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Abstract – A random regression model for the analysis of “repeated ”records in animal breeding
is described which combines a random regression approach for additive genetic and other random
effects with the assumption of a parametric correlation structure for within animal covariances.
Both stationary and non-stationary correlation models involving a small number of parameters
are considered. Heterogeneity in within animal variances is modelled through polynomial
variance functions. Estimation of parameters describing the dispersion structure of such model
by restricted maximum likelihood via an “average information” algorithm is outlined. An
application to mature weight records of beef cow is given, and results are contrasted to those
from analyses fitting sets of random regression coefficients for permanent environmental effects.

repeated records / random regression model / correlation function / estimation / REML

1. INTRODUCTION

Random regression (RR) models have become a preferred choice in the
analysis of longitudinal data in animal breeding applications. Typical applic-
ations have been the analysis of test day records in dairy cattle and growth or
feed intake records in pigs and beef cattle; see, for instance, Meyer [25] for
references.

RR models are particularly useful when we are interested in differences
between individuals, as we obtain a complete description of the trajectory, i.e.
“growth curve”, over the range of ages considered. A popular model involves
regression on (orthogonal) polynomials of time. This does not require prior
assumptions about the shape of the trajectory. Such RR have proven to be
well capable of modelling changes in variation due to distinct events, such
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as weaning in beef cattle [25], or seasonal influences, e.g. [24]. However,
frequently this required high orders of polynomial fit, and thus a large num-
ber of parameters to be estimated, accompanied by extensive computational
requirements and numerical problems inherent to high order polynomials.

More generally in the analysis of longitudinal data, within-subject cov-
ariances between repeated records are often assumed to have a parametric
correlation structure. In the simplest case, this might require a single parameter
to specify correlations between records together with other parameters to model
variances of records. A well-known example is the so-called “auto-correlation”
structure. Other models involving a single parameter or low numbers of
parameters (2, 3, 4) to model a correlation function are available, e.g. [2,
11,29,31,40].

Pletcher and Geyer [33] presented an application of such models in the
estimation of genetic covariance functions for age dependent traits in Droso-
phila. Their approach teamed a polynomial variance function (VF) to model
changes in variances with age with a one-parameter correlation function (RF)
to model correlations between different ages. However, estimation of the
resulting covariance function (CF) used a reparameterisation of the covariance
matrix among all ages in the data, as used by Meyer and Hill [27]. This resulted
in computational requirements proportional to the number of ages in the data.
Hence, their procedure is not readily applicable to large data sets arising from
animal breeding applications with numerous different ages.

Recently, Foulley et al. [5] described an Expectation-Maximization type
restricted maximum likelihood (REML) algorithm to estimate the covariance
parameters for a model which combined a RR approach to model variation
between subjects (e.g. genetic) with a single parameter RF to describe within
subject covariances between repeated records. Their model included up to
three parameters to model the latter, namely the parameter for the RF, the
within subject variance and a measurement error variance.

Simple correlation models like those considered by Pletcher and Geyer [33]
and Foulley et al. [5], generally imply stationarity, i.e. that the correlation
between observations at any two times depends only on the difference between
them, the “lag”, not the times themselves. This might not be appropriate for
animal breeding applications. Non-stationary correlation or covariance models
are available, but usually involve more parameters. A common model, available
in standard statistical analyses packages, is the so-called “ante-dependence”
model [15]. A more parsimonious variant are structured ante-dependence
models [32]. Pourahmadi [34] recently considered such models in a general
mixed model framework.

This paper outlines REML estimation for RR models in animal breeding
applications, assuming a parametric correlation structure for within animal
covariances between repeated records. Both stationary and non-stationary
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models are considered. A numerical example comprising the analysis of mature
weight records of beef cows is presented.

2. MODEL OF ANALYSIS

2.1. Random regression model

RR models commonly applied in animal breeding include at least two sets
of RR coefficients for each animal, representing direct, additive genetic and
permanent environmental effects, respectively. Let yij denote the j-th record
for animal i taken at time tij. Assume we fit RR on orthogonal polynomials of
time or age at recording. The RR model is then

yij = Fij +
kA−1∑

m=0

αimφm(tij) +
kR−1∑

m=0

γimφm(tij) + εij (1)

with Fij denoting the fixed effects pertaining to yij (often including a fixed
regression on polynomials of time at recording), αim and γim the additive
genetic and permanent environmental RR coefficients for animal i, respectively,
kA and kR the corresponding orders of polynomial fit, φm(tij) the m-th ortho-
gonal polynomial of time tij (standardised if applicable), and εij the temporary
environmental effect or “measurement error” affecting yij.

