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Abstract – A comparison of power and accuracy of estimation of position and QTL effects
of three multitrait methods and one single trait method for QTL detection was carried out on
simulated data, taking into account the mixture of full and half-sib families. One multitrait
method was based on a multivariate function as the penetrance function (MV). The two other
multitrait methods were based on univariate analysis of linear combination(s) (LC) of the traits.
One was obtained by a principal component analysis (PCA) performed on the phenotypic data.
The second was based on a discriminate analysis (DA). It calculates a LC of the traits at each
position, maximising the ratio between the genetic and the residual variabilities due to the
putative QTL. Due to its number of parameters, MV was less powerful and accurate than the
other methods. In general, DA better detected QTL, but it had lower accuracy for the QTL
effect estimation when the detection power was low, due to higher bias than the other methods.
In this case, PCA was better. Otherwise, PCA was slightly less powerful and accurate than DA.
Compared to the single trait method, power can be improved by 30% to 100% with multitrait
methods.

multitrait / QTL / sib families / simulations

1. INTRODUCTION

The use of genetic markers to detect quantitative trait loci (QTL) has
been well reported during the past 15 years. Statistical methods have been
developed to detect QTL on the basis of genetic maps, mostly using maximum
likelihood [23] or some linearised approximations [10,16,17]. In many studies,
numerous traits are recorded but the analyses are carried out trait by trait. They
often suggest an influence of the same chromosomic region on several traits
(e.g. [2–4]). But whereas methods to detect multiple QTL on different linkage
groups have been explored [13,29,34], tests for pleiotropy are still relatively
limited. Different methods have been proposed, often derived from single
trait methods. Some authors [14,19,20] have proposed to apply multivariate
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analysis for multitrait QTL detection to inbred lines, and Ronin et al. [29]
have extended this to half sib families. Nevertheless, their applications to a
mixture of full and half sib families of livestock populations are greatly limited.
Indeed, in such populations, the QTL parameters must be estimated for each
potentially heterozygote individual of the population, leading to a huge increase
of the number of parameters estimated.

To overcome the increase of parameters, Weller et al. [31] have proposed
to synthesise most of the information in a linear combination of the traits.
This was obtained performing a principal component analysis (PCA) from
the phenotypic covariance matrix. Such a transformation leads to as many
phenotypically independent variables as traits, analysed by a univariate method.
Since the same transformation is applied whatever the tested location, it does
not integrate the putative effect of the QTL. To take this into account, we
developed an algorithm based on the discriminate analysis (DA) to obtain one
linear combination of the traits, specific to each tested position and analysed
by a univariate method.

The purpose of this study was the comparison of three multitrait QTL detec-
tion methods developped for the application to experimental designs obtained
in animal breeding populations, such as pig crosses [4]. We programmed a
multivariate method, a principal component analysis and a discriminate analysis
as options in a QTL detection software. The power, the accuracy of parameter
estimates and the computing time of the three multitrait methods were compared
to those of a single trait method. The comparisons were based on simulated
data for a mixture of full and half sib families.

2. METHOD

2.1. Tests

Hypothesis
For the single trait tests, the null hypothesis H0 “there is no QTL for the trait

on the linkage group” was tested versus the alternative hypothesis H1 “there is
a QTL influencing the trait at the x position”. For the multitrait tests, the null
hypothesis H00 “there is no QTL for the traits on the linkage group” was tested
versus the alternative hypothesis H01 “there is a QTL influencing at least one
trait at the x position”.

Likelihood ratio tests
The likelihoods under the null hypothesis are independent of the position.

For single trait tests, it was noted 0Λl. Under H1, the likelihood is calculated
for each tested position: Λx

l . The likelihood ratio test (LRT) is then LRTlx =
−2 ln(0Λl/Λ

x
l ). For multitrait tests, the likelihood under H00 is noted 0Λ, and

under H01 Λx. The likelihood ratio test is then LRTx = −2 ln(0Λ/Λx).



