one will depend in addition on
&OElig;p+l,&dquo;’, aP+q and will reduce to the old one at given values of aP+1, ... , aP+9
which can always be supposed to be equal to 0 (that is why the name &dquo;null

hypothesis&dquo; is given to the assumption that the old law is valid). The maxi-
mum of P (EI&OElig;l&dquo;’&dquo; &OElig;p+q, K) when all the ai vary will be larger in general
than its maximum when aP+1 = ... = ap+q = 0, hence, the rule of maximum
likelihood will lead, almost always, to adopting the most complicated law. On
the other hand, the usual criterion in this case is to investigate if there is not
a great risk of error made by adopting the simplest law: to do this one can
define a &dquo;deviation&dquo; between the observed results and those that would be ex-

pected, on average, from the simplest law, and then find the prior probability
from such law of obtaining a deviation that is at least as large as the observed
distance. It is convenient not to reject the simplest law unless this probability
is very small. This is the principle of criteria based on &dquo;significant deviations&dquo;.

1 
’Iranslator’s Note: Fisher’s name is in italics and not in capital letters in the original

paper. I have left this and other minor inconsistencies unchanged.
2 
Translator’s Note: References to Jeffreys made later in the paper appear in capital

letters.



Hence, the simplest law benefits from a favorable prejudice, that is, of having
a prior probability that is larger than that assigned to more complex laws.
Why is it prejudged more favorably? Sometimes this is the result of our belief
on the simplicity of the laws of nature, a belief that may stem from conve-
nience (examples: the COPERNICUS system is more convenient than that of
PTOLEMY to understand the observations and to make predictions; fitting of
an ellipse to the trajectory of Mars by KEPLER without consideration of the
law of gravitation), or from previous experience.

Consider the example of a fundamental type of experiment in agricultural
biology: comparing the yields of two varieties of some crop, by planting varieties
V and V’ adjacent to each other at a number of points Al, ... , AN of an

experimental field, so as to take into account variability in light and soil
conditions. If xl, ... , xN and x ...... z% are the yields of V and V’ measured
at the N points, two main attitudes are possible when facing the data: those
inclined to believe that the difference between V and V’ cannot affect yield
will ask themselves if all xi and x’ can be reasonably viewed as observed
values of two random variables X and X’ following the same law; for this,
they will adopt a significance test based on the difference between the means,
and they will maintain their hypothesis if this difference is not too large. On the
other hand, those whose experience leads them to believe that the difference
in varieties should translate into a difference in yield will admit a priori that
the random variables X and X’ are different, introducing right away a larger
number of parameters (for example, X, a, X!, ,0&dquo; if it is accepted that X and X’
are Laplacian) and they will be concerned immediately with the estimation of
these parameters, in particular X - X’, by the method of maximum likelihood
for example (which in the case of laws of LAPLACE with the same standard
deviation, gives as estimator of X -X! the difference between arithmetic means
of the xi and x’); this method assumes implicitly that the prior probabilities
of the values of X - X! are all equal and infinitesimally small, which is quite
different from the first hypothesis where a priori we view the value X -X! = 0
(corresponding to identity of the laws) as having a finite probability. These
two different attitudes correspond to different states of information a priori, of
prior probabilities; the statistical criteria are, thus, not objective, because there
could not be a contradiction between the two: it is not possible that one leads
to the conclusion that X &mdash; X’ = 0 and the other to conclude that X - X’ # 0.
This discrepancies result from the fact that the criteria are subjective and
correspond to different states of information or experience.
We shall now take an example from genetics. A problem of current interest

is that of linkage between Mendelian factors. When crossing a heterozygote
AaBb with a double homozygote recessive, we observe in the children, if these
are numerous, the genotypes ABab, abab, Abab, aBab in numbers a, (3, 7,
8 (&OElig; + (3 +, + 8 = N), leading to admit that, independently, each child can

1 &mdash; ?* 1 &mdash; y r r

possess one of the 4 genotypes with probabilities 1 2 r , &mdash;.&mdash;, r r with
2 2 2 2

r being a &dquo;coefficient of linkage&dquo; having a value between 0 and 1. If all
available knowledge were based on a certain number of crossing experiments in
Drosophila, one would be led to state that all values of r inside of an interval
are equally likely, and then take the maximum likelihood estimate as value of r,



for each experiment. However, if one brings information from human genetics
into the picture, this shows that r is almost always near to ! , which would tend

1
to give a privileged prior probability to - 2 when interpreting each measurement
taken in human genetics. At any rate, more advanced experimentation on
the behavior of chromosomes gives us a more precise basis for interpretation;

if the two factors are &dquo;located&dquo; in different chromosomes, r = 2, there is

&dquo;independent segregation&dquo; of the two characters. There is &dquo;linkage&dquo; r < 2 I
&dquo;coupling&dquo;; r > 2: &dquo;rep!lsion&dquo; only when the two factors reside in the same

chromosome, a fact which, in the absence of any information on the localization
1

of the two factors considered, would have a prior probability of 24 (because24
there are 24 pairs of chromosomes in humans).

In the light of this knowledge, one can start every study of linkage between

new factors in humans by assigning 24 and ! as values of the prior probabili-24 24

ties of r = 2 and r 2) if one can view the values r ! 2 as equally likely, that
is, take 24 dr as the probability that r 7! 2 lies between r and r + dr, then it is
easy to form the posterior probabilities of r = 2 and r 2 ! the likelihood of
r (the probability that a given value r produces numbers a, /3, q, 6 in the four
categories will be: , , n I . -

which gives, letting E be the observation of a, ,(3, !y, 6:

Of these two, we will retain the hypothesis having the largest posterior

probability; if this is hypothesis r 7!1, we would take as estimate of r, within2

all values r -I- !, 2 the one maximizing the posterior probability, that is, the

_ ! 
7+a

maximizer of the likelihood 2-!’ (1 - r)a+a rl+8, which has as value r = N . *N
I have deliberately presented the problem in a somewhat shocking manner,

emphasizing that the prior probabilities are known. Nevertheless, it cannot be
argued that the rule at which we arrive is not that in current use, or that at
least it is in close numerical proximity3: reject the &dquo;null hypothesis&dquo; if this

3 Translator’s Note: In the original, there is a delicate interplay of double negatives
which is difficult to translate. The phrase is: &dquo;On ne peut n6anmoins contester que la



gives a large discrepancy with the observations; subsequently, estimate the
parameters by maximum likelihood. My objective has been to show on what
type of assumptions one operates, willingly or unwillingly, when these rules are
applied. Using prior probabilities, it is possible to see the logical meaning of
the rules more clearly, and a possibly precarious state of the assumptions made
a priori can be thought of as a warning against the tendency of attributing an
absolute value to the conclusions (as done by Mr. MATHER who gives a certain
number of rules as being objectively best, even if these are contradictory): we
take note of the arbitrariness in the choice of the prior probabilities and in the

1 1
manner of contrasting the hypotheses r = - and r -; 2 and we also see how

the conclusion about the value of r is subjective.