Let αi = {αim} and γi = {γim} denote the vectors of RR coefficients for
animal i of length kA and kR, respectively. Assume a multivariate normal
distribution of records yij, and

E [αi] = 0 E
[
γi

] = 0
Var (αi) = KA Var (γi) = KR

Cov
(
αi, γ

′
i

) = 0 Var (εi) = Diag
{
σ2

ε k

}

with KA = {KA mn} and KR = {KR mn} the matrices of covariances among RR
coefficients, and σ2

ε k the variances of measurement errors.
Further, let yi be the ordered vector of observations for the i-th animal

(ordered according to tij), and y of length M represent the complete vector of
observations for all animals in the data, i = 1, . . . , N. Assume relationships
between animals are known and taken into account, incrementing the number
of animals in the analysis through inclusion of parents without records to NA.
Let b of length NF denote the vector of fixed effects to be fitted with design
matrix X, and α of length kA ×NA and γ of length kR ×N the vectors of additive
genetic and permanent environmental RR coefficients. Design matrices for α
and γ have non-zero elements φm(tij), i.e. orthogonal polynomials evaluated
for the times at which measurements are recorded.
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Let φ of size M×kRN denote the matrix of orthogonal polynomials evaluated
for the ages in the data, with non-zero block of size ni × kR for the i-th animal.
This is the design matrix for γ. The corresponding matrix for α is φA of
size M × kA NA, augmented by columns of zero elements for animals without
records. Finally, let ε denote the vector of measurement errors corresponding
to y. This gives

y = Xb + φA α + φγ + ε (2)

Let y and γ be ordered according to animals, α be ordered according to RR
coefficients. With A denoting the numerator relationship between animals and
IN an identity matrix of size N, this gives

Var(y) = φA

(
KA ⊗ A

)
φ′

A + φ
(
IN ⊗ KR

)
φ′ + Diag

{
σ2

ε k

}

= φAG φ′
A + R + Σε = V (3)

With measurement errors assumed uncorrelated, Σε is diagonal and the mixed
model equations and matrix (MMM) pertaining to (2) can be set up as for
univariate analyses. Moreover, if Σε = σ2

ε IM or Diag
{
σ2

ε dk

}
, σ2

ε can be
factored from the MMM and be estimated directly from the residual sum of
squares [22].

The covariance function due to permanent environmental effects of the
animal (R) is estimated through KR. With R generally fitted to reduced order,
i.e. kR smaller than the number of ages in the data, the resulting estimate of R, the
permanent environmental covariance matrix among observations, is smoothed
and has reduced rank. However, it does not have a pre-imposed structure.
Whilst it is straightforward to estimate KR assuming a certain structure, this
does not translate readily to R.

Equivalent model

We are, however, more interested in imposing a structure on R than KR.
This can be achieved by fitting an equivalent model to (2)

y = Xb + φA α + e (4)

with e of length M the vector of total environmental effects, i.e. the sum of
permanent effects due to the animal and measurement errors. This has variance

Var(e) = R∗ = R + Σε (5)

Like R, R∗ is blockdiagonal for animals. Permanent environmental covariances
between records taken on the same animal are modelled through non-zero off-
diagonal elements in the i-th block of R∗, R∗

i . The MMM for (5) can be set
up for one animal at a time, as for standard, non-RR multivariate analyses.
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They can be thought of as derived from the MMM for (2) by absorbing γ, and
computational requirements to factor the MMM are the same for both models.

Choosing (5) rather than (2), however, offers a much wider choice of
parameterisation for R∗ and R, and allows for a chosen structure of R to
be imposed easily.

2.2. Parametric correlation structures

Decompose R into the product of standard deviations and correlations

R = Σ
1/2
R C Σ

1/2
R (6)

with ΣR = Diag
{
σ2

R j

}
the diagonal matrix of permanent environmental vari-

ances pertaining to y, and C = {
cj k

}
the corresponding matrix of correlations.

C is blockdiagonal for animals.

2.2.1. Variance function

Heterogeneous variances have been modelled through VF, e.g. [6,33,34],
and this has been applied to measurement error variances in RR analyses [12,
25,35]. Similarly, we can model the j-th element of ΣR or Σ

1/2
R as a function

of the age at recording tij. This can be a step function or, as more commonly
used, a polynomial function, For instance,

σw
R j = σw

R 0

(
1 +

v∑

r=1

βr tr
ij

)
(7)

σw
R j = σw

R 0 e
(
1 + ∑v

r=1 βr tr
ij

)
(8)

σw
R j = e

(
σw

R 0 + ∑v
r=1 βr tr

ij

)
or log

(
σw

R j

) = σw
R 0 +

v∑

r=1

βr tr
ij (9)

with σ2
R 0 the variance at the intercept, βr the coefficients of the VF and v

the order of polynomial fit. Either variances (w = 2) or standard deviations
(w = 1) can be modelled in this way. Functions (8) and (9) are advantageous
when variances increase exponentially with time. In addition, they require less
restrictions on the parameters of the VF than (7) to ensure that σ2

R j > 0 for all
j = 1, . . . , M. Whilst functions shown above involve ordinary polynomials (as
in previous applications), use of orthogonal polynomials of tij may be preferable
to reduce sampling correlations between βr and thus improve convergence when
estimating these parameters. Alternatively, for applications where variances
show some periodicity, e.g. due to seasonal influences, a VF involving both
polynomial and trigonometric terms [4] may be beneficial. In other instances,
segmented polynomials [7] may be able to model changes in variances with
time with fewer parameters.
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2.2.2. Correlation function

Correlations between observations at different ages can be modelled as
a function of the ages and one or more parameters of the RF. Correlation
functions are stationary if a correlation between a pair of records depends only
on the differences in ages at which they were taken –or lag– rather than the ages
themselves. Most popular RF, including those given by (11) to (19) below, fall
into this category.

