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Abstract — The accurate estunation of the probability of 1dentity by descent (IBD)
at loc1 or genome positions of interest 1s paramount to the genetic study of quantitative
and disease resistance traits We present a Monte Carlo Markov Chamm method to
compute IBD probabilities between individuals conditional on DNA markers and on
pedigree information. The IBDs can be obtamed in a completely general pedigree at
any genome position of interest, and all marker and pedigree information available
18 used The method can be split into two steps at each iteration First, phases
are sampled using current genotypic configurations of relatives and second, crossover
events are simulated conditional on phases Internal track is kept of all founder origins
and crossovers such that the IBD probabilities averaged over replicates are rapidly
obtained We illustrate the method with some examples First, we show that all
pedigree information should be used to obtain line origin probabilities 1n F2 crosses
Second, the distribution of genetie relationships between half and full sibs 1s analysed
in both simulated data and 1n real data from an F2 cross in pigs

DNA markers / identity by descent probability / Monte Carlo Markov
Chain

Résumé — Calcul de probabilités d’identité par descendance sachant les
marqueurs moléculaires d’ADN via une méthode MCMC. L'estimation pré-
cise des probahlités d"identité par descendance (IBD) est fondamentale pour I'analyse
génétique de caractéres quantitatifs et de susceptibilités aux maladies On présente
unc méthode de Chaine de Markov Monte Carlo (MCMC) pour obtenir les probabili-
tés IBD entre individus sachant les marqueurs d’ADN et le pedigree Les IBDs peuvent
étre calculés pour un pedigree général sur une position quelconque du génome Toute
I'information des marqueurs et du pedigree est utilisée La méthode consiste en deux
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étapes - 1) les phases sont échantillonnées en utilisant les configurations génotypiques
des imdividus apparentés; 2) les crossing-overs sont simulés sachant les phases. On
trace 'origine des fondateurs et des positions des crossing-overs Danc les probahlités
IBD sont calculées immeédiatement On présente quelques applications D'abord, on
montre que toute l'information doit &tre prise en compte pour calculer les probabilités
sur croisermnents F2 Ensuite, on étudie la distribution de coefficients de parenté entre
fréres avec données réelles et simulées

chaine de Markov Monte Carlo / marqueurs moléculaires / probabilité
d’identité par descendance

1. INTRODUCTION

The accurate estimation of the probability of alleles being identical by des-
cent (IBD) at loci or genome positions of interest is paramount to the genetic
study of quantitative and disease traits. Two alleles are said to be identical by
descent, if they are replicates of the same allele that were inherited through a
common ancestor. DNA markers make it possible to estimate the probability
of IBD between relatives at any position of the genome. Nonetheless, there are
no general and easy-to-use methods aimed at this purpose that can be applied
to any experimental design.

The analytical methods available have the main advantage that they are
fast to compute but they do not necessarily use all pedigree and genotypic
information, and are usually limited to a number of simple relationships like
full or half sibs or assume that phases are known. Haseman and Elston [9] first
studied the estimation of IBD probabilities between full sibs in their seminal
paper. Chevalet et al. [1] obtained the conditional probabilities of loci linked to
a marker, but their approach is in practice restricted to rather small pedigrees
because the numerical complexity increases exponentially with pedigree size.
Fernando and Grossman’s {3] method is limited to one marker and one QTL,
and the generalization of Goddard [5] assumes that phases are known. This
latter author did not consider double recombinants between markers. Haley
et al [8] only used information from parents and grandparents, discarding
full and half sib genotypes to estimate breed origin in F2 populations. Their
method is not aimed at obtaining the IBD probabilities between any pair of
relatives and is restricted to F2 designs. Kruglyak et al. [14] implemented a
general and exact approach for calculating the inheritance distribution pattern,
but the method is limited to small (< 12 founder individuals) pedigrees given
the combinatorial problems handled.

Alternatively, Monte Carlo Markov Chain (MCMC) methods rely on draw-
ing successive random samples of the variables of interest. MCMC methods
have received much attention in genetics, especially in humans [15,19,20] but
they have been more concerned with the issue of reconstructing genotypes
when these are missing than with estimating genetic relationships. Grignola et
al. [6] presents a method for the obtention of genetic relationships using marker
information that sample phases using an MCMC strategy. Then, the authors
apply the strategy of Goddard [5].