3. OPTIMUM ESTIMATION

We shall now examine another aspect of the question of the rule of maximum
likelihood, which Mr. FISHER (7) thought could be justified independently of
prior probabilities, with his rule of optimum estimation. Suppose the competing
hypotheses are the values of a parameter 0, with each value giving to the
observed results E a probability 7r (E [ 9) before observation, which is a function
of 0, its likelihood function; we will call an estimator of 0, extracted from
observations E, any function H of the observations only giving information
about the value of 0; same as with the observations, this estimator is a random
variable before the data are observed, its probability law depending on 0. (In the
special case where, once the value H is given, the conditional probability law of
E no longer depends on 0, it is unnecessary to give a complete description of E
once H is known, because this would not give any supplementary information
about 0, and we then say that H is an exhaustive4 estimator of 9.)

It is said that H is a fair estimator5 of if its mean value M(H)6 is always
equal to the true value irrespective of what this is. It is said that H is

asymptotically fair7 if M(H) - 9 is infinitesimally small with N, N being the
number of observations constituting E.

It is said that H is correct8 if it always converges in probability towards 0
when N tends towards infinity. (For this, it suffices that H be asymptotically
fair and that it has a fluctuation9 tending towards 0. Conversely, every fair
estimator admitting a mean is asymptotically fair).

regle a laquelle nous arrivons ne soit, aux valeurs num6Tiques des probabilites pres,
celle qui est d’un usage courant:... &dquo;.
4 
Translator’s Note: The English term is sufficient. Mal6cot’s terminology is kept

whenever it is felt that it has anecdotal value, or to reflect his style.
5 
Translator’s Note: Unbiased estimator.

6 
Translator’s Note: It is useful to remember hereinafter that M (expression) denotes

the expected value of the expression. The M comes from &dquo;moyenne&dquo; = mean value.
7 
Translator’s Note: Asymptotically unbiased.

8 
Translator’s Note: Consistent.

9 
Translator’s Note: Fluctuation = Variance.



It is said that H is asymptotically Gaussian if the law of H tends towards
one of the type LAPLACE-GAUSS when N increases indefinitely. In statistics,
it is frequent to encounter estimators that are both correct and asymptotically
Gaussian; we shall denote such estimators as C.A.G (see, DUGUE, 5). The

precision of such an estimator is measured perfectly by M [(H - 8)2] = (2,
1

this becoming infinitesimally small with N; the precision will increase as !2N

decreases, hence I = &mdash;, which will be termed the quantity of information
extracted by the estimator, will be larger.

In what follows, we will restrict attention to the case where E consists of N
independent observations xl, ... , !n, with their distribution functions being a
priori:

The probability of a set E of observations is:

(Stieltjes multiple differential) with

with the integration covering the entire space !J2N described by the Xi,... X N.
It is then easy to show, with Mr. FRECHET (8), that the fluctuation !2 of
any fair estimator has a fixed lower bound. Let H (Xl, ... , X N) be one such
estimator. For any 0:

from where, taking derivatives of this identity with respect to 9:

leading to
I ! . ! I

Observing that

and letting



it is seen that the square of the coefficient of correlation between (H &mdash; 0) and
6 log !r
6B is -

from where:

10 11

.. blog7T’The equality holds only if (H - 0) = SB x constant almost everywhere;
60

it is easy to show that this cannot hold unless H is an exhaustive estimator,
for, in making a change of variables in the space !tN, with the new variables
being H, !1, ... , !N-1, functions of xl, ... , x,!, the distribution function of H
will be G (H, 0) and the joint distribution function of the !2 inside of the

space J22N_1 (H) that they span will be k (H, 6, ... , Ç,N _1,0)12; then one has
Jr (EIO) = dG[dk]13 with

further, because

10 (1) Mr. Frechet has shown more generally that for an asymptotically fair

estimator, for N sufficiently large, it is always true that

for an arbitrarily small e. 
11 Translator’s Note: This is a statement of the Cramer-Rao lower bound for the

variance of an unbiased estimator. It is historically remarkable that FRECHET, to
whom MALECOT attributes the result, seems to have published this in 1943 (1934
is given incorrectly in the References). The first appearance of the lower bound in
the statistical literature is often credited to: Rao C.R., Information and accuracy
attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37
(1945) 81-91. According to C. R. Rao (personal communication) Cramer mentions
this inequality in his book, published two years later. Neyman named it as Cramer-
Rao inequality.

12 
Translator’s Note: Although perhaps obvious, Mal6cot’s notation hides some-

what that this is the conditional distribution of all !’s, given H.
The bracket denotes a multiple differential of the Stieltjes type, relative to

variables fli (Translator’s Note: In the original paper, Malécot has (i instead of !2
in the footnote, which is an obvious typographical error).



one has:

also, the formula:

gives again, by taking derivatives with respect to B:

(2 cannot be equal to 2 unlessT2

that is if [dk] and, therefore, also k is independent of 0 nearly everywhere,
that is, if H is an exhaustive estimator; the general form of laws admitting an
exhaustive estimator has been given by Mr. DARMOIS (3) and Mr. FRECHET
has verified (8) that the exhaustive estimator meets the condition (2 = 1!2

The condition !2 T2 14 cannot be met for finite N unless an exhaustive
Q

estimator exists. However, Mr. FISHER had shown earlier (7) that it would

always exist, or at least that the condition would be met asymptotically when
N ---> oo, when an estimator is obtained by producing as a function of E a value
of which maximizes the likelihood function 7r(E’!), that is, by applying the
rule of maximum likelihood; this estimator Ho, being C.A.G. under fairly wide

conditions, and its fluctuation (,2 oc T2 1 being asymptotically smaller or equal
than that of any other such estimators, would be in the limit one of the most
precise C.A.G. estimators and would merit the name of optimum estimator. Its
amount of information will be

14 Translator’s Note: This is a typographical error since the ç’s were defined as
random variables. The correct expression is (2 = 1or2’



For any other C.A.G. estimator obtained from the same observations E and

-- 

1 7 (!2 1 
hich iswith amount of information 1 (2 the ratio £ C-2 2 = ! !z , which is! ! (! !!!

smaller or equal to 1, will be called efficiency&dquo; of the estimator; it gives the
loss of precision accruing from using an estimator other than the optimum.
We shall now give a rigorous and general presentation of Mr. FISHER’s

theory, extending results of Mr. DOOB and of Mr. DUGUE (5).
Let g (xi, B) be a function of random variable xi and of the unknown

parameter B, and suppose that the N random variables g (xi, B) have true
means for each value of 0 that are &dquo;equally convergent&dquo;, that is, that the N
probabilities .

have an upper bound given by a function p (t) independent of i which generates
/.+00

a finite integral} r+oo 0 t dp (t). If we suppose that

tends towards a limit cp (B) as N ---7 oo, for every value of 0 in an interval
A...B, the extension of a result of Mr. KOLMOGOROFF (9)15 shows that the

quantity

deduced from N observations a;i,... xN, tends almost surely, when N - oo,
towards cp (B). If one supposes that the g (xi, 0) are almost surely functions of
B with variation bounded by the same fixed number K (&dquo; equally bounded vari-
ation&dquo;, the same holding for ! (B, N)), an extension of POLYA-CANTELLI’s
theorem shows that when N ! 00, W (0, N) converges almost surely towards
cp (0) in the interval A ... B16, which means that the probability that

tends towards 1 as No -> oo, whatever the value of B is and for N > No (q
being an arbitrary, fixed, number.