Compound symmetry

In the simplest case, correlations between all observations for an animal (at
different ages) are assumed to be the same.

cj k =
{

1 for j = k

ρ for j 6= k
(10)

with ρ a correlation, i.e. −1 < ρ < 1. This pattern is generally referred to
as uniform correlation or compound symmetry (CS), and is the correlation
structure assumed in the standard “repeatability model” analyses often used in
the analysis of animal breeding data.

Auto-correlation

Let j̀ k = |tij − tik| denote the lag in ages for a pair of records (yij, yik) on the
i-th animal. The so-called power, serial or auto-correlation function is then

cj k = ρ j̀ k (11)

with −1 < ρ < 1 as above. This is the correlation structure generated by a
continuous-time, first order auto-regressive (AR(1)) process.

Exponential model

An alternative way to model the correlation structure given by (11) is the
exponential (EXP) model

cj k = e−θ j̀ k (12)

with θ = − log(ρ) > 0. Again this parameterisation can be advantageous
in terms of estimation, as it does not require the parameter of the RF to be
constrained to an interval.
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Gaussian model

In some instances, the decline in correlation with increasing lag is steeper
than can be modelled with an exponential function of j̀ k. In this case, the
so-called Gaussian (GAU) exponential model which uses `2

j k may be more
appropriate.

cj k = e−θ `2
j k (13)

Diggle et al. [3] emphasize that in contrast to EXP, GAU is differentiable
at j̀ k = 0, and that for a sufficiently small time scale GAU has smoother
appearance than EXP.

Other single parameter functions

Other RF involving different distributions but only a single parameter have
been examined by Pletcher and Geyer [33]. All yield correlations which
decrease with increasing lag. For instance,

cj k = (
1 + θ`2

j k

)−1
(14)

cj k = (
cosh(πθ j̀ k/2)

)−1
(15)

cj k = sin(θ j̀ k)/
(
θ j̀ k

)
(16)

cj k = (
1 − cos(θ j̀ k)

)
/
(
θ2`2

j k

)
(17)

are RFs based on the Cauchy distribution, the hyperbolic cosine, the character-
istic function of the uniform distribution, and the characteristic function of the
triangular distribution, respectively.

“Damped” exponential model

A more flexible model can be obtained by adding a second parameter κ. This
is a scale parameter which allows the exponential decay of the auto-correlation
function to be accelerated or attenuated. Muñoz et al. [29] presented this for
the serial correlation model

cj k = ρ
`κj k (18)

pointing out that for κ = 1, κ = 0 and κ = ∞, (18) reduces to the serial correla-
tion, compound symmetry and first-order moving average model, respectively.
Alternatively, (12) can be expanded to

cj k = e−θ `κj k (19)

[11]. Pletcher and Guyer [33] consider this as RF based on the characteristic
function of the general stable distribution, with restriction 0 < κ < 2. In the
following, (19) is referred to as damped exponential (DEX) model.
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Other two parameter functions

A model which is not a special case of DEX, is the RF generated by a
second-order auto-regressive process, which has parameters determined by the
correlation between ages with lags 1 and 2 [29].

Any of the above RF ((11) to (19)) can be modified to allow for a proportion τ

of the correlation independent of age effects [11]

cj k = τ + (1 − τ) c∗
j k (20)

with c∗
jk a function of the lag in ages as modelled above, and τ estimated as an

additional parameter (yielding a three-parameter RF if extending (19)).

Structured ante-dependence model

Another class of models employed in the analysis of “repeated” records or
longitudinal data are the so-called ante-dependence (AD) models, e.g. [15].
These are loosely related to time series models, in such that the j-th record on
an animal depends on and is correlated to a number of its predecessors [3]. In
contrast to the parametric correlation structures considered so far, AD models
allow for non-stationary correlations.

For an AD model of order s, AD(s), a record yij in the ordered vector
of observations yi for animal i is assumed to depend at most on records
yi ( j−1), . . . , yi ( j−s), but to be independent of any other preceding observations
yi ( j−s−1), . . . , yi 1. This yields a correlation matrix with elements on the first
s subdiagonals as variables, and the elements of the remaining subdiagonals
(s + 1, . . . , n − 1) determined by the former. Consequently, the corresponding
inverse is a banded matrix, with only the elements of the leading diagonal
and first s subdiagonals being non-zero [15]. Hence, for n different times of
recording, an unstructured AD(s) model has (s + 1)(2n − s)/2 parameters, n
variances and sn − s(s + 1)/2 correlations.

For s = 1, a first-order AD model, there are n − 1 correlations on the first
sub-diagonal of the correlation matrix, cj ( j+1). The other correlations are given
by a simple multiplicative relation

cj k =
k−1∏

q=j+1

cq (q+1) for j = 1, n and k = j + 2, n (21)

[31]. For s > 1, the functional relationship with the elements of the first s sub-
diagonals is more complicated. In that case, a parameterisation in terms of the
inverse of the corresponding covariance matrix – also called the “concentration
matrix” of the AD – or it’s Cholesky decomposition is often preferred.