We present a stochastic method to compute genetic relationships conditional
on marker and on pedigree information. Thus the aim of the work presented
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here is distinct from that of using DNA markers to infer genetic relationships in
the absence of pedigree information, e.g. [16]. The method developed here can
be applied to a completely general pedigree and uses all marker and pedigree
information available. We follow the approach of Guo [7], who considered the
genome as a continuum, rather than a collection of ordered loci. This author,
however, only provided analytical results and for the simplest relationships.

2. MATERIALS AND METHODS
2.1. Method

We assume that recombination fractions (4) between markers have been pre-
viously estimated and that genotypes are known for all individuals of interest,
although a limited generalisation to missing genotypes is also described. Thus,
the random variables are the phase (z.e., whether a given allele is of paternal
or maternal origin) and the recombination events that may have occurred to
produce the ohserved genotypes. The method can be split into three steps,
where steps 2 and 3 are repeated for a predetermined number of iterations:

2.1.1. Initialisation

A compatible phase is randomly sampled by giving equal probability to both
phases, whenever the phase is not completely determined by the parents’ gen-
otypes.

2.1.2. Phase sampling

If appropriate, the phase for each marker and individual is sampled condi-
tional on the current genotype and phase of the parents, spouse and offspring
of the individual. Each of the two phase probabilities is assigned 0.5 a prior
The first marker where the sire of the individual is heterozygous is identified
to the left and to the right of the current marker. The alleles are checked with
the individual’s genotype to modify the phase probabilities. The same strategy
is applied using the current phases for the dam, and the offspring. Finally a
phase is sampled at random using the joint probability A detailed description
of how probabulities are calculated is given in the Appendix. The phases are
first updated for all animals within each marker, then the next marker is chosen.
Nonetheless, it is also possible to first update all markers for a single individual.

2.1.3. Crossover sampling

Recombination events are sampled conditional on current phases This is
done for each haplotype in turn, considering the sire’s origin haplotype and the
dam’s origin haplotype separately because they are independent conditional
on phases. The markers with heterozygous genotypes in the sire (dam) are
identified. The number of recombination events is generated as follows. First,
note that any number of recombination events may have occurred between
the telomere and the first informative marker. Second, an even number of
crossovers (including zero) must have occurred between consecutive informative
markers if both alleles in the offspring come from the same haplotype in the
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parent, and an odd number of crossovers must have occurred if each allele in the
offspring comes from different haplotypes, 2.e. at least one crossover must have
occurred during meiosis For the telomeric regions, the number of crossovers
is sampled from a Poisson distribution according to the distance between the
telomere and the first informative marker. For the within marker crossovers,
the number of recombinants follows a censored Poisson distribution, according
to the above rule, 1.e., the probabilities of odd (even) number of crossovers
are set to zero and those of the even {odd) events are rescaled to add up to
one. If no marker is informative, the number of crossovers can be either odd or
even, and it is sampled simply according to the total chromosome length. The
location of the crossovers is assigned at random within the appropriate marker
interval. Technically, step two is a Gibbs sampling scheme, whereas step three is
a composition sampling [18] A composition sampling scheme means that first
a “nuisance” variable is sampled (the crossover locations), and a second variable
(the relationship coeflicients) are sampled conditional on the first variable. Here
note that r is unambiguously determined given the crossover locations.

Figure 1 illustrates the method in a pedigree consisting of sire, dam, and
two offspring O1 and O2 Thus, there were four founder haplotypes SS, SD,
DS, and DD Three markers were located on positions 20, 40 and 60 cM. Only
markers 1 and 3 were relevant for generating crossovers in the sire’s origin
haplotype, whereas only marker 2 was relevant on the dam’s side. The OS1
haplotype was 113, thus there must be an even number of crossovers located
between positions 20 and 60 ¢M (a zero recombinant is pictured in Fig 1);
OS2 haplotype was 213, 1.e., an even number of crossovers must have occurred
in interval 20-60 cM (a crossover in position 25 is shown). OD1 and OD2