15 
Translator’s Note: The English spelling is KOLMOGOROV.

16 
This holds even if there are discontinuities (of the first kind) by considering,

instead of the value of 0, the limiting values at right and left (supposed to satisfy the
same conditions):

In what follows, it will be convenient to represent by p (B) the set of values
comprised between cp (B - o) and cp (0 + o), and by 0 (0, N) the set of values comprised
between cp (B - o, N) and cp (9 + o, N).



Consider now a root 90 of p (6), suppose that it can be found and that it

corresponds to a change of sign of cp (B): more precisely, suppose that in every
interval 01 ... B2 surrounding 90 there is at least one value between 91 and 90
for which cp (0) is negative, and that there is at least one value between 02 and

90 for which it is positive. If we let be the smallest of the two corresponding
[p (0) it follows from the preceding that, for N > No, the probability that all
the W (B, N) change from positive to negative inside the interval 01 ... B2 and,
therefore, the values cancel each other (in view of the statement in the preceding
footnote, for the points in which there is discontinuity), tends towards 1 when
N - oo. Because the interval 01 ... B2 in the neighborhood of 90 can be taken
to be arbitrarily small, this means that the equation B]! (0, N) = 0 admits at
least a root converging almost surely to 9o when N -! oo.

It is possible to go further if one supposes that the quantities &mdash;.’ 0)
<7P

and, hence, !! are almost surely uniformly continuous with respect to B, withcw
equally bounded variation in A ... B, and that these have &dquo;equally convergent

a qj
true means&dquo;. It follows easily that !: (B, N) converges almost surely and00
uniformly towards a continuous function which is surely the derivative of cp (0),
that is, cp’ (0) and then that one can associate to every e an interval 90 - a and
90 + a such that the probability that

for all N > No and for all between 00 - a and 00 + a tends towards 1 when

N, --4 00.
Now, from the formula of finite increments, these inequalities imply, for

N > No and for all 0 between 90 - a and 90 + a:

(where D is the fixed number cp’ (0o)); this shows that the equations XP (e, N) = 0
will have, for N > No and within the interval 00 - a and 00 + a, a single root,
and that this root will be each time between

provided that these quantities take values between 90 - a and 80+0:: this will be
attainable with probability tending to 1 when No --! oc because qf (00, N) tends
almost surely to ’P (0!) = 0. Hence, it is seen that the equation IF (0o, N) = 0
admits only one root 8N tending almost surely to 00; the probability that (for
each value of N > No) this root is equal to



with Ei < e, tends towards 1 when No -+ oo irrespective of the value of 6- 9N
is then a correct estimator of Bol7.

Let us make now the following additional assumptions: the N random
variables g (xi, 90) constitute a normal family in the sense of Mr. P. LEVY
(for this, it suffices to suppose, using the notation of Mr. P. LEVY, that

1000 t2dp (t) is finite, which implies that the fluctuations a2 of the random
N

variables g (xi, 90) are a bounded set and that the fluctuation 0’2 2 U2 of
i

N

their sum£ g (xi, 90) = NIP (90 , N) increases indefinitely with N. It is known
i

(P. LEVY, 11) that then the type of law of this sum tends to a Gaussian one,
and one can deduce easily (DUGUE, 5) that this law is the same as that of

9N is, thus, not only a correct estimator of 00 but C.A.G. as well. Because
NiIJ (0o, N) has a law that tends towards a standard Gaussian one, this being

0’

!VD
the same for ND , the fluctuation of the estimator ON is then:a (0N - BO)

Here we have a very general procedure for obtaining C.A.G. estimators. If,
in particular, we take as g (xi, B) pertaining to the ith observation the function

which has a null mean value when 0 is equal to the true value 00, giving
p (Bo) = 0, then the equation q, (B, N) = 0 becomes the equation of maximum
likelihood

If the conditions of continuity and convergence given previously are met,
this equation leads to a C.A.G. estimator, 0No, with a fluctuation involving:

17 
Translator’s Note: Recall that correct means consistent.



which shows that ! a2 = -Ncp’ (9!) , from where

hence, for a sufficiently large N, !2 < (1 0’ ! E’), the maximum likelihood
012

estimator is among the estimators having a minimum fluctuation. Henceforth,
we will call this an optimal estimator.

Suppose in particular that two sets with Nl and N2 observations, respec-
tively, have been collected, and that the observations within each set follow
the same law, that is, there are laws dFl and dF2. The maximum likelihood
equation for the entire collection of observations is:

and put

This gives the solution:

If we let 9Ni and ()N2 be the estimators obtained from each of the two sets

separately, one has

The optimum estimator for the entire data set is, thus, the weighted average
of the optimum estimators obtained from each of the individual sets, with the
weights being A!i<7! and N2o, 2 2, that is, the reciprocal of the fluctuations !1 and
(22 (&dquo; quantities of information&dquo;) of the two estimators. One finds the classical
rule for combining observations deduced by Gauss from a principle identical to
that of maximum likelihood.

This result highlights again that the rule of maximum likelihood is not valid
if applied to only a part of the observations, as the only result worth keeping
is that pertaining to the entire set of observations. The rule of maximum



likelihood is just a particular case of the rule of the most likely value ; that is
the special case where any information about 0 comes through the observations
E, while knowledge K obtained previously does not contribute at all, so an
uniform prior probability is assigned to 0. Furthermore, it must be observed,
with Mr. JEFFREYS, that if one takes any continuous probability law for
0, h (0) dO, having continuous first and second derivatives, the effect of this
law on the estimator obtained using the rule of the most likely value with N
independent observations is negligible as N - oo. In fact, if we let E denote
the set of such N observations, and let 7r (E [ 9) be the corresponding likelihood
function, the posterior probability of a value 0 will be 7r (EIO) h (0) dO, so the
most likely value will, thus, be the root of the equation

ä log hfrom where, putting ae = d (8):dc’

and, rearranging the calculations on page 5419 slightly, the estimator based on
the most likely value is

If h (90) # 0, 1 (00) and l’ (0o) are bounded, so when N -j oo, BN - 6o !
9N - 00, with ON being the maximum likelihood estimator; the influence of
the prior probability law becomes negligible. However, it must be emphasized
that for large but finite N this influence is negligible only if l (Bp) and l’ (0o)
are sufficiently small relative to N; on the other hand, if l’ (0o) is of the order
of N, that is, if the curve representing log h and, hence, that representing
h (B) (elementary prior probability) has a sharp peak, this is not so; it is

patent, furthermore, that in this case, with the observations K made before E,
having already given precise information about 0, then the maximum likelihood

18 
Translator’s Note: MALTCOT refers to the mode of the posterior distribution.

19 
Translator’s Note: The reference is to the page of the original paper. MALÉCOT

is pointing out towards the developments leading to:

in connection with maximum likelihood estimation.
20 

Translator’s Note: The meaning of elementary, an adjective used often by
French mathematicians, is unclear here. Presumably, MALECOT means density, an
infinitesimally small element of a probability (in the continuous case).



estimator ON deduced from only E, is not the best; it is necessary to combine
E with the previous observations by applying the rule of the probable value 21,
which gives the value BN.

