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Abstract – Records for birth and subsequent, monthly weights until weaning on beef calves
of two breeds in a selection experiment were analysed fitting random regression models.
Independent variables were orthogonal (Legendre) polynomials of age at weighing in days.
Orders of polynomial fit up to 6 were considered. Analyses were carried out fitting sets
of random regression coefficients due to animals’ direct and maternal, additive genetic and
permanent environmental effects, with changes in variances due to temporary environmental
effects modelled through a variance function, estimating up to 67 parameters. Results identified
similar patterns of variation for both breeds, with maternal effects considerably more important
in purebred Polled Herefords than a four-breed synthetic, the so-called Wokalups. Conversely,
repeatabilities were higher for the latter. For both breeds, heritabilities decreased after birth,
being lowest when maternal effects were most important around 100 days of age. Estimates at
birth and weaning were consistent with previous, univariate results.

covariance functions / early growth / modelling / beef cattle / maternal effects

1. INTRODUCTION

Random regression (RR) models and the associated covariance functions
(CF) have been advocated for the analysis of “traits” measured repeatedly per
individual. They facilitate modelling changes in the trait under consideration
over time and in its (co)variance structure. Applications so far have concen-
trated on the analysis of test day records of dairy cows [4,8,12–14,30,31,34,
35,37,39,40]. Other work considered growth and feed intake in pigs [3,36],
feed intake and live weights in dairy cattle [41] and weights of mature beef
cows [24,25].
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Previous applications fitted at most two sets of RR coefficients per animal,
namely due to animals’ direct genetic and permanent environmental effects.
Early growth of mammals, however, is subject to substantial maternal effects
in addition, both genetic and environmental. Estimation of maternal effects
has been found inherently problematic, even for “standard”, univariate ana-
lyses of traits such as birth or weaning weight. Extension of RR models to
include maternal effects is conceptually straightforward. However, inclusion
of additional sets of RR coefficients to accommodate maternal effects increases
the complexity of corresponding analyses considerably, especially if we want
to distinguish between genetic and permanent environmental maternal effects.
This paper presents a RR analysis of weights of beef calves from birth to just
after weaning, attempting to separate direct and maternal covariance functions.

2. MATERIAL AND METHODS

2.1. Data

Records originated from a selection experiment in beef cattle carried out at
the Wokalup research station in Western Australia. This experiment comprised
two herds of about 300 cows each. The first were purebred Polled Hereford
(PH), and the other a four-breed synthetic formed by mating Charolais ×
Brahman bulls to Friesian× Angus or Friesian×Hereford cows, the so-called
“Wokalups” (WOK), see Meyer et al. [26] for details. Management of the
experiment comprised short mating periods (natural service) of 7 to 8 weeks,
resulting in the bulk of calves being born during April and May each year.
Calves were weighed at birth and subsequently, from July to late December
or early January, at monthly intervals. This resulted in up to nine weight
records per calf. Calves were weaned between mid- November and early
January each year, i.e. the last weight represented a post-weaning weight in
most years. Variation in weaning dates was necessitated by seasonal conditions
– the data included several years of drought. Consequently, annual means in
age at weaning ranged from 182 to 246 days, with overall means of 211 and
214 days for PH and WOK, respectively.

Data selected consisted of birth and subsequent, monthly weights for calves
born between 1975 and 1990. This yielded 21 272 and 22 230 weights for PH
and WOK, respectively. Basic edits eliminated records with implausible dates
or weights. In addition, changes in weights between individual weighings were
scrutinised. The number of animals in the data was sufficiently small to allow
questionable sequences of records to be inspected individually. Apparently
aberrant records, in particular records clearly out of sequence, identified on
basis of both average daily gain as a proportion of the mean weight and absolute
change in weight, were disregarded. In doing so, allowance was made for large
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Figure 1. Numbers of records (dark grey bars: Polled Hereford, light grey bars:
Wokalup) and mean weights (•: Polled Hereford, ◦: Wokalup) for individual ages, in
weekly intervals.

variation in gain between birth and the first post-natal weight and an increased
chance for a decrease in weights between November and December recordings
due to weaning stress. Limits were established based on means and distributions
of average daily gains for each monthly weighing (across years). Changes in
average daily gains as proportion of the mean as large as −1.3% to 3.9%
between birth and first weighing and −0.8% to 1.7% between weights pre-
and postweaning were allowed, while corresponding changes between other
monthly weighings were restricted to −0.3%–0% and 1.2% to 2.0%.

Figure 1 shows the distribution of records over ages at weighing. Ages
ranged up to 297 days. However, there were few records after 280 days of
age. These were thus eliminated to avoid problems due to small numbers of
records per subclass. This left 21 053 and 21 807 records for PH and WOK,
respectively, on 3 417 (PH) and 3 768 (WOK) animals. Birth weights were
available for almost all calves (3 406 for PH and 3 727 for WOK). Further
characteristics of the data structure are given in Table I.

2.2. Preliminary analyses

“Standard” univariate, animal model analyses were carried out to assess
changes in variance components due to direct and maternal effects with age.
These considered single records per animal only. Records were selected for
target ages at fortnightly intervals with a separate class for birth weights.
This yielded 19 partially overlapping data sets with ages of 0, 2–35, 21–49,
35–63, . . . 245–259 and 245–280 days.

Two analyses were carried out for each data set. The first fitted a model
with permanent environmental maternal effects in addition to animals’ additive
genetic effects only (Model U1). The second model included both genetic
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Table I. Characteristics of the data structure.