Whilst an AD(s) model with low s has considerably less parameters than
a full multivariate, unstructured model (which has n(n + 1)/2 parameters), it
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can still involve impractically many parameters. Structured ante-dependence
(SAD) models [32] assume a functional relationship between the parameters
of an AD model, and thus provide a more parsimonious representation. Firstly,
variances are considered to be a function of the time at measurement, with
the function involving a small number of parameters. Zimmerman et al. [39],
Núñez-Antón and Zimmerman [32] and Pourahmadi [34] consider polynomial
VFs as described above (see (7) to (9)). Secondly, the correlations on the first
s subdiagonals are determined by the times of recording and 2s parameters, ρk

and κk, respectively:

cj ( j−k) = ρ
f (ti j, κk) − f (ti ( j−k), κk)
k for k = 1, s and j = k + 1, n (22)

[32] with 0 < ρ < 1 and

f (tij, κk) =
{(

tκk
ij − 1

)
/κk for κk 6= 0

log(tij) for κk = 0
(23)

Function (23) applies a deformation (Box-Cox power transformation) to the
time scale which facilitates non-stationarity of correlations. For κ < 1
equidistant correlations are increasing with age. Conversely, κ > 1 implies
lower correlations between records with equal lag at higher ages [39]. For
s = 1 and κ = 1, the RF (22) reduces to (11), the auto-correlation function.

3. ESTIMATION OF COVARIANCE AND CORRELATION
FUNCTIONS

Parameters of covariance, correlation and variance functions are readily
estimated by restricted maximum likelihood (REML). This may involve a
derivative-free procedure, an “Average Information” (AI-REML) algorithm [8]
or an Expectation-Maximization (EM) algorithm, as described by Foulley
et al. [5]. Various authors consider REML estimation in the analysis of
longitudinal or spatial data, but often do not go further than specifying the log
likelihood and using a simple search procedure, such as the simplex method of
Nelder and Mead [30], to locate its maximum, e.g. [3,31,39]. Others describe
maximum likelihood estimation using Newton-Raphson type algorithms, e.g.
[13,18,29]. Gilmour et al. [8] consider AI-REML estimation for models with
correlated residuals in a general formulation.

3.1. The likelihood

The REML log likelihood for (4) is

−2 log L = const + log |G| + log
∣∣R∗∣∣ + log |CM| + y′Py (24)
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where CM is the coefficient matrix in the mixed model equation pertaining
to (4) and y′Py is the sum of squares of residuals. Both y′Py and log |CM| can
be evaluated simultaneously as described by Graser et al. [9], by factoring the
corresponding MMM

M =



X′(R∗)−1X X′(R∗)−1φA X′(R∗)−1y
φ′

A(R∗)−1X φ′
A(R∗)−1φA + K−1

A ⊗ A−1 φ′
A(R∗)−1y

y′(R∗)−1X y′(R∗)−1φA y′(R∗)−1y


 (25)

M is large but sparse, with NM = NF + kA NA + 1 rows and columns. For R∗
blockdiagonal it can be set up for one animal at a time, as for corresponding
multivariate analyses. Factoring M into LL′ with L a lower triangular matrix
with elements lij (lij = 0 for j > i) gives

log |CM| = 2
NM −1∑

k=1

log lkk and (26)

y′Py = l2
NM NM

(27)

e.g. [28]. The other components of (24) can be evaluated as

log |G| = NA log |KA| + kA log |A| and (28)

log
∣∣R∗∣∣ =

N∑

i=1

log |Ri + Σε i| (29)

This involves determinants of small matrices only, of size kA and the number
of records for each animal, respectively. For some correlation structures, closed
forms for the corresponding inverse correlation or covariance matrices and
determinants exist. In some cases, in particular for analyses assuming Σε = 0,
this can be exploited to reduce computational requirements to evaluate (29).

3.2. AI-REML algorithm

Maximisation of log L via AI-REML requires first derivatives of (24) and
the average of observed and expected information [8]. The latter is propor-
tional to second derivatives of the data part, y′Py, of the likelihood. These
can be determined as for standard multivariate analyses, using sparse matrix
inversion and repeated solution of the mixed model equations [19] or automatic
differentiation of the MMM [20].
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3.2.1. First derivatives

Derivatives of log |CM| and y′Py can be determined through automatic
differentiation of the Cholesky factor of M, as described by Smith [36]. This
requires the derivatives of M with respect to the parameters to be estimated.