Because the mean value of BN is

with El being almost surely uniformly small with N, its fluctuation will beN

This can be larger or smaller than !2 = 2 (fluctuation of ON) depending on
, 

0’
whether L’ (0o) is > 0 or < 0, that is, depending on whether the true value 00
lies in the neighborhood of a &dquo;valley&dquo; or of a &dquo;peak&dquo; of the curve representing
the prior probability h (0). In the case where (’2 < !2, there is no contradiction
with the result given on page 5022, because this result establishes that !2 is

the minimum fluctuation for all estimators H such that M (H) = 0 for any 0;
it can be expected that when one does not have any prior knowledge about the
true value 00 of 0 the precision of the best estimator will be !2. On the other
hand, if one knows that a value 00 is more probable than others, the condition
M (H) = 0 for any 0 can be a nuisance23 and give less precision than when
would try to estimate in a region near the most probable value.

21 
Translator’s Note: The author probably means &dquo;the most probable value&dquo;.

22 
Translator’s Note: This is the page of the original paper where the lower bound

for the variance of an unbiased estimator is presented.
23 

Translator’s Note: MALECOT employs the term &dquo;parasite&dquo;. Although descrip-
tive, such a term is not a part of the statistical lexicon in English.



4. THE PROBLEM OF INDUCTION

The decreasing importance of the prior probability as the number of ob-
servations increases describes certain aspects of the problem of induction in a
remarkably clear manner. This problem consists essentially of extracting from
the results observed a law summarizing them (and which also allows to forecast
future results); this law is never dictated by the observed results, rather, it is a
construction of the mind chosen for reasons of simplicity or convenience (natu-
rally taking into account all previous experience); one can always suppose many
laws; these play the role of the different hypotheses Oi of our scheme; each of
these, if formulated with sufficient precision, generates the observed results E
with a known probability P (E[01K) , the likelihood of Bi. The choice between
the Bi is dictated by the posterior probabilities P (0j [EK) , depending both on
the likelihoods, which are objective (because these depend only on the observa-
tions) and on the prior probabilities P (01 [ K) which are more or less subjective;
the evaluation of likelihoods is deductive (often in its more refined form, the
mathematical deduction); however, the subjective part always enters in the
evaluation of prior probabilities, illustrating wonderfully that every induction
is subjective. It is true that when the number of observations increases, the
subjective part decreases, as we saw previously. Further, the prior probabilities
can be right away in more or less agreement with subsequent experience; when
KEPLER viewed as very probable that an ellipse would fit his observations
on Mars, he was in immediate agreement with all subsequent astronomical ob-
servations; on the other hand, the a priori belief that planets moved in circles
around the earth led PTOLEMY and his predecessors to formulate laws which,
by integrating all past observations, made difficult, because of their complexity,
to predict subsequent observations. The scheme a priori was excessively subjec-
tive and had to be updated constantly in order to account for new observations.
These examples show that as science progresses, that is, as new observations
accumulate, its subjective part diminishes, although it would be an illusion to
believe that it could be eliminated totally. In fact, experimental progress always
allows us to choose, in the long run, between several hypotheses that have been
formulated completely (by evaluating their likelihood deduced from all observa-
tions made), but we will always be incapable of formulating precisely (that is,
making their consequences explicit) all possible hypotheses and, consequently,
of calculating the likelihoods of all hypotheses. This is the reason why every
law, every possible physical theory, will always become inadequate for explain-
ing new facts: it has been chosen as the most likely of all the laws among those
that can be formulated, but more advanced experimentation will make it ap-
pear less likely than new laws that one would be led to formulate; in this form,
the system of PTOLEMY was replaced by that of KEPLER-NEWTON, and
then by relativist mechanics. Each law is valuable for representing both the old
field of observations and the new field motivating it; however, the law cannot
pretend to represent the totality of future observations, because it is not more
than a choice between a small number of laws that our mind conceives and,
because of the weakness of our senses and of our mind, these laws are rough
and incomplete blueprints of the rich complexity of natural phenomena. Of
course, as experiences develop, the increasing finesse of our theories molds re-
ality better but cannot pretend to grasp it completely. &dquo;There are more things



in heaven and earth than in all our philosophy&dquo;. There is more complexity in
the mechanisms of nature than we can think of and all the laws that we can

construct, even if better than the preceding ones, are just an approximation
to reality, an approximation that will become insufficient, eventually. OHM’s
law, although translating electrodynamic phenomena remarkably to our scale,
becomes inadequate when an extension of our senses places us at the scale of
the electrons, so it becomes just a statistical law. Is it not possible that even
the laws of atomic physics behave eventually as statistical laws? A scientific
law is never &dquo;true&dquo;, that is, a definitive one, it is only more or less convenient
for representing and anticipating phenomena viewed at a certain scale. When
it is said that &dquo;a physical theory is justified by its consequences&dquo;, this only has
a relative meaning, that is, that among all theories formulated, this is the one
having consequences that agree best with the observations. In induction, there
are two very distinct parts: a deductive part that formulates the consequences
of each hypothesis considered, and a part that is not amenable to deduction
and which postulates hypotheses and assigns prior probabilities to these; there
is where the genius of invention and the mind are manifested; then, the rest
consists in choosing the most probable hypothesis after the consequences. The
rule of the &dquo;most probable hypothesis&dquo; underlies every induction, translating
precisely the logic of induction and, at the same time, highlighting its subjec-
tivity. It does not seem possible to take the rule of maximum likelihood as a
base of the logic of induction, as Mr. FISHER does, because this rule applied to
different series of measurements will lead to contradictory consequences (and
must be completed using significance tests, which are in contradiction with this
rule!), while a logic must be a set of principles from which one can accept all
consequences, this being certainly the case, as we have argued, for a logic based
on BAYES formula.