Multitrait QTL detection 283

2.2. Statistical methods

2.2.1. The single trait method (ST)
The maximum likelihood univariate method (ST) used for single trait detec-

tion of QTL has been described in Le Roy et al. [24]. It is an interval mapping
method [23] considering a mixture of half-sib and full-sib families. The
population is considered as a set of n sire families (i = 1, . . . , n), with ni mates
for the sire i ( j = 1, . . . , ni) and nij progeny for the dam ij (k = 1, . . . , nij).
Some hypotheses have been made to improve the robustness and the time of
computation, based on [5,8,27]. In particular, only the most probable sire
genotype was retained in the calculation, and the likelihood was linearised
within full-sib families. It could not be totally linearised because of the
uncertainty of the dam genotype. Following notations by Elsen et al. [5],
for each trait l (l = 1, . . . , p), under H1, the likelihood function is then written
at the x location as:

Λx
l =

n∏

i=1

ni∏

j=1

∑

hdij

p(hdij/ĥsi,Mi)

nij∏

k=1

f ( ypijkl/ĥsi, hdij,Mi) (1)

where Mi is the marker information of the sire family i; ĥsi is the most probable
sire i genotype for genetic markers; hdij is a dam ij genotype having a probability
greater than 0.1 for genetic markers; ypijkl is the phenotype for the quantitative
trait l of the progeny ijk.

The penetrance function f is assumed to be normal and written as:

f ( ypijkl/ĥsi, hdij,Mi) = 1√
2πσil

exp

(
−1

2

(
Yijkl

σil

)2
)

(2)

σ2
il being the variance of the sire i family for the quantitative trait l, and

Yijkl = ypijkl −
2∑

qs=1

2∑

qd=1

p
(
dx

ijk = (qs, qd)/ĥsi, hdij,Mi

) (
µ

xqs
il + µ

xqd
ijl

)
(3)

where p
(
dx

ijk = (qs, qd)/ĥsi, hdij,Mi

)
is the transmission probability of the

couple of haplotypes qs and qd, i.e. the probability that the progeny ijk received
from its sire the chromosome segment qs at the tested location x (qs = 1 from
the grand sire, qs = 2 from the grand dam) and received from its dam the
chromosome segment qd at the tested location x (qd = 1 from the grandsire,
qd = 2 from the grand dam); µ

xqs
il is the mean of performances of the offspring

having received the qs segment at location x from the sire i for the quantitative
trait l; µ

xqd
ijl is the mean of performances of the offspring having received the

qd segment at location x from the dam ij for the quantitative trait l.
µil, µijl, αx

il and αx
ijl being respectively within half-sib and within full-sib,

the phenotypic means and the average effects of the QTL substitution for
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the quantitative trait l, µ
xqs
il and µ

xqd
ijl can be written as: µx1

il = µil + αx
il/2,

µx2
il = µil − αx

il/2, µx1
ijl = µijl + αx

ijl/2 and µx2
ijl = µijl − αx

ijl/2. Thus, for each
trait l, three parameters (family variance, mean and QTL substitution effect)
per male, and two (family mean and QTL substitution effect) per female are
estimated. Residual variances are supposed to be independent of the QTL
genotype.

Under H0, the likelihood function is independent of the genotypes:

0Λl =
n∏

i=1

ni∏

j=1

nij∏

k=1

[
1√

2πσil

exp

(
−1

2

(
yijkl − (µil + µijl)

σil

)2
)]

(4)

where µil and µijl are the phenotypic means as defined in the previous paragraph.
We thus compared: H0: αil = αijl = 0, ∀i, j, l versus H1: ∃i or ij that leads to
αil 6= 0 or αijl 6= 0. Then, the number of degrees of freedom of the test depends
on the number of the effects estimated: n+∑n

i=1 ni + 1.

2.2.2. The multivariate analysis (MV)
The multivariate method integrates all the traits using a multivariate function.

Before performing multitrait analyses, the traits must be standardised to avoid
confusion between the scales of measure and sizes of effects. Then, the
likelihood expression can be written under H01 as:

Λx =
n∏

i=1

ni∏

j=1

∑

hdij

p(hdij/ĥsi,Mi)

nij∏

k=1

f (ypijk/ĥsi, hdij,Mi) (5)

where ypijk = {ypijkl; l = 1, . . . , p} is the vector of the standardised perform-
ances for the progeny ijk.

The penetrance function is a p-dimension multinormal function. According
to notation (3), it can be written as:

f (ypijk/ĥsi, hdij,Mi) =
√
|VC−1

i |
2π

exp

(
−1

2
Y′ijkVC−1

i Yijk

)
(6)

where Yijk = {Yijkl; l = 1, . . . , p} and Y′ijk is the transposed vector; VCi is the
residual covariance matrix between traits for the sire family i, with VC−1

i as
the inverse and |VC−1

i | the determinant of this inverse:

VCi =




σ2
i1 σi1σi2ρ12 σi1σi3ρ13 . . . σi1σipρ1p

σi1σi2ρ12 σ2
i2 σi2σi3ρ23 . . . σi2σipρ2p

...
...