∂M
∂KA mn

=




0 0 0

0 −K−1
A

∂KA

∂KA mn
K−1

A ⊗ A−1 0

0 0 0


 (30)

for covariances among the RR coefficients for additive genetic effects, αi. The
derivative ∂KA/∂KA mn has elements of unity in position mn and nm and zero
otherwise. Hence,

− K−1
A

∂KA

∂KA mn
K−1

A =
{
−2 − δmn

2

(
Krm

A Kns
A + Krn

A Kms
A

)}

for r, s = 1, . . . , kA (31)

with Kmn
A the mn-th element of K−1

A and δmn Kronecker’s delta, i.e. δmn = 1 for
m = n and 0 otherwise. Similarly,

∂M
∂θR

=



X′QRX X′QRφA X′QRy
φ′

AQRX φ′
AQRφA φ′

AQRy
y′QRX y′QRφA y′QRy


 (32)

with

QR = −(R∗)−1 ∂R∗

∂θR
(R∗)−1

and θR standing in turn for the parameters of the permanent environmental VF
(P ), σ2

R0 and regression coefficient βr, the parameters of the CF, ρ or θ and κ,
and the parameters of the VF for measurement error variances (E ).

Let ∂L/∂θR, with elements ∂lij/∂θR, denote the derivative of L with respect to
θR obtained by differentiation of L as described by Smith [36]. First derivatives
of the last two terms in (24) are then [28]

∂ log |CM|
∂θR

= 2
NM −1∑

k=1

l−1
kk

∂lkk

∂θR
and (33)

∂y′Py
∂θR

= 2 lNM NM

∂lNM NM

∂θR
(34)
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Derivatives of the other two terms in (24) can be evaluated indirectly

∂ log |G|
∂KA mn

= NA tr

(
K−1

A

∂KA

∂KA mn

)
= (2 − δmn) NA Kmn

A (35)

∂ log
∣∣R∗∣∣

∂θR
=

N∑

i=1

tr

(
(R∗

i )
−1 ∂R∗

i

∂θR

)
(36)

For R∗ linear in the parameters to be estimated, (36) simplifies analogously
to (35), see [28].

3.2.2. Second derivatives

AI-REML algorithms [8,14,19,20] have generally considered the case
where V is linear in the parameters to be estimated, as, for instance, for
standard multivariate analyses. This gives second derivatives of V which are
zero, and the average of “observed” and “expected” information for parameters
θr and θs is equal to

−1

2
y′P

∂V
∂θr

P
∂V
∂θs

Py (37)

For cases where V 6= ∑
p θp(∂V/∂θp), as for our parameterisation of the

residual covariance matrix in terms of a variance and parametric correlation
function, second derivatives of V are non-zero. For such models, Gilmour
et al. [8] suggest to approximate the exact average by a “simplified average”
information. This is derived by approximating ∂ 2y′Py/∂θr∂θs by its expecta-
tion. Asymptotically the two are the same. Computationally, this is equivalent
to ignoring extra terms involving non-zero second derivatives of V.

Rewrite (37) as b′
rPbs with br = ∂V/∂θrPy. For θr = KA mn,

br = φA

(
∂KA

∂kA mn
K−1

A ⊗ INA

)
α̂ = 2 − δmn

2

kA∑

q=1

(
Kmq

A φA n + Knq
A φA m

)
α̂q (38)

with φA q and αq denoting the sub-matrix of φA and subvector of α̂, respectively,
for the q-th RR coefficient. Similarly, for θr a parameter of R∗ and ê =
y − Xb̂ − φAα̂,

br =
(

N∑

i=1

+ ∂R∗
i

∂θr
(R∗

i )
−1

)
ê (39)

where “+” denotes the direct matrix sum. As shown previously [20],
crossproducts b′

rPbs can be evaluated by replacing y in (25) with B =
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[
b1|b2| . . . |bp

]
, a matrix containing one column bi for each parameter, and

expanding the MMM to

MB =

 CM

X′(R∗)−1B
φ′

A(R∗)−1B
B′(R∗)−1X B′(R∗)−1φA B′(R∗)−1B


 (40)

Factoring MB then overwrites B′PB with elements b′
rPbs. With the Cholesky

factor of CM already evaluated (in factoring M), this is computationally
undemanding.

3.2.3. Derivatives of R∗

Evaluation of QR (33), the first derivatives of R∗ (36) and vectors br pertain-
ing to parameters of R∗ (39) requires the partial derivatives of R∗ with respect
to the parameters to be estimated, as well as products and traces involving the
inverse of R∗. Corresponding terms for the parameters of a polynomial VF for
measurement error variances under model (2), i.e. the simple case of a diagonal
residual covariance matrix, have been given by Meyer [25].

Correlation function

For θR = ρ, θ or κ

∂R∗
i

∂θR
= Σ

1/2
R

∂Ci

∂θR
Σ

1/2
R =

{
σR j

∂cj k

∂θR
σR k

}
(41)

Derivatives of cj k need to be determined for each RF separately. For instance,
for the auto-correlation function, (11) or (18)

∂cj k

∂ρ
= `κj kρ

`κ
j k − 1

(42)

∂cj k

∂κ
= ρ

`κ
j k`κj k ln(ρ) ln( j̀ k) (43)

Similarly, for an exponential model, EXP (12), GAU (13) or DEX (19),

∂cj k

∂θ
= −`κj ke−θ`κ

j k (44)

∂cj k

∂κ
= −θ`κj k ln( j̀ k)e

−θ`κ
j k (45)

with fixed values for κ where appropriate.
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Table I. Derivatives of permanent environmental standard deviations with respect to
parameters of functions modelling changes in variances or standard deviations with
time.