Polled Hereford Wokalup

Total no. of records 21 053 21 807
No. of animals with records 3 417 3 768
With 1 record 276 526
With 2 records 449 478
With 3 records 117 116
With 4 records 196 224
With 5 records 145 104
With 6 records 139 184
With 7 records 133 194
With 8 records 1404 1 379
With 9 records 558 563
No. of animals in analysis (a) 3 794 4 553
No. of sires (b) 174 189
No. of dams (c) 1 023 1 460
No. of contemporary groups 2 152 2 192
Rank of X (d) 2 168 2 208
Mean 138.1 155.9
SD 79.1 87.7

(a) Including parents without records and dummy identities for unknown dams.
(b) With progeny in the data.
(c) With progeny in the data, including dummy dams assigned for animals with
missing dam identities.
(d) Coefficient matrix for fixed effects.

and environmental maternal effects (Model U2). Corresponding variance
components were estimated by REML. Differences in likelihoods for each
pair of analyses were used to assess the importance of maternal genetic effects,
and the ability to separate environmental and genetic maternal components.
Fixed effects for univariate analyses were as for RR analyses (see below), with
a linear regression on age at weighing fitted within sex in addition.

2.3. Random regression analyses

2.3.1. Fixed effects

Mean age trends were taken into account by a fixed, cubic regression
on orthogonal polynomials of age (in days). Preliminary investigations had
shown higher orders of fit to yield virtually no reduction in residual sums of
squares, presumably due to a close association between age at recording and
contemporary group subclasses. The same order of fit for the fixed regression
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on age was considered throughout, making REML likelihoods for different
orders of fit of RR directly comparable.

Other fixed effects fitted were similar to those fitted in earlier, non-RR
analyses of birth, weaning and later weights for these data [26]. These
included contemporary groups (CG), defined as paddock-sex of calf-year-
weighing number (1 to 9) subclasses and a birth type (single vs. twin) effect.
Dam age was modelled as a yearly age class effect. As in previous analyses,
Wokalups were treated as a breed and no specific crossbreeding effects were
fitted.

2.3.2. Random effects

All RR models fitted Legendre polynomials (e.g. [1]) of age at recording
(in days) as independent variables. Orders of polynomial fit up to k = 6 were
considered. Polynomials included a scalar term, i.e. involved powers of age up
to five. RR analyses fitted a set of k regression coefficients for each random
effect considered, up to four in total. For simplicity, k was initially chosen to
be the same for all factors.

The first set of analyses fitted three sets of RR coefficients, namely due to
animals’ direct genetic effects (A), due to animals’ permanent environmental
effects (R) and due to dams’ permanent environmental effects (C) (Model G1).
The second set fitted a fourth set of RR coefficients in addition, namely due
to maternal genetic effects (M) (Model G2). Both models incorporated all
pedigree information available, assuming direct and maternal genetic effects
(A and M) were distributed proportionally to the numerator relationship matrix
between animals.

When comparing orders of fit of polynomial equations, it is recommended
to consider the next higher order of fit involving the same type of exponent
(odd versus even) [10], p. 182–183. For instance, if a cubic polynomial fitted
the data, the linear coefficient was likely to explain a significant amount of
variation while the quadratic term might contribute nothing. Hence k was
initially increased in steps of 2, starting at a cubic regression (k = 4), as
preliminary analyses showed linear (k = 2) and quadratic (k = 3) regressions
to be clearly inadequate to model the variation in the data [23]. Orders of fit
greater than k = 6 were not examined as preliminary work had also indicated
that this would be unnecessarily high.

Further analyses considering different orders of fit for the four random
effects where carried out subsequently, with the choice of models determined
by results of the earlier analyses. The aim in doing so was to determine the
minimum order of fit required for each random factor, and thus determine the
most parsimonious model describing the data.
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2.3.3. Additional analyses

Results from the random regression analyses raised questions about the
influence of postweaning weights, as well as records at the highest ages and birth
weights on the minimum orders of fit required. Hence, additional analyses were
carried out for PH, considering subsets of the data. First, as weaning dates were
known, all weights taken post weaning were eliminated. In addition, weights
at late ages (> 250 days) were discarded and animals with birth weight records
only which were deemed to contribute little information were omitted. This left
19 399 records on 2 865 animals, with 3 260 animals in the analysis and 2 014
fixed effects levels (rank 2 011) in the mixed model equations. Secondly, birth
weight records and records up to 14 days of age were disregarded in addition,
reducing the data to 16 438 records on 2 863 animals, with 3 260 animals and
1 727 fixed effects (rank 1723) in the analysis.

2.3.4. Model of analysis

More formally, this gave a model of analysis for yij, the j-the record on
animal i of

yij = Fij +
3∑

m=0

bmφm(a
∗
ij)+

∑

Q

kQ−1∑

m=0

βQmφm(a
∗
ij)+ εij (1)

with a∗ij denoting the age at recording for yij, standardised to the interval [−1 : 1]
for which Legendre polynomials are defined, and φm(a∗ij) the corresponding
m-th Legendre polynomial. Fij represented the fixed effects pertaining to yij,
and bm the coefficients of the fixed, cubic regression modelling mean age
trends. βQm was the m-th random regression coefficient for the Q-th random
effect, with Q standing in turn for A, R and C for model G1, and for A, M, R
and C for model G2, and kQ the corresponding order of polynomial fit. Finally,
εij denoted the residual error.

2.3.5. Variance and covariance functions

Parameters estimated in RR analyses were the matrices of covariances
between RR coefficients:

KQ = Var




βQ0

βQ1
...