...
. . .

...

σi1σipρ1p σi2σipρ2p σi3σipρ3p . . . σ2
ip


 (7)

where ρll′ (l 6= l′, l = 1, . . . , p, l′ = 1, . . . , p) is the residual correlation
between the traits l and l′.
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The analytical expression of the likelihood under H00 is easily derived from
equation (4) applying a multivariate penetrance function. We thus tested: H00:
αil = αijl = 0, ∀i, j, l versus H01: ∃ i or ij such as αil 6= 0 or αijl 6= 0. Then,
the number of degrees of freedom is (n+∑n

i=1 ni)p+ 1.
Except ρll′ , estimated parameters were the same as for the ST analyses, but

they were estimated in one likelihood maximisation. In the following, residual
correlations were assumed independent from the sire families, to limit the
number of parameters. Then, for the p traits, (p− 1) p/2 residual correlation
coefficients were estimated. As for the ST analyses, residual variances are
estimated within the sire families and supposed to be independent of the QTL
genotype. This last assumption has been validated by many authors as being
more powerful when it is true, but a source of great losses of power when it is
wrong [20,27,29].

Jiang and Zeng [14] and independently Korol et al. [20] used such mul-
tivariate strategies but applied to inbred lines. It was mostly validated by plant
data analysis [9]. It has been shown to be more efficient compared with single
trait analyses if, among the p traits considered, for at least one couple of traits
(l, l′), the product Pll′ of the QTL effects and the residual correlation αlαl′ρll′ is
negative.

Compared to inbred line strategies, the number of parameters to estimate
is higher, potentially limiting power and increasing computing time. Wu
et al. [32], and similarly Knott and Haley [19], proposed to partly overcome
the computing time problem performing a least square analysis instead of a
likelihood ratio test. But it does not reduce the number of parameters to
estimate. Moreover, the differences of the results between the approaches
have been clearly demonstrated, particularly when analysing complex genetic
architecture [15].

The two following methods were developed to deal with the increase of the
number of parameters. They are based on a univariate analysis of a synthetic
linear combination of the traits in which most of the information from the data
is summarised. Thus, the number of degrees of freedom of each test is the
same as those of single trait tests.

2.2.3. The principal component analysis (PCA)

Principal component analysis (PCA) applied to multitrait detection of QTL
was first proposed by Weller et al. [31], applied to a marker by marker analysis
of dairy cow data. As [31], we performed PCA from the phenotypic covariance
matrix of the data, considered as an estimation of the residual covariance
matrix. p phenotypically uncorrelated linear combinations of the traits are
derived from the components of the eigenvectors of the phenotypic covariance
matrix. Each eigenvalue represents the part of phenotypic variability explained
by the associated principal component variable.
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The principal component variable associated with the eigenvalue λm (m =
1, . . . , p for increasing λm) will be denoted PCAm. A univariate analysis of
each PCAm is performed as for ST analysis, with a normal distribution as the
penetrance function. Familial means, residual variances and QTL substitution
effects are estimated for each synthetic variable. According to equation (3),
the penetrance function for PCAm is:

f ( yqijkm/ĥsi, hdij,Mi) = 1√
2πσim

exp

(
−x′mYijkY′ijkxm

2σ2
im

)
(8)

where yqijkm = x′mypijk is the phenotype of the progeny ijk for PCAm; xm =
{xml; l = 1, . . . , p} is the eigenvector associated with λm and σ2

im is the variance
of the sire family i for PCAm.

PCA has previously been analytically analysed [26]. It is asymptotically
equivalent to the multivariate method if (1) the transformation is performed
from the residual covariance matrix (e.g. estimated multivariately) and (2) the
test statistic at each position is based on the sum of the test statistics of each
principal component variable (sPCA). Consequently, PCA performed from the
residual variability has the same limits as MV concerning its ability to improve
the results of ST analysis. But this implies carrying out the transformation
from the residual covariance matrix of the traits, which is difficult to access.
However, when the residual covariance matrix does not differ much from
the phenotypic one, PCA performed from the phenotypic matrix can produce
similar results than when it is performed from the residual one [26].

As an example, in the simplest situation where phenotypic correlations ρ

between all couples of traits are equal, λ1 = 1 + ( p − 1)|ρ| and other are all
λm = 1 − |ρ|, m = 2, . . . , p. The eigenvector associated with λ1, x1, is then
{x1l; l = 1, . . . , p} with |x1l| = |√p/p|, the sign depending on the sign of the
correlation between the traits. For other eigenvectors, x′1xm = 0, m = 2, . . . , p.
Whatever the inner structure of the traits, the linear combinations then only
depend on the phenotypic variability.