Function (a) Standard Deviation Variance

∂σR j/∂σR 0 ∂σR j/∂βr ∂σR j/∂σ2
R 0 ∂σR j/∂βr

σw
R j = σw

R 0

(
1 + ∑v

r=1 βr tr
ij

)
σR j/σR 0 σR 0 tr

ij

1

2
σR j/σ

2
R 0

1

2
σ−1

R j σ2
R 0 tr

ij

σw
R j = σw

R 0 exp
{

1 + ∑v
r=1 βr tr

ij

}
σR j/σR 0 σR j tr

ij

1

2
σR j/ σ2

R 0
1

2
σR j tr

ij

σw
R j = exp

{
σw

R 0 + ∑v
r=1 βr tr

ij

}
σR j σR j tr

ij

1

2
σR j

1

2
σR j tr

ij

(a) w = 1 to model standard deviations, w = 2 to model variances.

Variance functions

Derivatives of the diagonal matrix of measurement error variances are

∂Σε

∂θε

= Diag

{
∂σ2

ε j

∂θε

}
(46)

with θε standing for the parameters modelling changes in temporary envir-
onmental variances over time. Expressions for parameters of a VF, E , are
analogous to those given below for permanent environmental variances.

For the parameters of P , θR = σ2
R0 or σR0 and βr for r = 1, . . . , v,

∂R∗

∂θR
=

{
∂σR j

∂θR
cj kσR k + σR jcj k

∂σR k

∂θR

}
(47)

Derivatives of σR j depend on the function and parameterisation chosen. Values
of ∂σR j/∂θR for functions (7) to (9) to model either standard deviations or
variances are summarised in Table I.

4. APPLICATION

4.1. Data

Data consisted of January weights of Polled Hereford beef cows between 2
and 10 years of age, analysed previously fitting RR on Legendre polynomials
of age for both additive genetic and permanent environmental effects of the
animal [23].
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Records originated from a selection experiment carried out at the Wokalup
research station in the South West of Western Australia; see [26] for details.
With a Mediterranean climate, characterised by Winter and Spring rains and
pasture growth, and subsequent almost complete drought in Summer and
Autumn, January weighings tended to record cows at their top weight during
the year. Short mating periods resulted in the bulk of calves born in April and
May each year. Ages at weighing for records selected thus ranged from 19 to
119 months, with up to 9 weights per cow. In total there were 3 320 records on
850 cows, offspring of 149 sires and 423 dams, with 165, 153, 103, 124, 83,
75, 47, 50 and 50 animals having 1, 2, . . . , 8 and 9 records available.

4.2. Analyses

Data were analysed assuming a parametric correlation structure for covari-
ances between records taken on the same animal. Models CS, EXP, GAU, DEX
and SAD were considered, teamed with polynomial functions to model per-
manent environmental standard deviations ((7) with w = 1) of order v = 0 to 7.
Measurement error variances were in turn considered homogeneous (e = 1),
to be represented by a polynomial function ((7) with w = 1) as for permanent
environmental effects, or to change with year of age, fitting a step function
with e = 7 classes (2, 3, 4, 5, 6, 7, 8–10 years) as in previous analyses [23]. In
the following “RF.VFv.Ee” denotes an analysis fitting correlation function RF
with polynomial function P for permanent environmental standard deviations
to order v, and e measurement error variances. A model fitting a polynomial
function E for temporary environmental standard deviations with v′ coefficients
is described as “RF.VFv.E1+VFv′”. For example, “SAD.VF3.E1” represents
an analysis assuming a structured ante-dependence model for the correlations
between records for an animal with a cubic variance function to model changes
in permanent environmental variances over time, and temporary environmental
effects which are considered to have homogeneous variances.

For comparison, data were also reanalysed assuming permanent environ-
mental covariances followed a pattern as described by fitting a set of RR coeffi-
cients on Legendre polynomials (LP) of age at recording, i.e. R = φKRφ′. As in
previous analyses, estimates of KR were forced to have reduced rank, by setting
eigenvalues less than 0.001 to zero, thus reducing the number of parameters
to be estimated accordingly. In the following, “LP.RkRrk′

R.Ee(+VFv′)” denotes
an analysis fitting LPs for permanent environmental effects to order kR, with
estimated covariance matrix of rank k′

R (other terms as above).
Analyses were first carried out on a “phenotypic” level, assuming all covari-

ances between records were due to animals’permanent environmental effects.
This facilitated computationally undemanding examination of a wide range
of variance functions and correlation structures. Secondly, analyses allowed
for (co)variances between individuals by fitting RR coefficients on LPs of age
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due to animals’ additive genetic effects, incorporating all pedigree information
available. “AkArk′

A” denotes an analysis fitting LPs to order kA with estimated
covariance matrix KA of rank k′

A.
As in previous analyses, fixed effects fitted included contemporary groups,

defined as year-paddock subclasses, and a cubic regression on Legendre poly-
nomials of age. Parameters of variance, correlation and covariance functions
were estimated by REML, using a combination of derivative-free and AI-
REML algorithms. Analyses were carried out using program DXMRR1 [21],
extended to accommodate model (4) with parameterisation of R∗ as described
above.