βQ kQ−1


 (2)

Covariances between RR coefficients pertaining to different random factors
were assumed to be zero throughout.
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Elements of KQ are the coefficients of the covariance function defining
covariances between any two ages in the data for the Q-th random effect
(e.g. [28]). Hence, estimated covariances between records for animal i at ages
aij and aij′ are

σQ jj′ =
kQ−1∑

m=0

kQ−1∑

n=0

φm(a
∗
ij)φn(a

∗
ij′)KQ mn =

kQ−1∑

m=0

kQ−1∑

n=0

(
a∗ij

)m (
a∗ij′

)n
ωQ mn (3)

with KQ mn denoting the mn-th element of KQ, and ΩQ =
{
ωQ mn

}
defining the

Q-th covariance function [16,22].
In addition, (1) allowed for temporary environmental effects or “meas-

urement errors”, εij. These were considered to be independently distributed
throughout with variances σ2. Commonly it is assumed that these variances
are homogeneous, consistent with the concept of a true measurement error
affecting all observations equally. Preliminary analyses, however, had clearly
shown that this assumption as inadequate [23]. Hence σ2 was considered to
change with age, with changes described by a polynomial variance function
(VF)

σ2
j = σ2

0

(
1+

v∑

r=1

br

(
a∗ij

)r

)
(4)

with σ2
j the variance at the j-th age, σ2

0 denoting the measurement error variance
at the mean age (0 on the standardised scale) and br the coefficients of the VF.
The VF has v+ 1 parameters, comprising the v coefficients br and σ2

0 .
An alternative VF entails regression of the logarithm of the variance on

age (e.g. [7,11,33]). This of particular interest as it allows an exponential
increase in variance with time to be modelled parsimoniously by a simple linear
regression. Moreover, in contrast to (4), it does not require any constraints on
the coefficients of the polynomial regression to be imposed.

σ2
j = exp

{
σ2

00

(
1+

v∑

r=1

br

(
a∗ij

)r

)}
(5)

with σ2
00 = log σ2

0 .

2.3.6. Estimation

Estimates were obtained by restricted maximum likelihood (REML) using
program “DXMRR”[21], employing a combination of average information (AI-
REML) and derivative-free algorithms to locate the maximum of the likelihood.
REML estimation of covariances between RR coefficients is analogous to
multivariate estimation in “standard” (i.e. non-RRM) analyses [22].



494 K. Meyer

AI-REML algorithms for the latter have been described by Madsen et al. [18]
and Meyer [20]. Additional calculations required to estimate the parameters of
a VF for measurement error variances with an AI-REML algorithm are outlined
in the Appendix.

Search for the maximum of the likelihood was invariably slow. With highly
correlated parameters, several restarts were required for each analysis. The AI-
REML algorithm tended to perform less well than in equally dimensioned, non-
RR multivariate analyses. If estimates of covariance matrices had eigenvalues
less than 0.001 these were set to an operational zero (10−7) and estimation
was continued fixing these values, effectively forcing estimated matrices to
have correspondingly reduced rank (r) (see [22]). Generally, this resulted in
improved convergence of the iterative estimation procedure.

2.3.7. Model selection

Fit of different models was compared by examining estimated variances
(σ2

A: direct, additive genetic variance, σ2
M: maternal, additive genetic variance,

σ2
R: direct, permanent environmental variance, and σ2

C: maternal, perman-
ent environmental variance) for ages in the data and comparing maximum
likelihoods and information criteria for each analysis. To account for non-
standard conditions at the boundary of the parameter space [38] in carrying out
likelihood ratio tests (LRT), differences in log L were contrasted to χ2 values
corresponding to twice the error probability of α = 5%.

Information criteria comprised the REML forms of Akaike’s Information
Criterion (AIC) and Schwarz’ Bayesian Information Criterion (BIC). Let p
denote the number of parameters estimated, N the sample size, r(X) the rank
of the coefficient matrix of fixed effects in the model of analysis, and log L be
the REML maximum log likelihood. The information criteria are then given
as [43]

AIC = −2log L+ 2p (6)

and
BIC = −2log L+ p log

(
N − r(X)

)
. (7)

3. RESULTS

Numbers of records and means for individual ages (weekly intervals) are
shown in Figure 1. Almost all animals had birth weight records (not shown).
Growth for both breeds was approximately linear. While there was little
difference in size at birth, WOK calves grew faster throughout than PH with
means (SD) of 157.5 (88.1) and 138.6 (79.1) kg, respectively. Corresponding
SD are shown in Figure 2. Values for both breeds were again very similar and
increased steadily with age, both on the observed scale and for data adjusted
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Figure 2. Standard deviations (SD) and corresponding coefficients of variation (CV)
for weights at individual ages (in weekly intervals) for raw data (�: Polled Hereford,
�: Wokalup) and data adjusted for fixed effects (◦: Polled Hereford, •: Wokalup).

for least-squares estimates of fixed effects. The latter represents the pattern of
variation to be modelled by the estimated covariance functions. Corresponding
coefficients of variation (CV), decreased with age, i.e. variances increased less
than might be anticipated due to scale effects. Except for the highest ages, CVs
were thus consistently higher for PH than WOK.

Due to computational requirements, only limited comparisons between dif-
ferent orders of fit could be carried out. As suggested by results from prelim-
inary analyses [23], only RR due coefficients due to permanent environmental
maternal effects was fitted initially (Model G1). Results from “standard” (i.e.
non-RR) analyses of birth and weaning weights in beef cattle, comparing differ-
ent models of analyses, often showed that, when fitting only one of the maternal
effects, this is likely to “pick up”most of the total maternal variation, i.e. due to
both genetic and permanent environmental effects (e.g. [19]). It was assumed
that the same pattern in partitioning of variation would apply for RRM analyses.