5. &dquo;SUBJECTIVE&dquo; AND &dquo;OBJECTIVE&dquo; PROBABILITIES

If, with Mr. DE FINETTI (6), we view probability theory as a &dquo;logic of
subjective judgements&dquo;, how is it possible to have an agreement between state-
ments derived from this logic and the objective reality? This is the objection
made frequently to the formula of BAYES. The arbitrary form in which prior
probabilities are evaluated confers a similar arbitrariness to the evaluation of
posterior probabilities. Now, aren’t there events whose probabilities have an
objective meaning, as suggested by an agreement between observed frequencies
and probabilities assigned by an a priori reasoning? We believe that the re-
marks made previously permit responding to this objection. Every evaluation
of probabilities is a construct of the mind, and relative to a theoretical setting
imagined by the mind to limit our ignorance, and based on the principle of
indifference. For example, the statement that the value 6 in the toss of a die

has a probability of 6 is, at the same time, the result of ignorance about the
movement of the die in the dice-box, and of the statement that there is no rea-
son to believe that this movement favors a side over the others, hence all sides
are equi-probable. This is relative to a certain theoretical scheme, to a certain
hypothesis: a perfect die tossed fairly. Others may make a very different eval-
uation, by admitting a personal influence of the &dquo;lucky&dquo; player on the values



observed. At any rate, in the evaluation of probabilities, there will always be
hypotheses a priori that, although more or less suggested by previous observa-
tions, will never dominate absolutely, will never be certain a priori, this being
so because it is never possible to know the totality of circumstances giving rise
to a phenomenon. (In passing, we dismiss the objection that it is not possible
to speak about &dquo;probabilities of causes&dquo; because these would not be &dquo;random&dquo;,
one must be &dquo;true&dquo; and the others &dquo;false&dquo;: if one admits determinism, the same
is true of the effects; in fact, it is not the phenomena that are random, rather, it
is the knowledge that we have about them; the probabilistic logic attempts to
identify the limits of our ignorance). The role of experimentation is to confirm
or question some of the assumptions made or, more generally, to update their
probabilities; if one of these appears clearly as more probable than the others,
it would be retained as the best, but it should be kept in mind that this superi-
ority is temporary, and that the hypothesis could be demolished by subsequent
experimentation. For example, consider games of chance, such as playing dice,
to illustrate ideas. Experience has led us to abandoning the hypothesis, which
perhaps may be natural for a primitive mind, that there is an influence of the
player on the outcome, and to adopting the assumption that all sides of the die
are equally likely, as the best explanation for the observed results. However,
Weldon’s experiments show, in turn, that this assumption is false, as the the-
oretical scheme of the perfect die does not hold in practice; there are always

1
some sides that are favored: the probability of 6 is then relative to a theoreti-

cal scheme deduced from reality by abstraction and simplification, and it will
never be the limit of the observed frequencies.
What makes the theoretical scheme appealing is its convenience: with

everything kept simple, it summarizes with sufficient precision the main aspects
of an experiment, and it can be expressed through formulae that are simple
and, at the same time, that allow making forecasts having a good precision.
As it has been stated by Mr. DARMOIS (2): &dquo;making a probability calculation
in a specific case, requires seeing clearly all that it is necessary to know, such
that the study follows closely the essential circumstances of the phenomenon
considered&dquo;. Thus, the evaluation of a probability always results from a
theoretical scheme permitting to assess, with more or less precision, the equal
or unequal probability; it is completely legitimate, as stated by Mr. BOREL,
to evaluate the probability of an isolated event provided that a scheme can be
conceived where this probability is related to other known ones (for example
in a lottery scheme)24. However, the probabilities thus calculated will not be
in reasonable agreement with the observed frequencies unless the theoretical
scheme is in sufficient agreement with the real mechanism, for example, the
equi-probable cases corresponding with the equally frequent cases, and this will
happen when the scheme has been established after considering a sufficiently
large number of experiments. It is in this situation that an &dquo;agreement between

24 
Translator’s Note: It is unclear what MALTCOT means here. In the original

paper, he stated: &dquo;Ainsi L’evaluation d’une probabilite resulte toujours d’un schema
theorique permettant d’evaluer, avec plus ou moins de pr6cision, 1’6gale ou lin6gale
probabilite ; il est tout a fait legitime, comme le remarque M. BOREL, d’evaluer la
probabilite d’un 6v6nement isol6 d!s qu’on peut concevoir un schema ramenant cette
probabilite a d’autres connues (par exemple, un sch6ma du tirage au sort)&dquo;.



individual opinions&dquo; (DE FINETTI) or an &dquo;agreement between equally well
informed minds&dquo; will be obtained, a condition that Mr. BOREL confers to
an &dquo;objective probability&dquo; (which, furthermore, is not a sufficient condition
because errors of judgment or of expertise can be committed unanimously).
On the other hand, if the scheme is established from a weak knowledge about

facts, the probabilities that can be deduced have the risk of not bearing any
relationship with reality. This is what makes Mr. DE FINETTI to write: &dquo;if one
does not want to take subjective factors into account explicitly, the question
should be abandoned, by stating that it is not sensible&dquo;. This is scarcely a
reason-the opposite, rather- for rejecting the formula of BAYES, since there is
a need for adopting a position (DE FINETTI,(6), p. 26)25. The question brings
into perspective the subjectivity of this view, as it was done in the linkage
example. Also, the criticism of the formula made by Mr. NEYMAN (15) is
somewhat surprising. Mr. NEYMAN takes as an example a set of individuals
I, all dominant for a Mendelian factor26; it is wished to use those having the
homozygote genotype AA, and to discard the hybrid types (Aa); to do this, each
I is crossed with an aa, and the k descendants from this cross are observed;
if aa types are observed within these, then I is discarded, naturally; on the
other hand, I is kept if the k descendants are of the dominant type. However,
in so doing, some of the individuals I kept will be of the undesirable type Aa;
the problem is the evaluation of the risk of such an error. Because an I of
the AA type produces only dominant descendants, and an I of the type Aa

Bk
gives k descendants that are all dominant with probability C 2 I the posterior
probability of keeping an I which will be Aa, using BAYES formula, and letting
po be the prior probability that I is Aa will be:

It is clear that if po is &dquo;objective&dquo;, that is, if it reflects an observable frequency,
then pi provides a forecast of the frequency of errors. If, for example, it is

known that the I individuals come from crossing heterozygotes, one would

take po = 3, representing the frequency of heterozygotes in a large number of
individuals I examined. Then:

would sensibly represent the proportion of individuals that, although kept,
possess the Aa type, that is, the proportion of errors. However, if the origin of
I and, hence po, is unknown, the equation evidently looses part of its specific
meaning. Should one, then, with Mr. NEYMAN, declare it useless?27. It is clear

25 
Translator’s Note: I have translated &dquo;adopter une ligne de conduite&dquo; as &dquo;for

adopting a position&dquo;.
Translator’s Note: Although perhaps obvious from the context, MALECOT

means that the set I includes individuals with at least a copy of the allele A.
27 

Translator’s Note: The author refers to BAYES formula here.



at the onset that no other formula, in the absence of additional experiments,
can give us the proportion of errors, because from the equation, this is linked
to po, and this is unknown. Any estimation of error needs a judgement, explicit
or not, about the value of po, and in the formula of BAYES this judgement
must be made explicit. The formula shows, for example, that if k = 6, the
statement that there is at least 1 error in 65 is equivalent to stating that po
is ! -, 2 which may or may not be viewed as reasonable depending on the
information available about how the individuals I were obtained. None of the
two statements has a stronger foundation than the other, and any reasoning
attempting to give more credibility to the preceding one would be erroneous.
BAYES formula, establishing an exact correspondence between the &dquo;prior&dquo;
and the &dquo;posterior&dquo; probabilities shows clearly that a judgement based on the
latter ones is equivalent to a judgement on the former ones, and that this is
unavoidable, except in some special cases to be discussed in Section 7. Further,
this formula has value for the interpretation of subsequent experiments: if these
involve a genetic analysis of the individuals I kept, from which it follows that
the frequency of errors can be evaluated, this leads to an &dquo;objective&dquo; value of
pl, that is, of the composition of the initial population, information which may
be precious for other experiments.