crossovers were generated in a similar fashion. Note that in the next MCMC

iteration the phase sampled for the sire could be, e.g., %“}—é and then OS1

would be a recombinant haplotype and OS2, a non-recombinant haplotype
By repeating the process just described all haplotypes in the population are
simulated. Internal track is kept of all crossovers within each iteration such
that it is possible to trace the founder origin of any descendant at any point
of the genome with complete certainty This allows us to obtain any required
relationship in a straightforward manner The method assumes that all founder
alleles are distinct by descent., although they can, of course, be identical by
state. (The program can be modified easily to force that some founder alleles
are IBD). The appropriate statistics (e.g., additive or dominance relationship
coeflicient, inbreeding coeflicients) are computed at every iteration Suppose
that we are interested in the additive genetic relationship {r) at position z.
That position is inspected at each iteration for all pairs of individuals and both
haplotypes If all pairs of haplotypes have the same founder origin, the four
alleles are IBD and r = 2 (equivalent to complete inbreeding), if only one allele
of each individual is identical = 0.5. Computing relationships along a given
segment between two positions are obtained in a similar way; if crossovers have
occurred within the interval of interest, r is weighted appropriately according
to the percentage of distance shared. Consider again Figure 1 OS1 and
0S2 are IBD between positions 25 and 60 cM, whereas OD1 and OD2 are
IBD between 0 and 45 c¢M. The additive relationship between O1 and O2 is
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Figure 1. Diagram showing the simulation of crossover events Sire with genotype

. 21
was mated to dam with haplotypes produces offspring

222
01, 7375 and 02, 235 All four haplotype ongins, SS, §D, DS, and DD, are

shown 1n different patterns The three markers were 1n positions 20, 40, and 60 cM.
Crossovers were generated conditional on genotypes and current phases In the scheme
shown here (which would represent one MCMC 1terate), OLl’s sire haplotype (OS1)
was non-recombinant, dam's origin chromosome (OD1) resulted from a crossover in
position 55, Q2 resulted from one crossover on male meiosis at position 25 (0S2), and
from two crossovers In positions 45 and 55 for the dam's origin (OD2) The small
arrows and numbers 1n 052, OD1 and OD2 indicate the crossover positions in cM

and current phase 711

113 213

1 /760 —-25 45 2
thus r = 5 (T + 50, " 3 at the iteration pictured. The dominance
cocfficient is the probability that both haplotypes have IBD alleles (e.g., [10]
which in Figure 1 occurs between positions 25 and 45 ¢M, thus 8 28 = § is

the current dominance relationship. The average of genetic relationships over
iterations can be obtained or the distribution can be plotted if the value for
each iteration has been saved.

2.1.4. Irreducibility

Note that the Gibbs sampling scheme just described is not reducible when
there are no missing genotypes, and thus ends up converging. A Gibbs sampling
scheme is said to be irreducible if there is a non-nil (albeit small) probability of
changing from any two states |18]. To prove this, first note that the genotypes
for which the phase needs to be sampled can be identified by inspecting the
genotypes of their parents, and that a phase is sampled in either all or none
of the iterations (logically, all founder individual phases are to be sampled).
Second, note that despite the fact that phases of the parents and offspring
provide information about the most likely phase of an individual, the probabil-
ity of both phases always remains non-zero, except when phases are determined
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from the parents’ genotypes or in the trivial case of completely linked markers
d = 0 (but then again phases are not sampled).

2.1.5. Missing genotypes

Two legal descent states may not communicate in the presence of three or
more alleles with missing genotypes [15] Unfortunately, at present there is not
a general algorithm that guarantees convergence of an MCMC chain in any
complex pedigree if some genotypes are missing, despite the significant and
recent efforts in strategies like block Gibbs sampling (Jensen and Kong, [11])
We have developed a strategy that can deal with missing genotypes in a limited
number of situations. Genotypes cannot be missing in the founder animals
and it is not recommended that there are missing genotypes in consecutive
generations, 7 e., if an individual is not genotyped, the algorithm works if its
parents and offspring are genotyped or if it is an individual without offspring
Running several MCMC chains is highly recommended if this is not the case in
order to avoid absorbing states as much as possible During MCMC sampling,
the genotypes (and not only phases as when there are no missing genotypes)
are sampled conditional on the current phases of the parents, offspring and
spouse and the linked markers of the individual. It is ensured that genotypes
sampled at every iteration are compatible.