For both breeds, a model fitting Legendre polynomials to order k = 6 for
all three random effects, denoted by 6066 in the following (the four digits
corresponding to the orders of fit for A, M, R and C, respectively), and a cubic
VF for measurement error variances (v = 3) – involving a total of 67 parameters
to be estimated – was considered more than adequate on the basis of earlier
results [23].
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Estimated covariances among regression coefficients from these analyses
(k = 6066, v = 3) showed little variation in the quartic and quintic regression
coefficients for direct genetic and even less for maternal, environmental effects.
Analyses were thus repeated reducing the order of fit for these effects to a
cubic regression, while still fitting a quintic regression for direct, permanent
environmental effects (i.e. k = 4064). BIC (see Tab. II) for both breeds were
smaller for this model, i.e. suggested that 45 (rather than 67 parameters for
k = 6066) sufficed to describe the pattern of variation in the data.

A number of additional analyses involving different combinations of cubic
and quintic polynomial regressions for the different random effects (k = 4044,
4064 and 6064) were carried out subsequently. In addition, analyses fitting
model G2 considered orders of fit k = 4444, 4464 and 6464. In doing so,
choices of k were guided by results from analyses carried out so far, and not
all models were fitted for both data sets.

Values for log L and corresponding information criteria for the different
analyses are given in Table II. As for univariate analyses, fitting maternal
genetic effects for WOK did not increase log L significantly (k = 4464 vs.
k = 4064). Values for log L for WOK were highest for the model involving
most parameters (k = 6066) though not significantly higher than for k = 6064.
The information criteria too suggested that a cubic regression for maternal
environmental effects sufficed (k = 6064).

In contrast, fitting model G2 instead of G1 for PH yielded a marked increase
in log L, consistent with results from univariate analyses. LRT and both
information criteria suggested that of the models examined so far, a quintic
regression for both direct effects and a cubic regression for both maternal effects
(k = 6464) fitted best for PH. Results from this analysis found little variation in
the cubic regression coefficient for maternal, permanent environmental effects.
Reducing the order of fit accordingly, i.e. to k = 6463 did not reduce the
likelihood significantly.

Further analyses eliminated the highest order RR coefficient for random
factors with comparatively small variances (around 1). Whilst this tended
to cause a significant decrease in log L, corresponding BIC values decreased
which suggested that the reduced model was adequate and provided a more
parsimonious representation of the covariance structure in the data. As shown
in Table II, log L and the AIC favoured orders of fit of k = 6463 for PH and
k = 6064 for WOK, with 62 and 56 parameters, respectively.

It follows from (6) and (7) that BIC imposes a much more stringent penalty
for the number of parameters fitted than AIC. For our data, the factor log

(
N −

r(X)
)

was close to 10 (9.85 for PH and 9.88 for WOK), i.e. almost five-fold
that for AIC. This let models with k = 5163 and 47 parameters and k = 5062
with 43 parameters to be selected as “best” for PH and WOK, respectively.
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Table II. Log likelihood values (log L,+45 400 for Polled Hereford and+49 100 for
Wokalup) and corresponding information criteria (AIC: Akaike Information Criterion,
BIC: Bayesian Information Criterion, both−90 800 for Polled Herefords and−98 200
for Wokalups) for analyses with different orders of polynomial fit (k, figures in bold
denoting best model identified by each criterion).

k (a) v (b) p (c) Polled Hereford Wokalup
r (d) log L AIC BIC r log L AIC BIC

3042 3 23 3032 −437.6 921.2 1 102.5
3062 3 34 3052 −99.2 266.5 534.5
4042 3 27 4042 −419.6 893.2 1 106.1
4044 3 34 3033 −440.0 948.1 1 214.9
4044 3l 34 3033 −462.5 993.0 1 259.8
4062 3 38 4052 −81.2 238.4 538.0
4064 3 45 3053 −220.4 530.9 884.0 4054 −69.8 229.6 584.3
5042 3 32 5032 −191.8 447.6 699.9
5052 3 37 5042 −138.7 351.5 643.2
5053 3 40 5043 −128.7 337.4 652.7
5061 3 41 5051 −86.6 255.2 578.4
5062 3 43 5052 −39.4 164.9 503.9
5063 3 46 5053 −92.9 277.8 638.7 5053 −29.1 150.1 512.8
5064 3 50 5054 −28.2 156.4 550.6
6064 3 56 5054 −14.8 141.5 583.0
6066 3 67 5044 −160.6 455.1 980.8 5055 −6.2 146.4 674.6
3163 3 38 3152 −148.4 372.9 671.1
3263 3 40 3252 −141.1 362.3 676.1
3243 3 29 3232 −363.8 785.6 1 013.1
4243 3 33 4232 −349.1 764.2 1 023.1
4444 3l 44 3332 −375.4 838.9 1 184.1
4464 3 55 4352 −122.7 355.4 787.0 4153 −66.4 242.9 676.4
4263 3 44 3252 −141.3 370.6 715.8
5243 3 38 5242 −224.2 524.3 822.5
5253 3 43 5252 −207.6 501.1 838.5
5262 3 46 5251 −145.6 383.3 744.2
5163 3 47 5152 −87.4 268.7 637.5 5153 −27.9 149.9 520.4
5263 3 49 5252 −81.2 260.5 644.9
5363 3 52 5352 −80.2 264.4 672.4
5453 3 50 5343 −205.0 510.0 902.3
5463 3 56 5352 −74.3 260.7 700.0
6463 3 62 5352 −59.9 243.9 730.4
6464 3 66 5352 −58.5 249.0 766.8