As previously mentioned, PCA was performed from the phenotypic matrix.
We also performed sPCA as a potential alternative to MV. The amount of
phenotypic variability explained by each PCAm, λm, cannot be used to limit
the number of variables to analyse. Indeed, even low λm can represent a signi-
ficative part of the residual variability, depending on the relationship between
the traits. Thus, all the variables must be analysed. But the interpretation of the
results is difficult, since individual variables, phenotypically defined, do not
only reflect the putative QTL variability at the tested position. Consequently
two (or more) variables can suggest QTL at highly linked positions [19], mean-
ing that either two different QTL are linked or a pleiotropic QTL determined
the two linear combinations. Finally, testing for correlated variables must be
taken into account in the calculation of the thresholds.
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The following method was aimed at dealing with these two limits: the
number of variables and the transformation from the residual covariance matrix.

2.2.4. The discriminate analysis (DA)

The discriminate analysis (DA) is a statistical method applied to individuals
split into groups due to the disparity of the effect of several variables. It is aimed
at finding the linear combination z of the variables which best discriminates
these groups [28]. Analytical studies have shown that z maximises the ratio
z′Bz/z′Wz of the between group variability B and the within group variabil-
ity W. z is the eigenvector associated with κ, the greatest eigenvalue of W−1B.
Applied to multitrait QTL detection, this linear combination maximises the
ratio of the genetic and residual variabilities specific to the putative QTL when
performed at the QTL position.

Assuming a QTL is segregating, the residual and genetic covariance matrix
due to the QTL must be estimated at its location. If the QTL allele inherited
from a parent (say the sire) by the progeny is known, we could distinguish
two groups of progeny depending on these alleles. The residual covariance
matrix R, due to any reason but the QTL, would then be estimated from the
within group variability. The genetic covariance matrix G, due to the QTL,
would correspond to the between group variability. z would then characterise
the sire QTL allele effects. Consider a case with two traits of equal residual
variances σ, a residual correlation noted ρ12, genetic variances respectively
noted σg1 and σg2 determined by a pleiotropic QTL, so that the QTL genetic
correlation between those traits is 1. The components z1 and z2 of z associated
with κ would be related by the expression:

z1 = σg1 − ρ12σg2

σg2 − ρ12σg1
z2 (9)

with

κ = σg1
(
σg1 − ρ12σg2

)+ σg2
(
σg2 − ρ12σg1

)

1− ρ12
· (10)

Korol et al. [22] proposed a similar method but applied to inbred lines. For
each interval between two genetic markers, groups of haplotypes were construc-
ted from non recombinant progeny (ignoring double recombination), consider-
ing the origin of the haplotype they inherited for this chromosomic segment to
be known. Then, they applied a transformation which maximises the ratio of
the genetic variability due to the chromosomic segment (equivalent to B in the
formal description) and the total variability (T). The linear combination which
maximises W−1B is known to be identical to the linear combination which max-
imises T−1B [28]. The principle of this strategy is then similar to applying DA
to groups of haplotypes determined from genetic intervals. However, in animal
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populations, informative genetic intervals are generally more than 20 cM-sized,
and different from one family to another. This implies that more than 20% of
the population could be eliminated from the analysis due to recombination
events, whereas the number of progeny is a limiting factor in these analyses.

To estimate the genetic and residual covariance matrix, we proposed to
distinguish the two groups of haplotypes inherited from the sire at each tested
position: each progeny belongs to both groups, its performance for each
trait weighted by the probability that it received the corresponding haplotype
(deduced from the p

(
dx

ijk = (qs, qd)/ĥsi, hdij,Mi

)
given in section 2.2.1). The

estimators of the genetic and residual variabilities are then the between and
within group sums of squares and products of the weighted performances.
The linear combination of the traits which best discriminates the groups at the
position x, zx, is then calculated as previously.

zx is univariately analysed, with a normal penetrance function. The likeli-
hood is written as for PCA, but the coefficients of zx depend on the position
tested. This implies maximising the likelihood under the null hypothesis at
each tested position, since the variables are position specific.