2.1.6. Convergence

An important issue in all MCMC methods is whether convergence has been
attained. Many different criteria have been proposed |2], although none of
them guarantees that the chain has actually converged. In this sense, it is
useful to compute the autocorrelation coeflicient (the correlation between every
n samples from the chain) because it provides a measure of how many “useful”
{independent) samples have been obtained Note that we should expect little
autocorrelation with this method. If the markers are informative, phases are
not sampled because they are known (except in founders), and the recombina-
tion events sampled are completely independent between iterations. If markers
are not very informative and a percentage of phases are sampled, a small
autocorrelation between successive phases can be expected if the individuals
with unknown phases are directly related, but recombination sampling is still
independent between samples.

2.2. Applications

In the following we illustrate the method described in three diverse genetic
situations Five thousand iterations were run in all cases described.

2.2.1. Line origin probabilities in an F2 cross

The strategy of Haley et al. [8] disregards the genotypic information from the
I'2 full and half sibs, as well as genotypes from the parental and F1 relatives
We illustrate the advantages of using all available genotypic information in the
pedigree of Figure 2.
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1(A) 2(B) 3(A) 4 (B)
il 12 21,12 12,34\/12,27,
5 6
23, 12 12,32
7 8 9
22,23 22,13 22,13

Figure 2. Example pedigree of an F2 cross The individual (ID) number 1s shown
m bold 1 and 3 are parental individuals from breed A; 2 and 4, from breed B; 5 and
7 are the F1 parents; 7, 8, and 9 are F2 individuals. The genotypes arc shown below
the IDs, genotypes for each marker are separated by commas The first marker 1s
located 1n position 0 cM, and the second marker, in position 20 cM

2.2.2. Distribution of additive relationship coefficients in half
and full sibs

We simulated 100 families of 10 half sibs (100 sires mated to 10 dams
each), and 100 familics of 10 full sibs in order to study the distribution of
r between half and full sibs, Two extreme mstances were considered: no
marker information available (i.e., simply the same allele was assigned to all
markers and individuals) and maximum marker informativity (each founder
had two different alleles that were also different from the other founder alleles
for all markers). A single chromosome of 100 ¢cM was simulated, there were six
markers evenly spaced every 20 ¢cM beginning at 0 cM

2.2.3. F2 reference family in pigs

We computed r for the porcine PIT1 region on chromosome 13 in the F2
reference families described in Yu et al. [22]. The genotyped loci were Swrl008,
SO068, Swr3g8, and Sw10566 plus the PIT1 locus itself. The number of alleles
was 4 (PIT1), 7 (Swr398 and Swl056) and 11 (Swrl008 and SOO68}. The
region spanned 49 ¢M (23]. The five largest full sib families from F1 plus the
five largest non-inbred families from F2 were selected and the r between all
full sibs of the whole segment was computed The families were chosen to be
non-inbred in order to ensure that the expected relationship coeflicient was
0 5. In total, there were 45 and 476 full sib pairs in the F1 and F2 generations,
respectively. For the sake of comparison, 5 full sib families of size 10 were also
simulated with a marker spacing identical to the real data.
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Table 1. Probabilities of line origins 1n the interval 19-20 ¢M for the F2 individuals
ID 1n pedigree from Figure 2 calculated under different situations. The results shown
in the last two rows were obtained when the genotype for the second marker 1n
individual 7 (alleles 2,3) was missing

commdered _genomype 0 PAN)  p(BB)  p(AB)  p(BA)
No No 7 0.18 001 001 0 80

8 018 001 0.01 0.80

9 018 001 001 080

Yes No 7 080 001 0.01 018

8 0.17 000 000 083

9 0.17 000 0.00 083

No Yes 7 0.08 042 0.08 0.42
Yes Yes 7 013 015 003 068

3. RESULTS

3.1. Line origin probabilities in an F2 cross

The main results are given in Table I. The first three rows show the line ori-
gin probabilities in the neighborhood of the second marker position (19-20 cM)
when the F2 individuals were analysed separately as in Haley et al. ([8]; the
program of Haley et al. provided the same results except for small differences
due to sampling). Note that individuals 7, 8 and 9 would have equal regression
coefficients using this approach. However, if all individuals are analysed jointly
(rows 4-6 in Tab. I) the coeflicients for ID 7 change dramatically. The reason is
that the most likely phase of ID 5 is different according to whether the genotype
from ID 7 or 8 is observed. If the genotype from individual 7 is observed, the