(a) Order of fit for direct additive genetic, maternal additive genetic, direct permanent
environmental and maternal permanent environmental effects, respectively.
(b) Number of regression coefficients in variance function for measurement error
variances; l denoting log-linear model.
(c) Number of parameters.
(d) Rank of coefficient matrices estimated; numbers correspond to those for k.
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Reducing the order of fit for direct additive genetic effects to a cubic
regression (k = 4263 vs. k = 5263 for PH, k = 4062 vs. k = 5062 for
WOK) or eliminating the quintic regression coefficient for direct, permanent
environmental effects (k = 5253 vs. k = 5263 for PH, k = 5052 vs. k = 5062
for WOK), however, clearly resulted in a less appropriate model. Similarly,
decreasing the order of fit for maternal, permanent environmental effects by
one (k = 5262 vs. k = 5263 for PH, k = 5061 vs. k = 5062 for WOK), did not
provide sufficient scope to model changes in variation with time any longer,
resulting in substantially higher information criteria. Reducing the order of
fit for direct effects by two often resulted in a somewhat higher BIC than a
reduction of one (k = 5253 and k = 5243 vs. k = 5263 for PH, k = 4263 and
k = 3263 vs. k = 5263 for PH, k = 4062 and k = 3062 vs. k = 5062 for
WOK, but not k = 5052 and k = 5042 vs. k = 5062 for WOK), suggesting
that the cubic regression coefficients for direct genetic effects and the quartic
coefficient for direct, permanent environmental effects in PH were of lesser
importance.

Whilst BIC was smallest for k = 5163 for PH, this model implied a constant
maternal genetic variance (of 4.1 kg2) for all ages. With phenotypic variances
increasing with ages, this would yield a maternal genetic heritability with
maximum value at birth and decreasing steadily with age. Clearly, this “choice”
was due to the stringent penalty for the number of parameters imposed, yielding
an only marginally higher BIC if maternal genetic effects were omitted from
the model altogether (k = 5063). It emphasized that the data did not support an
accurate partitioning of maternal effects into their genetic and environmental
components, in spite of the fact that it contained a sizeable number of records
for calves born after embryo transfer [26], which were expected to reduce
sampling correlations between the two maternal effects. Such patterns of
variation as suggested by models k = 5163 or k = 5063, however, clearly
disagreed with univariate analyses and or expectations, based on the multitude
of analyses reporting estimates of maternal genetic variances for birth and
weaning weights available in the literature. Hence model k = 5263 with
slightly higher BIC and 49 parameters was considered most appropriate for
PH, and treated as “best” in the following.

Cubic variance functions were selected to model changes in measurement
error variances with time, again based on preliminary analyses [23]. Initial
comparisons between a model fitting a VF for log(σ2) rather than σ2 showed
the latter to be advantageous (higher log L). Hence further analyses were
carried out fitting a cubic VF for σ2.

3.1. Covariance functions

Estimates of covariance matrices between RR coefficients (KQ for Q =
A,M,R,C) and corresponding correlations are summarised in Table III for
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k = 5263 for PH and k = 5062 for WOK. The resulting covariance functions
(ΩQ, see (3)) are given in Table IV. In all cases, intercepts of the polynomial
regressions were most variable, and there were strong positive correlations
between the intercept and the linear coefficient. Conversely, correlations
between the intercept and the quadratic regression coefficient were negative
except for KA for WOK, ranging from moderate to high.

Strong correlations between RR coefficients caused one eigenvalue of estim-
ated covariance matrices for direct, permanent environmental effects (KR) to be
essentially zero. Fitting both maternal effects for PH resulted in an estimate of
KM with one negligible eigenvalue. The first eigenvalue for all CF dominated
throughout, indicating that a large proportion of the total variation is explained
by the first eigenfunction of each CF.

Estimated VF for measurement errors were

σ2
j = 8.9047

(
1+ 1.4270a∗ij + 2.3629

(
a∗ij

)2 + 1.3762
(
a∗ij

)3
)

and

σ2
j = 11.9729

(
1+ 1.4356a∗ij + 1.0105

(
a∗ij

)2 − 0.0794
(
a∗ij

)3
)

(in kg2) for PH (k = 5263) and WOK (k = 5062), respectively.

3.2. Genetic parameters

Estimates of variance components for the ages in the data are shown in
Figure 3, for both the best model as determined by BIC and by AIC and log L.
Corresponding estimates of genetic parameters are given in Figure 4.

Estimates of variance components followed a similar pattern for both breeds,
but differed in magnitude. Direct components were consistently higher for
WOK than for PH. There was little difference in values from the best model
(k = 5263 for PH and k = 5062 for WOK) and the model selected using a
LRT or AIC (k = 6463 and k = 6064, respectively). Differences in estimates
between the two models were largest for σ2

M in PH, where the order of fit was
reduced from a cubic to a linear regression.

Estimates of σ2
A, σ2

M and σ2
C showed reasonable agreement with correspond-

ing univariate estimates, except for σ2
A in PH. For both breeds, estimates of σ2

P
from RR model analyses were consistently higher than their counterparts from
univariate analyses, increasingly so with increasing age. This discrepancy was
slightly larger for PH than WOK, presumably due to higher estimates of σ2

A.
Heritability. Estimates of σ2

A increased less than σ2
P for the first 120 days,

resulting in a decrease in estimates of the direct heritability (h2) after birth, with
a minimum for both breeds at about 100 days of age. For WOK, estimates of h2

showed good agreement with their univariate counterparts. For PH, however,
estimates from RR analyses were consistently higher except at birth, due to
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Figure 3. Estimates of phenotypic (σ2
P), direct additive-genetic (σ2

A), direct permanent
environmental (σ2

R), maternal genetic (σ2
M), maternal permanent environmental (σ2

C)
and measurement error (σ2) variances, from random regression (•: Model with
minimum BIC, ◦: Model with minimum AIC) and corresponding univariate (�)
analyses.
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Figure 4. Estimates of direct (h2) and maternal (m2) heritabilities, and direct ( p2)
and maternal (c2) permanent environmental effects from random regression analyses
(•: Model with minimum BIC, ◦: Model with minimum AIC) and corresponding
univariate analyses (�), for Polled Hereford (left) and Wokalup (right).
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higher estimates of σ2
A. In part this might be explicable by increased sampling

variation in the more detailed models (G2) fitted. When comparing estimates
of h2 for PH from models G1 (not shown), results from the different types of
analyses agreed almost as well as for WOK.