6. NEYMAN’S POINT OF VIEW

After having shown that the statistical ideas advanced by Mr. Fisher’s
school of thought cannot be justified logically without introducing the &dquo;rule
of the most probable value&dquo; deduced from BAYES formula, we will consider
now the methods with which Mr. NEYMAN has thought it is possible to by-
pass this formula while providing &dquo;objective&dquo; criteria, expressible in terms
of frequencies. The problem, as posed by Mr. NEYMAN, is to decide if a

hypothesis Ho is to be &dquo;rejected&dquo; or &dquo;accepted&dquo; according to whether the point
E having as coordinates the N observed values :ri,...,:E!, is found inside of
a certain &dquo;critical region&dquo; w or inside of a complementary region ill of the N-
dimensional space J22N (&dquo;observations space&dquo; ) (classical examples: significance of
the difference between a theoretical mean and an observed mean, by comparing
their difference with their standard error; assessment of goodness of fit with the
x2 method). This decision can produce an error in two different manners: if Ho
is rejected when it holds true, one makes a type-1 error (the only one that is
classically taken into account in the two preceding examples). If one accepts Ho
when it is false, a type-2 error results. The idea of Mr. NEYMAN is evaluating
the probabilities of these two errors separately and &dquo;objectively&dquo;, that is, to
predict their frequencies (by deduction and not by induction, as emphasized
by Mr. NEYMAN).

Consider the case where the hypothesis to be examined concerns the value
of a parameter B intervening in the probability law f (x, 0) taken for each
observation x. Because the function f is supposed to be known, one can
calculate, as a function of 0, the probability that the point 3;i,...,.TjBr falls
in the critical region w. This probability, P (E c w[0) = 0 (0, w) is called

&dquo;power function&dquo; of the criterion based on w. If the hypothesis Ho to be
examined attributes a value 00 to the parameter, the probability of a type-1



error calculated under hypothesis Ho will be 0 (Bo, w), and that of a type-2 error,
calculated supposing that the true value is 01 will be (3 (()l, w) = 1 - (3 (()l, w).
Mr. NEYMAN proposes first to reduce the probability of errors of the first type
to a fixed, sufficiently small value, a, defining a family of &dquo;equivalent critical
regions&dquo; w in terms of the formula /3 (00, w) = a: then, attempt to choose one of
these regions such that the type-2 error is as small as possible, and this for any
01 in a certain domain; hence, this defines a criterion that is &dquo;uniformly most
powerful&dquo; in this domain (but this criterion exists only for very specific laws f
and, provided that the domain is restricted sufficiently. This is the reason why
the domain is often restricted to the neighborhood of 00).

Our first criticism is as follows: why would one want first to minimize the
type-1 error? Mr. NEYMAN points out to a case where the consequences of a
type-1 error would be much more important than those of a type-2 error: for a
pharmacological product which, by accident, can contain a toxic substance, and
which has been assayed previously on some animals, it is essential not to discard
the hypothesis Ho: &dquo;the product is dangerous&dquo;, because it is accurate; however,
the consequences are not serious if this hypothesis is kept, even if it is false; the
problem is, then, essentially, one of reducing the type-1 error. However, this is
a very particular situation. In general, the cases where one will be concerned
about the type-1 error are those where a priori there are strong reasons to
believe that Ho is accurate: in fact, reducing the type-1 error leads, most of
the times, to an increase of the type-2 error in the neighborhood. If one can
vary B in a continuous manner and if (3 (B, w) is a continuous function of 0, the
two errors become evident in the curve representing the function, because the
corresponding probabilities are, respectively, the ordinate at abscissa 00 (where
00 is the value under scrutiny) and the complement to 1 of the ordinate with
abscissa 01 (Bl = true value); even if the region w is chosen such that one has a
uniformly most powerful criterion, in those rare cases where it exists, it is still
true that a reduction of a will cause in general a reduction of the neighboring
coordinates, that is, an increase of the type-2 error, provided the true value 91
is not too far from the value 00 under scrutiny. For example, in the estimation

1
of linkage, it is frequent to reject the hypothesis r = 2 if the estimate of r

obtained from the experiments it is away from - 2 by more than A times its
standard error. The larger A is, the smaller the risk of rejecting the hypothesis
r = 2 if this holds; however, there will be some risk of discarding the hypothesis
that r has a value other than - 2 but near - 2 when this hypothesis is true. In
general, the weight to be assigned to the two types of error, that is, the choice of
a, depends inevitably on assumptions made a priori about the probabilities of
Ho and of the other hypotheses. The method of Mr. NEYMAN cannot pretend
to give an &dquo;objective&dquo; judgement about Ho; its appeal resides in making the
distinction between the two distinct classes of error, but it is incapable, in the
absence of any consideration a priori, of assigning appropriate weights to the
two; now, the more clear manner of incorporating a priori considerations is to
introduce prior probabilities; if these are subjective, so be it.

Let us go further: this method not only does not permit to evaluate the
global frequency of errors in the absence of knowledge of prior probabilities,



as acknowledged by Mr. NEYMAN, but it does not allow evaluation of the

frequency of errors of each type and, contrary to what seems to be stated by
Mr. NEYMAN, it does not furnish any observable frequency. In fact, 0 (0o, w)
just measures the frequency of errors of the first type that would take place if
Ho were always true; 1- 0 (01, w) measures the frequency that the errors of the
second type would have provided the hypothesis 0 = 01 were always true; now,
in practice, we do not have any certainty about these hypotheses, this being
precisely the reason why we wish to arrive at a probabilistic judgement about
these; hence, we are incapable of predicting to what extent the real frequencies
of these errors correspond to the preceding probabilities unless, naturally, one
knows for the different values of 0 the &dquo;objective&dquo; prior probabilities, that is,
expressible in terms of frequencies.