most likely (non-recombinant) phase for individual 5 is %, whereas it is g—é—

if genotype 8 (or 9) is observed. Now, if both 7 and 8 genotypes are observed,
cither the sire’s gamete that resulted in ID 7 or 8 must be recombinant. Given

that 8 and 9 have the same genotype, the most likely phase for 5 is g—;, and

7 must result from a recombinant gamete. In consequence, the most likely line
origin for allele “2” in the second marker of ID 7 is breed A, rather than B.
The effect of including all available information when the last marker of 1D 7
is missing (2 —, 2 —) is shown in the last two rows of Table I. Again, it is clear
that considering genotypes from IDs 8 and 9 does have a large influence on the
predicted line origin probabilities for ID 7.

3.2. Distribution of additive relationship coefficients in half
and full sibs

The empirical mean and standard deviations of r between half and full sibs
without marker information are shown in the upper two rows of Table II.
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Table II. Mean and standard deviations (s d ) of the additive relationship coefficient
between full and half sibs for several haplotype configurations. Each digit represents
an allele for each of the six markers, a dot is used to signify that the genotypes are
not known (upper two rows) or that they are not relevant (bottom four rows), the

sire’s haplotype 1s %%—;— The results carrespond to a single chromosome 100 cM
long
Sib-type S1bs’ haplotypes Mean s.d E(sd.}"

Half : - i — 0.250 0 149 0153
Full , . - 0.500 0215 0212
Half 111111 111111 0 490 0.027 -
Half 111222 , 111222 0.461 0028 -
Half lllilll lil2é?

, 0250 0.030 -

™ Predicted standard deviation of r using Hill's formula (1993, [11])

There is an excellent agreement with the theoretical values predicted using
Hill’'s [11] formula. It is also most interesting to compare the plot of the
distributions of r for both half and full sibs (Figs. 3a, 3b). The distribution
for half sibs shows two distinct peaks at the extreme values of the distribution
r = 0 and » = 0.5. In this case the mean (0.25) does not provide a useful
description of the parameter at all The reason for this a priort surprising
result is that the probability of a non-recombinant gamete is relatively high
for a 100 cM chromosome (P = 0.38), thus two half sibs share with relat-
ively high probability either all or none of the sire’s haplotype, and these are
the two modal values. In the case of full sibs {Fig. 3b), the modal value is
around the mean because even if the percentage of no recombinant gametes
is the same, there are two possibilities of heing identical by descent, either
by the sire or by the dam. The small bumps in the plots are caused by
crossovers, and they smooth out as the number of MCMC iterates tend to
infinity.

The last three rows of Table I contain the +’s obtained for some particular
genotypic configurations. The numbers in the haplotypes show which alleles
are shared by both sibs In rows three and four, both sibs share all the alleles.
In row three, the sibs share a non-recombinant haplotype, whereas in row
four, both sibs share a recombinant haplotype. In the latter case at least
one recombinant must have occurred between positions 40 and 60, so that the
distribution of 7 is not so peaked as when sibs share non-recombinant haplo-
types (Figs. 4a, 4b). The case shown in the last row of Table II corresponds
to sibs sharing only half of the sire’s alleles (the expected value). In this
case the distribution of r is completely symmetric around 0.25 with a sharp
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Figure 3. Distribution of the relationship coefficients between half sibs (a) and
between full sibs (b} for a 1 M chromosome in the absence of molecular markers

drop off below r = 0.2 and above r = 0.3. This peculiar pattern is caused
because the haplotype 111222 (Tab II) results from an obligatory crossover
in a 20 cM space between positions 40 and 60, and from the fact that the
location of the crossover is random within these positions. To understand
this, consider the chromosome divided in three segments 0-40, 40-60, and
60-100 cM. Almost all half sib pairs will be IBD for the first segment, and
non IBD for the last segment. Thus, most relationship coeflicients will range