Repeatability. Direct, permanent environmental effects ( p2) explained only
about 12% of variance in birth weights, but increased steeply in the first month,
reaching 32% (PH) and 45% (WOK) at 31 days of age. For WOK, estimates
of p2 increased further, reaching 53% around 3 months of age, while estimates
for PH increased slowly, reaching a value of 38% around 8 months. The
increase and subsequent decline in estimates of p2 for WOK between about 2
and 6 months of age was absent in PH, suggesting that sampling variation in the
partitioning of the between animal variation into its genetic and environmental
components may have contributed to overestimate of σ2

A and h2.
Estimates of the repeatability (t = h2 + p2, not shown) exhibited markedly

less changes with age than h2 and p2. This is again indicative of a negative
sampling correlation between direct genetic and permanent environmental
effects. For both breeds, t peaked at about one months of age (65% for
PH, 82% for WOK), declined to a minimum of 57% at about 4 months for PH
and 77% at 5 months for WOK, and then increased again to 62% (PH) and
80% (WOK) at 8 months of age.

Maternal effects. Maternal effects were considerably more important in
PH than in WOK. Estimates of σ2

C for PH were consistently larger than of σ2
M.

Values for c2 = σ2
C/σ

2
P increased steadily from birth to about 3 (PH) to 4

(WOK) months of age, being highest when direct genetic effects were least
important, and decreasing slowly from there. Small increases in estimates after
day 250 were accompanied by corresponding declines in estimates of σ2

P, pre-
sumably reflecting reduced variation for these ages with few records (cf. Fig. 1).
Estimates of the maternal genetic heritability (m2) for PH varied little over the
range of ages considered and showed reasonable agreement with estimates
from univariate analyses. As for c2, an increase in estimates after 250 days of
age was considered to be an artifact of a decrease in σ2

P due to small numbers
of records.

3.3. Correlations

Estimates of direct genetic (rA), direct permanent environmental (rR), mater-
nal genetic (rM), maternal permanent environmental (rC), and phenotypic (rP)
correlations among the ages in the data for PH (k = 5263) are shown in Figure 5.
Whilst variance components for individual effects differed markedly for the
two breeds, patterns of correlations were very similar. Taking correlations as
depicted in Figure 5 (2-day intervals from 0 to 10 days, 5 day intervals from 10
to 280 days) and considering the lower triangle of the correlation matrix only



Covariance functions for early growth 505

rA0.5

0.7

0.9

rM

rP

0
100

200 0
100

200

rR

0
100

200 0
100

200

0.5

0.7

0.9

rC

0
100

200 0
100

200

Figure 5. Estimates of direct additive genetic (rA), direct permanent environmental
(rR), maternal additive genetic (rM), maternal permanent environmental (rC), and
phenotypic (rP) correlations for Polled Hereford (fitting k = 5263 with v = 3).

yielded 1 770 values with average squared differences in estimated correlations
of 0.0025 for rA, 0.0020 for rR and 0.0013 for rP.

Genetic Correlations. Additive genetic correlations decreased steadily
with increasing lag in age – yielding a rather smooth correlation surface –
to a minimum between birth and 280 days of 0.60 for PH and 0.70 for
WOK. Previous, bivariate analyses considered birth and weaning weights, with
average ages at weaning of 211 and 214 days for PH and WOK, respectively.
Estimates of rA from an analysis fitting both genetic and environmental maternal
effects (Model G2) were 0.69 for PH and 0.74 for WOK [26]. Corresponding
estimates from the RR analysis at average ages agreed closely, with 0.67 and
0.71 for PH and WOK, respectively. Similarly, corresponding estimates of rP

were 0.51 (PH) and 0.54 (WOK) for previous, bivariate analyses and 0.53 (PH)
and 0.55 (WOK) for RR analyses.

Permanent environmental correlations. For most ages, estimates of rR

decreased again with increasing time between records, correlations forming a
plane descending steadily from the diagonal ridge at unity. For both breeds,
however, there were “spikes” at the corners corresponding to the very youngest
and very earliest ages. Presumably this was due to numerical problems –
RR fitted for this random effect involved ages to the power 5. Higher order
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polynomials are notoriously problematic in this respect. Problems are exacer-
bated in areas involving fewest pairs of records and furthest from the mean.
CFs have previously been observed to “misbehave” at the extremes of the ages
considered [15,22,24], especially at higher – in particular unnecessarily high –
orders of polynomial fit.

Sizeable variances of higher order RR coefficients for permanent environ-
mental effects due to animals (Tab. III) suggested though that the order of fit
of k = 6 for this source of variation was not excessive. This was confirmed
by a substantial decrease in log L when reducing the order of fit to a quartic
polynomial (see Tab. II: k = 5253 vs. k = 5263 for PH and k = 5052 vs.
k = 5062 for WOK). Whilst a stronger association between early post-natal
weights which were least subject to maternal effects and weights at the latest
ages, representing mostly post-weaning records, than with the intermediate
weights is perceivable, estimates of rP did not show this pattern, indicating that
the spikes were an artifact of combined effects of sampling variation, reduced
variation at the highest ages, low numbers of records for pairs of extreme ages
and high orders of polynomial fit.