Results from different analyses were compared by examining estimated vari-
ances and correlations for ages represented in the data. In addition, maximum
values of log L and the REML forms of Akaike’s (AIC) and Schwarz’ (BIC)
information criterion, e.g. [38] were contrasted.

4.3. Results

4.3.1. “Phenotypic” analyses

Results from analyses ignoring variation between animals are summarised
in Table II. Values of log L are clearly dominated by the order of fit for VF
P and the degree of heterogeneity allowed for measurement error variances.
For e = 1, P needed to be a cubic or higher order polynomial, for estimates
of variances at mean age not to be drastic over- or underestimates. Estimated
correlations between records one month apart were close to unity. At equal
order of fit for P , v, two-parameter RFs (DEX and SAD) yielded higher log L
than single parameter RFs (CS, EXP and GAU), but there was no advantage
of the non-stationary SAD over the stationary damped exponential correlation
structure.

Assuming homogeneous σ2
ε , parametric RF had higher log L than analyses

fitting LP involving similar numbers of parameters, presumably because more
parameters were available to model changes in variation with time. For e = 7,
however, there was little difference, with the heterogeneous σ2

ε accounting
for differences in variation not modelled by covariance function R. Model
“DEX.VF3.E7” with 13 parameters had minimum AIC, though the corres-
ponding log L was not very different from that for “LP.R4r2.E7”. Involving
a more stringent penalty for the number of parameters fitted, BIC suggested
that “EXP.VF3.E1” with only six parameters sufficed to model the covariance
structure adequately.

Estimated variances for selected analyses are shown in Figure 1, and cor-
responding correlations are given in Figure 2. For e = 1 and v ≥ 4 or

1 available as part of DFREML 3.0 from http://agbu.une.edu.au/~kmeyer/dfreml.html
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Figure 1. Estimates of variances (Solid black line: phenotypic, grey line: animal and
dotted line: measurement error, with “thick” areas of line representing ages in the data;
in 1 000 kg2) from phenotypic analyses.

v = 3 together with heterogeneous σ2
ε , estimates of the total variance differed

little between models of analyses. Differences were largest at the highest ages
which were represented by comparatively few records only. For DEX, however,
estimates of σ2

ε were consistently lower than for the other models, in particular
if a VF E was fitted or e > 1.

As shown in Figure 2, correlation functions EXP and DEX force estimates
of within-animal correlations between repeated records to decrease stead-
ily with increasing lag. Corresponding phenotypic correlation (rP) estim-
ates follow a similar pattern, but fluctuate if variances are heterogeneous.
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Figure 2. Estimates of (average) correlations for lags in age from phenotypic analyses
(Grey line: animal, thick black line: phenotypic, thin black lines showing ranges for
phenotypic correlations).

Hence average values together with their ranges are shown for rP. Whilst
EXP and DEX imply stationarity for rR, analyses fitting LPs do not impose
this restriction, and values for rR shown are averages (with ranges), as for
rP. Previous analyses fitting LPs [23] had reported an inexplicable peak in
estimates or rR between the youngest and oldest ages, and attributed this
to sampling variation. This peak is reflected in increases of the average
estimate of rR for lags of more than 70 months for analyses “LP.R4r3.E1”
and “LP.R4r3.E7”. Similarity in values of log L and estimates of variances for
the latter and “DEX.VF3.E7” suggests that differences in estimates of rR are
indeed spurious.
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Figure 3. Estimates of variances components from genetic analyses (Thick black line:
phenotypic, black and grey line: genetic, grey line: permanent environmental and
dotted line: measurement error, with “thick” areas representing ages in the data ; in
1 000 kg2).

4.3.2. Genetic analyses

Table III gives results from analyses fitting a set of RR coefficients for
animals’ additive genetic effects in addition. Clearly, there is variation between
individuals which should not be ignored. Likelihoods increased up to kA = 4,
the order of fit identified previously [23]. Fitting KA with rank k′

A = 2 was
sufficient throughout. Again, BIC favoured a model with homogeneous σ2

ε ,
“A3r1.DEX.VF5.E1” with 12 parameters, while AIC selected the model of
previous analyses, “A4r2.LP.R4r2.E7” with 21 parameters.

Estimates of variances and correlations for the “best” models and others
closely related to them are shown in Figures 3 and 4, respectively. For
comparison, corresponding estimates from a “standard” multivariate analysis
treating observations at each year of age (2 to 10) as a different trait are given in
Figure 5. Most notable again is the similarity in estimates of the total variance
for all analyses shown while the partitioning into invidual sources of variation
differs. Problems with sharply diverging estimates of genetic and permanent
environmental variances for the highest ages in this data set were observed
before and attributed to the influence of atypical records at the upper extreme.

Similarly, estimates of the average rP (Fig. 4) for the analyses shown agree
well, ranging from 0.7 to 0.8 to about 0.4. Estimating KA with rank k′

A = 1
forced all estimates of the genetic correlation (rA) between records at different
ages to be unity, while k′

A = 2 allowed for a decline in rA with increasing lag.
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Figure 4. Estimates of (average) correlations for lags in age from genetic analyses
(Grey line: permanent environmental, black and grey line: genetic, and black line:
phenotypic).