1 1
between r = 5{40/100) = 0.2 as a minimum and r = 5(40 +20) = 0.3

Take X to be the location of the crossover event in ¢cM, which is distributed
uniformly between 40 and 60. Thus the relationship coefficient between sibs is

1 .
r=02+ 5(/\/ 100), and is also uniform between 0 2 and 0.3, as observed in
Figure 4c
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(a)

o 0,1 0,2 0,3 0.4 0,5

(r)

0 0,1 0,2 03 0,4 0,5

()

Figure 4. Distribution of the relationship coefficients between half sibs with molecu-
lar markers- (a) sibs share a complete non-recombinant haplotype; (b) sibs share a
complete recombinant haplotype; (c¢) sibs share half of a recombinant haplotype See
Table II for details
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25

¢ 01 02 03 04 @05 0§ 07 08 09 1

Figure 5. Plot of average relationship coefficients between full sibs around the PIT1
region 1n a pig F2 reference famly [22], F1 (thin line), F2 (thick line), and simulated
(dashed line)

3.3. Pig reference families. Convergence issues

Figure 5 is a plot of the distribution of average additive relationship coeffi-
cients between all full sibs in the pig reference family, The dashed line corres-
ponds to results obtained by simulation. The good agreement with the data
from the F2 generation rather than with the F1 is apparent. But there were
only 45 full sib pairs in the F1 vs. 476 in the F2, and it may be reasonable
that discrepancies may be due to the small number of data in the F1. Strong
discrepancies between simulated and observed values would be a symptom of
segregation bias, or strong crossover interference.

We studied the autocorrelation coefficient between MCMC samples in a
number of situations and we found, as expected, very little autocorrelation
between successive samples. For instance, the autocorrelation coefficients
between consecutive samples for r between full sibs 149 and 150 was 0.06,
and 0.01 between every 100 samples. These autocorrelations were negligible,
as usual Gibbs sampling schemes may generate samples with an autocorrelation
coefficient of 0.6 even for lag-300 samples [21]. The successive sample values
for ri49.150 are plotted in Figure 6. A simple visual inspection of the plots
confirms that there was no apparent trend in the sampling, and basically the
same average value for 7149 150 was obtained with the first half as with the last
half of the samples.

4. DISCUSSION

The production of a massive number of genotypes per individual at a reas-
onable cost will be a feasible task in the near future by using DNA chip or
microarray technology. Statistical methods to analyse this information in a
flexible and general way are thus much needed. MCMC methods like the one
described here offer a variety of advantages over analytical approaches.
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Figure 6. Sample values obtained for the relationship coefficient between full sibs
149 and 150 The average value was 0.369

First, they are more general and flexible than analytical approaches, and
are not restricted to a particular population structure. Thus they make use
of all available information automatically. The user needs not worry about
which genotypic information is used in computing origin probabilities, since
the whole genotyped pedigree is taken into account. We are currently working
in extending the method to allow for a more general treatment of missing
genotypes. Interestingly, the usefulness of considering all pedigree information
increases with lowly polymorphic but tightly linked markers, a characteristic
of rapidly developing markers like single nucleotide polymorphisms. It must be
noticed that the approach depicted here can be applied to any experimental
design (F2, backcross, recombinant inbred lines, F2 pseudocross) or natural
population as long as genotypes and pedigree information are available.

Second, the approach followed here, whereby crossovers are simulated con-
ditional on current phase is particularly suited to explore any kind of genetic
relationship. Dominance relationship coefficients can be computed without any
extra theoretical development, as well as the identity coefficients developed by
Gillois [4] or the generalized kinship coeflicients of Karigl [13]. We have already
developed a modification of the algorithm to obtain the Gillois’ coefficients
(Pérez-Enciso and Fernando, unpublished results). The availability of these
coefficients makes the study of more complex genetic effects than the merely
additive effects possible. In a similar fashion, it is straightforward to obtain
the joint genetic relationship for two distant loci or segments, facilitating the
study of epistatic interactions. In this work we have used Haldane’s function
{one crossover expected every Morgan) but the strategy presented lends itself to
model other recombination functions as well. This would permit to locate QTL
positions using more realistic recombination functions. MCMC also allows us
to infer the phase of the founder individuals. This is particularly useful to
detect allele heterogeneity in the parental populations and to trace back the
contribution of each founder genome to any descendant.