Maternal correlations. The mean squared difference in estimates of per-
manent environmental maternal correlations (rC) between breeds, calculated as
above, was 0.0037. Estimates of rM for PH were more similar to estimates of
rC in WOK than those of rC (in PH). When pooling genetic and environmental
covariance estimates for PH and calculating an overall maternal correlation, the
mean squared difference with rC for WOK was reduced to 0.00085. Estimates
of maternal correlations formed a plateau close to unity from about two months
of age (one month for rC for PH), indicating that maternal effects on weight
from that age onwards were essentially identical. Estimates of rM and rC (for
PH) between weights at birth and 211 days were 0.57 and 0.66, respectively,
compared to values of 0.48 and 0.69 from previous analyses [26].

3.4. Additional analyses

As shown in Figures 1 and 2, calves tended to grow almost linearly up about
8 months of age with correspondingly increasing variances. Hence results from
RR analyses which suggested that quartic or even quintic polynomials were
necessary to model growth till just after weaning were surprising. Additional
analyses for subsets of PH records were carried out to investigate possible
causes for this phenomenon. Restricting ages in the data to 250 days and
omitting any weights recorded after the actual weaning date (19 399 records),
however, did not yield a reduction in the order of fit required. Scaled values
for log L (+41 400) and BIC (−83 000) were −56.3 and 91.1 for k = 5263,
−147.9 and 215.6 for k = 5253, −213.8 and 298.6 for k = 4253, −268.4 and
359.0 for k = 4243, −113.2 and 116.9 for k = 3263, and −281.6 and 346.4
for k = 3243, respectively. Estimates of variance components and genetic
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parameters for k = 5263 were virtually identical to those for the complete data
set up to 200 days. Between 200 and 250 days, estimates of σ2

A somewhat
lower, peaking at about 250 kg2 around 230 to 250 days.

Eliminating birth weights and weights at very early ages (prior to 14 days of
age) in addition, reduced the data to 16 438 records on 2 863 animals. However,
it still did not allow the overall order of polynomial fit to be reduced. Scaled
values for log L and BIC were 8.0 and 54.2 for k = 5263,−99.4 and 163.4 for
k = 5243,−43.0 and 469.9 for k = 3263, and−191.2 and 260.7 for k = 3243,
respectively, i.e. differences in information criteria between k = 5263 and
models with lower orders of fit were somewhat reduced. Variances for the
fourth and fifth RR coefficient for A and the fifth RR for R were considerably
lower than in the complete data (see Tab. III), ranging from 0.5 to 0.8. An
analysis for k = 5263 but omitting the fourth coefficient for A and the fifth
coefficient for R reduced the number of parameters to 38, which decreased
log L to −22.6 but reduced BIC to 9.9. Omitting the fifth coefficient for R for
model k = 3263, however, did not prove advantageous (BIC 174.2), indicating
that the quartic coefficient for A accommodated some variation due to the
omitted quartic coefficient for R in the former analysis.

Estimates of σ2
A for this subset were consistently lower than found for

analyses including birth weight records, and up to 180 days of age agreed
considerably better with univariate results. Estimates of the other variances
were little changed, with a slight increase for the maternal components at the
younger ages. This resulted in somewhat lower estimates of σ2

P. Nevertheless,
from 180 days onwards σ2

P estimates were still markedly higher than for
univariate analyses, similar to the pattern observed for WOK. As shown in
Figure 6, this yielded markedly changed heritability estimates, in particular for
the youngest ages. Similarly, estimates of m2 and c2 (not shown) were slightly
increased, in particular for c2 between 30 and 130 days of age estimates for the
subset agreed very closely with corresponding univariate values. There was
little difference in h2 estimates for model k = 3263 and k = 5263, suggesting
that a quadratic regression might suffice if birth weights were excluded from
the RR analysis (or perhaps included in a bivariate analysis with birth weight
as a trait with single records and a RR model for weights at other ages).

Yet, there appeared to be consistent, higher order environmental variation for
direct effects. The data originated from a research station with a highly seasonal
pattern of rains and thus pasture availability, winter rains being followed by
almost complete summer droughts. As emphasized above, onset of summer
conditions varied between years, with weaning dates varying accordingly from
early November to early January, whilst calving dates remained constant. As
noted for the analysis of mature weight records for cows in this experiment, ana-
lysis within contemporary groups removes systematic differences in weights,
but not necessarily differences in seasonally induced variation [25]. It has to be
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Figure 6. Estimates of direct heritability for PH from random regression analyses with
k = 5263 for all records (•), records up to 250 days (◦), and records from 14–250
days (�), respectively, with k = 5263 omitting selected (see text) coefficients (4) and
k = 3263 (N) for records from 14–250 days, and univariate analyses (�).

assumed that the variation in higher order RR coefficients for direct, permanent
environmental effects similarly reflects differences in seasonal variation.

4. DISCUSSION

4.1. Parameter estimates

Whilst there is a plethora of studies considering genetic parameters for birth
and weaning weights in beef cattle (see, for example [17,29] for reviews), post-
natal weights till weaning are seldom examined. Distinct differences between
breeds in the importance of maternal effects have been reported. In particular,
permanent environmental effects in Herefords are often found be almost twice
as important than in other breeds, estimates of c2 for weaning weight in the
20% to 30% range being common.

Results identify similar breed differences, with estimates of c2 for PH above
20% between 40 and 230 days of age, while estimates for WOK were consid-
erably lower. Breed differences in the importance of maternal environmental
effects appear to be most important during the first 5 months. Moreover,
highest values for c2 occur earlier for PH (around 2–4 months of age) than for
WOK (around 4–5 months). Large maternal effects in Herefords are commonly
attributed to limited milk production in this breed. Means (± SD) for 14-hour
milk production, measured by the weigh-suckle-weigh method in August each
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year, i.e. at an average age of calf of about 4 months, were 3.6 (±1.6) kg for PH
and 4.9 (±1.9) kg for WOK [27]. It has been speculated that the substantially
larger maternal effects in Herefords are due to an earlier decline of lactation
curve than in other breeds. Differences between PH and WOK in age at which
highest c2 estimates were found are consistent with such hypothesis.