Let K be the prior probability that the hypothesis 0 = 00 holds and

(1 - K) dg (01) (STIELTJES’ differential) be the prior probability that 0 =
01 # Oo (fL dg (01) = 1, with L denoting the domain of variation of 01, excluding
00); the posterior probabilities, when it is known that the observations have

given a result falling in w, are respectively proportional to:

giving as posterior probabilities of the errors of the first and second types:

(probability that Ho is true given that the observations fall in w, leading to
rejection of Ho).

(probability that Ho is false given that the observations fall in to ill, leading to
acceptance of Ho).

28 Translator’s Note: Without warning, MALTCOT changes the notation
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The posterior probability of any error is:

It is seen that the prior probabilities (K and g (0)) intervene in an essential
manner in the expected frequencies of the two errors and in the weights to be
assigned to these. The coefficients by which ¡3 (8llw )29 and 0 (8llw) must be
weighted are the prior probabilities K and (1 - K) dg (8d; the choice of the
size of a, for which Mr. NEYMAN does not offer any guidance, is implicitly
equivalent to an assumption about the prior probability K of 00; by considering
only the type-1 error and minimizing a (as in the usual case of evaluating the
significance of deviations, or in the x2 test) this is equivalent to supposing that
K is close to 1 so that (1 - K) f ¡3 (01 IT) dg (01) in P is negligible relative to
Ka (although the value of the integral, ranging between 1 - a and 0 in the
usual case where a (8Iw) is minimum for 00, can be of the order of 1 - a for
certain laws of the prior probability dg (01)

7. THE &dquo;CONFIDENCE INTERVALS&dquo;

The problem has been addressed in a different form by several authors, and
by Mr. NEYMAN in another report (13). We shall modify the presentation of
his theory by introducing prior probabilities. Let dg (0) be the prior probability
of an unknown parameter intervening in the probability law of the random
variable under study (this parameter can vary within an interval a ... b which we
shall denote as L), and let Ei (i = 1, 2, ... , n) be the different possible outcomes
(these being mutually exclusive) of the set of possible experiments involving this
random variable. For each possible Ei we introduce a corresponding &dquo;estimating
set&dquo; (supposed to be measurable) Oi contained in L, and we shall agree that
if Ei is observed, the true value of B will be regarded as belonging to the
corresponding Oi. If Oi is an interval, we shall refer to it as a &dquo;confidence
interval&dquo; associated to Ei.

(The situation in Section 6 was one where the Ei were distributed only
into two categories, w and w, and where the corresponding estimating sets are
0 # 00 and 0 = 00, thus non-overlapping; what it is different now is that the
estimating sets 8i corresponding to the different values of i can overlap).

Let again 7r (EiI8) denote the probability of observing Ei when the parameter
has value B; the total probability of observing Ei is

BAYES formula gives as posterior probability that 9 is not in 8i (i.e., that it
belongs to the complementary set L - Oi), given that Ei has been observed:

29 Translator’s Note: MALECOT probably means ,(3 (Bp!zv).



consequently, the total prior probability that the rule &dquo; B is in 8i when Ei has
been observed&dquo; leads to a false statement is:

The interesting aspect of this formula is that, by choosing the 8i conve-

niently, is it possible to arrange it such that 7 is always smaller than a fixed
limit, irrespective of the prior probability law g(0) of the parameter; suppose
that when 0 varies in the interior of L - 8i, 7r (Ei [0) # 6, with 8 being a limit
independent of i, which can be reduced arbitrarily by reducing the L - 8i; the
formula of the mean then gives that

and the sum inside the brackets cannot increase when the sets L - 8i are

reduced and, hence, in particular, when 6 is reduced; hence, this can be made
arbitrarily small, which proves the statement. Therefore, one can always choose
the Oi such that, without knowing anything about g (B), it is assured that the

probability that the rule adopted leads to an error that is smaller than a

fixed number e, hence, on average, one will make mistakes in a proportion
of experiments that is smaller than E. Thus, one can speak of an &dquo;objective&dquo;
probability of error and &dquo;independent of the prior probabilities&dquo;; however, it
should be pointed out that limiting &dquo;objectively&dquo; the probability of error has
a penalty in terms of reduced precision of a statement concerning 0; first, by
use of the rule stated, we arrive only at the statement &dquo;B is in a given set&dquo;
and not: &dquo;0 has a specific value&dquo;; then, if the objective of the experiment is
to judge a specific value of 0 deduced from a theory, or to obtain a numerical
value permitting subsequent evaluations, this value can be examined only in
the light of certain prior probabilities, as we established in Section VI. Besides,
even if one is satisfied with giving an indeterminate answer within a certain set,
it must be noted that the sets 8i corresponding to the different results Ei could
have considerable overlap, and in some cases there could be a part common to
all 8i; hence, the method will often be unable to choose, after the experiment,
one set from a collection of overlapping sets, but will just allow to keep after
the experiment a certain number of sets from this group without being able to
choose among these (perhaps even some of these sets will never be rejected,
irrespective of the results!). Nevertheless, these remarks should not make loose
sight of the attribute of the method, which is to provide an upper limit for the
probability of error that is completely independent of the prior probabilities, a
limit which will be usable only in the case where we do not know absolutely
anything about the latter.

The result is extended easily, by modifying the notation slightly, to the case
where all the possible results form a measurable continuum 9 in a space J22. If
one lets 7r (E[0) dE be the probability that when the parameter has value 0 a
result belonging to an element with volume dE is observed around a point E,
and 6 (E) be the estimating set (supposed to be measurable) associated with



E, and if one adopts the rule &dquo;state that when one observes E, then B is in
19 (E)&dquo;, the prior probability that this statement will be false is:

To be more specific, let us adopt the presentation of Mr. NEYMAN, and put
in brackets a generalization of his statements. Let E be the experimental point
(set of N observations xl, X2, - - xnr) describing a continuum 3 in a space
!J2N; to each value 60 of the parameter we associate an &dquo;acceptance set&dquo; A (Bo)
&dquo;of size equal [or larger than] to a&dquo;, which by definition is a measurable set

(function of 00) of points in !J2N chosen such that the probability that E belongs
to this set, calculated under the hypothesis 0 = 00, is equal [or larger than] to
a. Further, associate to each experimental point E the set 8 (E) of values of
00 for which A (00) contains E; this set 8 (E) will be called &dquo;estimating set
of 0, with a confidence coefficient equal [or larger than] to c!&dquo; . If, for each E
observed, we agree to state that the true value of B is in the interior of the
corresponding 8 (E), it is easy to show that the total prior probability that
this rule leads to an error is independent of the prior probability of 0 and is
equal [or smaller than] to 1-a. In fact, this probability -y is given by the above
formula, that is, by a multiple integral over the domain:

(because there is a logical equivalence between the two propositions: &dquo;E is not
a part of A (0)&dquo; and &dquo;00 is not a part of O (E)&dquo; ) enabling us to write also:

However the integral to the right is, for any 0, by definition of A (0), smaller
or equal to 1 - a, the same holding for -y, thus completing the proof.