480 M Pérez-Enciso et al.

Third, MCMC methods provide the marginal distribution of the parameter
of interest, which can be drawn or wherefrom any statistics (e.g., standard
deviation, skewness) can be obtained. No resort to infinite sample theory
is required. The distribution of genetic relationship parameters is relevant
for discriminating between alternative relationships when the pedigree is not
known [20], and also to provide a clear picture of how much deviation from the
mean IBD sharing we can expect. We have shown that r can follow extremely
complex distribution patterns, and for most situations the normal distribution
is inappropriate or even misleading. A somewhat surprising example occurs
with half sibs, where a clear bimodal distribution is obtained (Fig. 3a). (Recall
nonetheless that the shape will depend on the length of the linkage group.) We
have concentrated here on obtaining r for a single chromosome. For the whole
genome a number of independent events is added up, and normality is reached
rapidly in the absence of markers. Yet, a smooth function cannot be expected
with markers (Fig. 4). In practice, one would be interested in obtaining r for
the regions where QTLs are located, i.e., only a small fraction of the genome.

Finally, note that each sampling stage depends exclusively on the par-
ents’ genotypic configurations Thus, the computer run time and memory
requirement of our approach are proportional to N, the number of individuals
in the pedigree, provided that only the individual genotypic probabilities are
required. And memory and CPU requirements increase approximately O(N?)
in complex pedigrees if the relationship between all individuals is required.
Memory requirements also increase linearly with the number of generations
and genome length, as the number of crossovers increase.

We have applied the method described here to a variety of QTL detection
approaches. In Pérez-Enciso and Varona [17], we computed the relationship
matrix conditional on marker information in an F2 pedigree: a different rela-
tionship matrix for IBD probabilities of each parental line was obtained. We
showed by simulation that the approach is very robust in analysing data of
crosses between outbred lines. We are currently analyzing real data sets from an
F2 cross in pigs and a half sib design in dairy cattle using the IBD probabilities
obtained as described here.

Software availability

FORTRANT77 software is available from the senior author on request. {Note:
The software will also be available via an anonymous ftp or web page).
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APPENDIX

Computation of phase probabilities

Denote by M, ;1 and M, ;> the unordered alleles 1 and 2 from individual
t at marker 7, and by G, ;1 and G, ;2, the paternal and maternal alleles,
respectively, 2.e., G is the ordered M. The sire of individual 7 is S, D is the
dam, and 2 has n offspring. The conditional probability of M, ;; being of
paternal origin (M, ;1 =Gyy1) is:

Pry = Plag/(P1a,; + P2ag)s

where

_ L R L R L R
Preg — ql.S,z,J ql,S,I,] QI,D,z,j ql,D,z,J H QI,k,1.;,- ‘h,ka,])
k=1
n

_ L R L R L R
and P23 = 42.8,0,792,5,0,7 92,0, 92,003 H 92, k1,5 92,k,2,3°
k=1

The coeflicients g, and ¢ express the probabilities of M, ,; and M, , ; being of
paternal or maternal origin given the current phases in the remaining markers
and individuals. Take the closest marker to 7, located to the “left” (z.e., 7' < 3)
where the sire is heterozygous, thus informative. The recombination fraction
between markers 7 and 7’ is 4, ,-. There are four mutually exclusive cases, and

the corresponding qr'g, , and g5 g, , are:

Case q{‘,S.t.J q%.s,l,j‘
{GS,]’.la GS.J,]} - {Gz,j',la M‘l,_’],l} (1 - ‘53,;:’) 5_1,]’
{Gs1s Gs g} = {Guy1s Myy2} 03,5 (1—26,,)
{GS.J':Q’ GS,J,Q} = {Gw’,l’ Mw.l} 61‘1’ (1 - 61.3’)
{GS‘Jf’Q, GSJ:2} = {GI:J’!I’ M'!Ji?} (1 - JJ!J‘) 5}1]’

The same procedure is followed for the next marker to the “right” (3° > j) to
obtain ¢7ig , and q2 5., and for the dam and offspring contribution. The ¢,
and ¢» are both set to 0.5 if the corresponding information is not available, or
if no marker is informative, e.g., ¢1,5 = g25 = 0.5 if the sire is unknown.
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