A series of univariate analyses of early weights in Brazilian Nelore cattle,
based on large numbers of records, identified similar trends in estimates of
genetic parameters. In particular, there was a corresponding decline in direct
heritabilities after birth and a peak in the importance of maternal effects prior
to weaning [2]. Estimates of m2 varied little from 2 months of age till weaning.
Ignoring a slight increase after 250 days, m2 was highest at weaning, indicating
that weaning weight recorded at about 200 days of age represented the most
heritable selection criterion for maternal ability.

High order polynomial regressions were required to model changes in vari-
ability with age adequately, in particular for direct, permanent environmental
effects. It was suspected that this could be due to the fact that a proportion of the
latest weights represented post-weaning weights, but eliminating such records
did not yield to a reduction in order of fit necessary. On the other hand, low
order polynomial regressions are known to provide a poor fit for trajectories
with a steep initial increase which then level off to approach an asymptote, such
as growth curves ([5], p. 102). Whilst the part of the growth curve considered
here (birth to weaning) was still far from the asymptote represented by mature
weight, this intrinsic behaviour of polynomial regressions may have contributed
to the high order of fit needed.

Problems with overestimates of additive genetic variances were apparent for
PH but not WOK when birth weights were included in the analysis. Both herds
were managed in the same way and both data sets had a similar structure. Why
such problems should arise for PH but not WOK is not clear.

4.2. Model selection

There has been concern that use of LRT to determine the “best” model
to fit the data might favour overparametrised models. This lead to the use
of information criteria – sometimes also referred to as penalised likelihoods –
which adjust for number of parameters estimated and sample size. As shown in
Figures 3 and 4, estimates of variance components and genetic parameters from
models selected on the basis of BIC differed only little from those obtained by
models with the significantly highest log L (or minimum AIC) while reducing
the number of parameters by 17 for PH and 13 for WOK. This suggests that BIC
or related criteria should be employed rather than LRTs in selecting models for
random regression analyses involving multiple random effects.
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4.3. Alternative models

Results indicate that a relatively high order of fit is required to model
individual variation in growth to just over 9 months of age through regression
on orthogonal polynomials. Separation of direct and maternal, genetic and
environmental effects required as many as three to four random effects to be
considered. Fitting a quadratic to quintic polynomial for each and estimating
the corresponding covariances among RR coefficients resulted in a large num-
ber of parameters to be estimated. Consequently, computational requirements
for the analyses presented were extensive, most requiring weeks to complete.
Furthermore, problems of sampling variation and correlation and in separating
individual components were evident.

Whilst capable of modelling variation in growth adequately, polynomial
regressions may not be the most appropriate functions. Standard growth
curves, e.g. Gompertz functions or Brody’s curve, however, are more suitable
for data including mature weights and often don’t fit well early in life. Future
research should investigate alternative, more parsimonious models. On the
one hand, these could include parametric curves (linearised if applicable)
or splines, similar to applications to model test day yields in dairy cattle
(see [4] and [42], respectively). On the other hand, there may be scope to
reduce the number of parameters by modelling the within animal, permanent
environmental covariance structure invoking a parametric correlation function
described by one or two parameters in conjunction with a variance function to
allow for heterogeneous variances (e.g. [6,32,33]).

5. CONCLUSIONS

Random regression models allow changes in traits and their variances over
time to be modelled, and thus appear preferable for the genetic evaluation of
beef cattle over the current multivariate approach which, somewhat arbitrarily,
defines records to be different traits for different ranges in age at recording.
However, this requires accurate estimates of covariance function for both direct
and maternal genetic effects. This study presented a first attempt at estimating
covariance functions for maternal effects on early growth of beef cattle.

Random regression analyses of early growth data, separating direct and
maternal effects, are feasible albeit computationally very demanding. Fur-
thermore, analyses were affected by numerical problems in fitting high order
polynomials, and problems of estimating a large number of highly correlated
parameters. As such, random regression analyses of growth data subject to
maternal effects cannot yet be recommended as a routine procedure.

Regression on orthogonal polynomials proved well capable of modelling
changes in the trait analysed and it’s variability with time, although an unex-
pectedly high order of fit was necessary. Variance functions provided an
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effective and parsimonious way to accommodate measurement error variances
increasing with age.

Results identified breed differences in the magnitude and peak time of
importance for maternal effects, but very similar patterns of correlations.
Implications for a RR model genetic evaluation scheme are that these might be
modelled through common correlation functions whilst differences in variances
could be accounted for through breed specific variance functions.
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APPENDIX

Average information (AI) REML algorithms described in the literature
generally consider the case where the variance matrix (V) of the vector of
observations is linear in the parameters to be estimated. In that case, derivatives
of V consist of sparse matrices with non-zero elements of unity and, more
importantly, second derivatives of V are zero and the exact average of observed
and expected information is readily calculated. If this is not the case, Gilmour
et al. [9] suggest to approximate the exact average by a “simplified average”
which approximates the second derivatives of the data part of the log likelihood
with its expectation (which is the same asymptotically). Computationally, this
is equivalent to ignoring the extra terms due to non-zero second derivatives
of V.

Let R = Diag{σ2
i } denote the diagonal matrix of measurement error vari-

ances pertaining to the vector of observations, with i = 1, . . . ,N, and the i-th
weight recorded at age aij. As outlined in Meyer [20], terms required in an
AI-REML algorithm are the first derivatives of R−1 and of log |R|. For R
modelled by a VF as given in (4) and (5), with a∗ij denoting the standardised
age at recording for the i-th observation, these are:
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