Considering a mixture of half-sib and full-sib families, groups can be defined
within sire (two groups per family) or within dam and sire (three or four groups
per family). In intercross designs with fixed QTL alleles in grand parental
breeds, all F1 carry the same heterozygous QTL genotype. Groups can then be
defined at the population level. If the QTL determinism is strictly additive, it
can be demonstrated that the linear combination is the same when considering
two, three or four groups (Appendix). In the present study, the experimental
designs followed such hypotheses (see below section 2.4). Thus, DA was
implemented dividing the population into two groups according to the breed
origin of the haplotype received from the sire. Moreover, since the sire and
dam QTL alleles are identical, defining the linear combination of the traits
which best discriminates the QTL alleles of the sire means defining the linear
combination of the traits which best discriminates the QTL alleles of the dam.

2.3. Axis of comparison

ST, MV, PCA and DA were compared for their ability to detect QTL using
simulated data sets. They were each successively applied to each replicate.

Threshold calculation

Thresholds of rejection of the null hypothesis were estimated through
simulations. They were performed assuming that there was no QTL on the
linkage group. Couples of traits were simulated with the following residual
correlations: ρ12 = −0.4, ρll′ = 0.4 for l 6= l′, l > 2, l′ > 3. The values of the
residual correlation were previously confirmed not to influence the threshold
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(data not shown). On every replicate, the maximum of the test statistic of each
method obtained on the linkage group was retained. The thresholds at the 5%
level were then estimated as the 5% quantiles of the empirical distributions of
the test statistics obtained with 2000 simulations [12]. ST and PCA implied
the analysis of several variables. The type-I errors then required correction to
obtain a general 5% type-I error, due to the multiple tests performed. When
analysing independent variables, a Bonferroni correction of the type I error can
be performed. Its approximation corresponds to the division of the type-I error
by the number p of variables analysed. But carrying out such a transformation
on correlated variables leads to too stringent thresholds. The independence
between the traits analysed must then be checked before correction of the
type-I errors. In the cases we simulated (see below), the QTL had similar
effects on each of the traits, so that each trait generally contributes similarly to
the linear combination. Thus, the approximated Bonferroni correction can be
applied directly considering that the p traits are independent. As references,
we will present the corrected and uncorrected thresholds and the corresponding
powers for both of these methods in some cases.

Power

One thousand simulations were performed with a QTL to estimate the power
and the accuracy of the estimates. The maximum value of each test statistic on
the linkage group was retained, with corresponding position and QTL effect
estimates. Powers were estimated as the percentages of maximum of the test
statistics higher than the corresponding empirical thresholds.

Accuracy of estimates

The accuracy of the estimates was assessed by considering their mean
squared errors (MSE) obtained over the 1000 replicates performed to estimate
power. This characteristic synthesises bias and standard deviation. In some
particular situations for position estimates, both will be presented separately.
To make the MSE of QTL substitution effects of DA and PCA comparable with
those of ST and MV, they were corrected by the square of the average over the
1000 simulations of the sums of the p coefficients of the linear combination at
the maximum of the statistic test.

Computing time

Although the programme could certainly be optimised, we compared the
CPU time required for each method to analyse a data set. We averaged
computing times over the 1000 replicates performed under the alternative
hypothesis for each type of experimental design.
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2.4. Designs of the simulations

The animals came from an intercross design. There were 10 males and 10
females in the grand parental generation (F0), 10 unrelated males in the F1
parental generation and 500 progeny in the F2 generation. Each F1 male had
50 progeny with one or two unrelated female(s).

The linkage group was 100 cM-long, with equally spaced genetic markers.
Each genetic marker had five isofrequent alleles identical in both the grand
parental population. The grand parental haplotypes were randomly drawn.
Their transmissions were simulated following Mendelian rules.

A pleiotropic QTL was simulated at position 31 cM, which almost corres-
ponds to the middle of an interval whatever the marker density. Its alleles were
assumed to be fixed in the F0 generation. Thus, all the F1 individuals were
heterozygous for the QTL. The allele transmissions were simulated jointly with
the marker alleles.

The progeny phenotypes followed a completely additive model. For each
trait, besides the QTL, polygenic heritability was fixed to 0.2 and residual vari-
ance to 1. The traits were multinormally distributed, with residual correlations
varying from −0.9 to 0.6.

2.5. Situations simulated

We grouped the simulations into three types of comparisons:
(1) Depending on the number of traits: each female had 25 progeny, the

marker density was 12.5 cM, and the QTL determined from two to six traits.
The substitution effect of the QTL (α) was 0.50 on each of the traits. Residual
correlations were 0.4 between all couples of traits in one set of simulations. In
the other set, the residual correlation between traits 1 and 2 was −0.4, with all
the others being 0.4.