Figure 5. Estimates of variances (left; in 1 000 kg2) and average correlations (right)
from multivariate analyses treating observations for each year of age as separate traits
(black line: phenotypic, black and grey line: genetic, and grey line: residual).

5. DISCUSSION

Whilst analyses of longitudinal, spatial or similar data assuming a parametric
correlation structure or covariance function are commonplace in other areas of
applied statistics, they have found few applications in the analysis of animal
breeding data, e.g. [1,37]. Harville [10] considered auto-regressive random
effects in linear mixed models, and suggested that modelling of dairy records
might be improved by considering permanent environmental effects of cows
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as auto-regressive rather than constant across lactations. “Random coefficient”
models are often found to be of little advantage and somewhat cumbersome,
the resulting covariance functions generally yielding less readily interpretable
results than the parameters of a parametric correlation function. Moreover,
low degree polynomial regressions tend to provide a poor fit for trajectories
with steep initial increases which then level off to gradually approach an
asymptote [3], p. 102, i.e. high order polynomials and corresponding numbers
of parameters are often required to model the covariance structure for growth
curve type of analyses.

In contrast, animal breeders have embraced random regression models for
the analysis of longitudinal data, in particular test-day records of dairy cows
and growth data for pigs and beef cattle. This can be attributed to several
factors.

Firstly, quantitative genetic analyses are invariably concerned with the vari-
ation between animals, while other areas of statistics are often content with
modelling within-subject covariances only. Fitting a set of additive genetic RR
coefficients provides estimates of genetic merit for the whole range of ages
considered, and allows ranking of animals to change with time. RR models are
thus an obvious choice if we are concerned with (genetic) differences between
individuals. Assuming a RR model and resulting covariance structure on a
genetic level, it seems natural to apply the same model to other random effects,
for instance permanent environmental effects due to the individual.

Secondly, parametric models are usually formulated assuming homogen-
eous variances. Variances of “repeated” record traits of interest to animal
breeders, however, often change with time, if only due to scale effects. While
extensions to heterogeneous models by replacing single variances with a
(polynomial) VF are straightforward, these are seldom described. RR models
account for changes in variances with time, and for RR involving orthogonal
polynomials, do not require any specific assumptions about the shape of the
resulting VF.

Thirdly, estimates of genetic covariance matrices arising from RR model
analyses can be thought of as smoothed versions of corresponding estimates
from an unstructured, multivariate analysis treating records at different ages as
different traits. Covariance functions which give covariances between records
at individual ages as function of orthogonal polynomials of the ages and the
elements of a matrix of coefficients (K), have been described as “infinite-
dimensional” equivalent to covariance matrices in standard multivariate ana-
lyses. Estimates of the eigenvalues and eigenfunctions of such CFs can be
obtained directly as the eigenvalues of K and from the corresponding eigen-
vectors. For genetic covariance functions, these statistics provide valuable
insight into the effects of selection for the trait considered. See Kirkpatrick
et al. [16,17] for further details.



582 K. Meyer

Last, but not least, RR models provide a computationally feasible way to
estimate CF for large data sets with records coming in at “all ages”, as are
typical for data from livestock recording schemes. Estimating K as the matrix
of covariances between RR coefficients requires mixed model equations of
size proportional to the number of regression coefficients to be manipulated,
rather than proportional to the number of ages or even the number of records.
In contrast, general algorithms for the analysis of longitudinal data fitting
parametric CF or RF are frequently formulated in terms of the variance matrix
of the vector of observations, i.e. involve the latter, e.g. [3], Chap. 4.

This paper shows how the preferred RR approach for genetic effects can be
combined with a parametric correlation model for within animal covariances.
It extends the model suggested by Foulley et al. [5] to a variety of correlation
structures, both stationary and non-stationary, and heterogeneous variances.
An average information algorithm for the estimation of the parameters for
the covariance, variance and correlation functions describing the dispersion
structure for such model, by REML is outlined. It involves computations
proportional to the number of animals and the order of polynomial fit for genetic
effects. Extensions to models involving additional sets of RR coefficients for
other random effects, e.g. maternal effects, or more complicated correlation
functions are straightforward.

Application to a data set of mature weight of beef cows showed that assuming
a parametric correlation structure for within animal covariances can result in
a considerably more parsimonious model than a RR model for permanent
environmental effects. The example showed further that parametric correla-
tion functions can eliminate erratic and inexplicable estimates of correlations
between records at extreme ages which have been encountered with a RR. Some
differential partitioning of the total variance was evident though. This occurred
in particular, when both temporary and permanent environmental variances
were assumed heterogeneous. An alternative for this scenario might be the
use of a link function as suggested by Foulley et al. [6], which would assume
a functional relationship between the two sources of variation and thus might
not only reduce the number of parameters required further but also alleviate
problems of erratic partitioning. Further work is required to examine the effect
of different assumptions about the structure of within-animal covariances on
the partitioning of the phenotypic variance and, thus, their potential impact on
estimates of genetic parameters and predictions of breeding values.
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