This proof puts in evidence, better than that of Mr. NEYMAN, the class
of trials on which the probabilities are defined: is the set of all possible trials
from all possible values of 8 distributed according to an unknown law dg (0).
Mr. NEYMAN uses well the logical equivalence between the 2 propositions
noted above, but he does not emphasize that this does not imply the equality
of their probabilities unless these are defined over the same class of trials. For
example, this would not give the probability of error in the set of cases where
we observe a given Ei event (selection of results), because, from the formula
on p. 68!° giving Qi, it would be necessary to know the prior probability of
this event. If there is any conceptual confusion concerning the probability 1- a
attached to a confidence interval, it is because there is an incomplete definition
of the corresponding category of trials. It seems to us that one must see there
a posterior probability of error calculated over the set of all possible trials,
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and independently of the prior probability of 0, thus &dquo;objective&dquo;. What Mr.
FISHER cautiously calls &dquo;fiducial probability&dquo; is a true probability, as rightly
observed by Mr. NEYMAN.

There is a well known application of this theory, this being the rule of
&dquo;STUDENT&dquo;. If the xi are N observed, independent, values with mean x of the
same random variable following the law of LAPLACE-GAUSS with unknown
expectation 0, we can take as estimating set with a confidence coefficient a the
&dquo;confidence interval&dquo;

with t linked to a through the formula:

The statement that 0 belongs to such interval would give a frequency of
errors equal to 1 - a, over a long series of experiments of the same type, and
where there is no selection of results.

The theory of confidence intervals can be combined with that of estimation.
Often, for a parameter 0 with unknown true value 00, one possesses an estimator
E deduced from a large number N of observations, that it is correct3l,
asymptotically Gaussian, and with a known standard error, which is a function
of 00, that is, 0’ (()o). The interval Bo - Au (0o) ... 00 + Aa (0o) is for E an
acceptance set of size a connected to the &dquo;critical coefficient&dquo; A by the formula

if, within the interval where 00 can vary, a (00) admits an upper limit or, it is
seen that the interval E’&mdash;A<7... !+A<7, entirely determined by the observations,
will be a confidence interval for 0, with a confidence coefficient larger or equal
than a.

In particular, if E is the maximum likelihood estimator, hence one of
those minimizing a (eo), and if the margin of uncertainty about 00 is small

enough such that 0’ (E) is not too different from 0’ (eo), the interval E &mdash;
Aa (E) ... E + Aa (E) will give a confidence interval of size a for 0, and it
will be, among all confidence intervals of size a derived from different C.A.G.
estimators, the smallest one. This is why the rule indicated has practical value,
by giving a maximum reduction of the uncertainty about 0 while maintaining
an &dquo;objective&dquo; probability of error (besides, as suggested already in Section 2,
this rule has the effect of grouping the value with maximum likelihood, very
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unlikely by itself, with the neighboring values; however, we have now replaced
the consideration of posterior probabilities of different values, which depend on
the prior probabilities, by that of the total probability of error, which does not
depend on these).

Nevertheless, it must be pointed out that possessing certain information
about the prior probability of B is necessary and sufficient to reduce even more
the interval without increasing the probability of error 1 - a. In particular,
one could not logically take a specific value of the interval without making
assumptions, explicitly or not, about the prior probabilities. If, for example, an
interval containing an integer value of B has been obtained, adopting this value
of B rather than the estimate E will often depend on theoretical considerations
a priori (for example, if 8 is the linkage coefficient r defined already on page
4732, or if it is an atomic weight).

To finish, let us give an example of a confidence interval based on a small
number of observations. Suppose, with Mr. FRECHET, that from an urn with
a completely unknown composition, a single ball (suppose it is white) is drawn.
What can we say then about the probability of drawing balls of the same color?
If p is the (unknown) value of this probability and f = 0 or 1 is the frequency
of white balls that can be observed in a single draw, an acceptance set of size
>_ 0: would be defined by:

The confidence intervals for p with coefficient >_ a can be deduced to be:

which implies, to clarify the ideas, that if one repeats the experiment in a large
number of urns having an arbitrary composition, and that if one states each
time that the prior probability of the observed result, no matter what this is,

1
would be !! I , one would be wrong in at most 1 of every 100 such trials.! 100
On the other hand, it is impossible to bound the probability that, in the case
that one observes a white ball (selection of results), one makes a mistake by

1
stating that the probability of whites is ! 100 (it is evident that all urns could100

contain less than 100 of whites). The criterion does not allow us to choose100
one among several hypotheses, these being stated before the experiment and
mutually exclusive, for example, between the hypotheses p > &OElig;, &OElig; ! P ! 1 - a,
p < 1-a; it only enables us, after each experiment, to reject a single one among
these 3; it does not permit us, ever, to reject the second one because this is the
common part of the 2 confidence intervals. This illustrates the remarks made
on page 6933.
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In summary, we see that the theory of confidence intervals allows us to make
&dquo;objective&dquo; judgements free from a frequency of error that is known or bounded,
but only in the following form: after the experiment, discard certain intervals
where the bounds depend on the results of the experiment; however, this does
not permit us to choose a given value, or often to choose between one or several
values fixed a priori, so it becomes indispensable (unless one refuses to make
this choice) to invoke a scheme of prior probabilities formulated in a more or
less clear manner. This is necessary if one wishes to take into account previous
experiments, unless their benefits are dispensed with willingly, as pointed out
by STUDENT in the title of one of his tables (JEFFREYS, (10), p. 310).

8. INDETERMINACY OF A SET OF HYPOTHESES

In the preceding development, it was supposed that the probability law is
known perfectly once 0 is fixed and, hence, that all the consequences of all such
possible hypotheses can be stated. In practice, as we observed in Section 4,
this is not so: the hypotheses that one can state, and their consequences do
not cover in an exhaustive manner the field of all possible hypotheses, so the
sum of their probabilities, a priori or a posteriori, give a number < 1; the
rules that we have given lead one to making a choice between the hypotheses
stated, but do not prejudge at all about the probabilities of those that have
not been formulated yet, and these may be appreciable, because the history of
scientific theories is the history of the abandonment of old hypotheses and of the
keeping of the newly formulated ones. For example, when a law f (x, B) derived
from theoretical considerations is fitted to data, it would be better to avoid

suggesting, in agreement with Mr. MATHER, that all that can be extracted
from the observations can be summarized in a confidence interval about B,
and it should be always kept in mind that f (x, B) may be inexact! Certainly,
in general, we will be incapable of formulating precisely all alternatives to
the validity of f (!, B), but it would be prudent to reserve a non-null prior
probability for these alternatives, which will avoid a situation where f (x, 0)
receives a brutal refutation in the case that, subsequently, the alternatives
become more plausible and their posterior probabilities increase, at the expense
of that of the former! As it has been said by CLAUDE BERNARD, we should
not forget that the scientist must sacrifice as many theories as needed, &dquo;like
the general that has had many horses killed but that still advances&dquo; .
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