(2) Depending on the genetic determinism of the traits: each female had
25 progeny, the marker density was 12.5 cM. Only two traits were considered.
In a first set, the QTL affected the two traits with equal substitution effects
(α = 0.50 or 0.30) and a residual correlation between −0.9 and 0.6. In a
second set, the QTL determined only the trait 2. The aim was to quantify the
ability of multitrait methods to exploit the residual correlation to detect a single
trait QTL. Two levels of substitution effects (α = 0.5 and 0.3) and two levels
of residual correlations (0.6 and −0.6) were simulated.

(3) Depending on the informativity of the design: the QTL determined
two traits, with equal substitution effects (α = 0.50 and 0.30) and a residual
correlation of −0.4. Two levels of marker density (50 or 12.5 cM) and two
types of designs (25 or 50 progeny per female) were simulated.



Multitrait QTL detection 291

3. RESULTS AND DISCUSSION

The results will be segmented depending on the influence of the character-
istics previously described in Section 2.5.

3.1. The number of traits p

Computing time

Table I presents the averaged computing times. For ST and PCA, they
are similar. Since adding one trait means analysing one more variable, they
increased linearly with the number of traits. For DA, the computing time, as
the number of variables analysed, was independent of p. For MV, it was 5 to
100 times higher than that of ST, due to the number of parameters estimated.

Thresholds

Table I also presents empirical thresholds for each method depending on the
number of traits p. For ST and PCA, 5% thresholds for the analysis of one
variable are given (STv and PCAv respectively), jointly with global thresholds
obtained after an approximate Bonferroni correction. The thresholds of STv

Table I. Average computing times and thresholds, depending on the number of traits.

Number of analysed traits 2 3 4 5 6

Computing time (seconds), average for 1 simulation

ST a 2.69 3.97 5.29 6.37 7.93

DA 2.25 2.20 2.22 2.12 2.24

PCA 2.73 3.95 5.27 6.24 8.12

MV 10.52 91.68 258.02 744.56 UE b

Threshold (5% type I error)

ST 60.60 62.16 64.94 65.59 64.86

STv 56.40 58.03 57.16 57.79 57.62

DA 58.87 61.16 63.11 63.75 65.02

PCA 60.74 62.42 65.69 64.17 65.71

PCAv 56.49 57.91 58.54 57.04 56.76

MV 97.44 139.61 179.12 214.99 252.89

sPCA 98.83 138.77 179.21 216.46 253.13
a ST: single trait method; STv: single trait method, thresholds not corrected;
DA: discriminate analysis; PCA: principal component analysis; PCAv: principal
component analysis, thresholds not corrected; MV: multivariate method; sPCA: sum
at each position of the likelihood ratio tests of the principal component variables;
b UE = UnEstimated.
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and PCAv were independent of the number of traits, instead of thresholds of
DA which slightly increased with p. When correcting the thresholds of ST and
PCA, they turned out to be similar to those of DA. This increase must be due
to the increase of the design informativity as p increases.

Concerning MV, the thresholds clearly increased with the number of traits,
due to the increase of the number of parameters estimated. The thresholds
for sPCA were equivalent to those obtained for MV, which was expected [26].
This offers a much faster strategy to obtain thresholds for MV.

Power

Table II presents the power obtained when the product of the effects and
residual correlation for the first couple of traits (P12) is either negative or
positive. In the two cases, the power for ST presents the same tendency,
decreasing with the number of traits, as the corrected thresholds increase with p.

For the multitrait methods, the power is much higher when P12 is negative.
Similar trends have already been reported and analytically analysed [14,20,
22,26] for inbred populations. Best power is obtained with multitrait methods
when, at least for one couple of traits (l, l′), Pll′ is negative. This means that
pleiotropic QTL are best detected when the genetic correlation (due to the
QTL) is opposite to the residual correlation.

The power of MV was reduced by the increase of the number of parameters
due to the increase of p. The power of sPCA was similar but generally slightly
lower than that of MV, due to the transformation. The power of DA was the
greatest, and tended to increase with p, whereas the power of other methods
mostly decreased. When P12 was positive, the power of PCA was slightly
lower than that of DA (by 15% on average). When P12 was negative, it greatly
decreased with p. This was directly due to the construction of the principal
component transformation. Since PCA is carried out from the phenotypic
data, the PCA1 in those examples explained the greatest residual variability
only when all the residual correlations were in the same direction. When
some differed from the general direction, the analysis of PCA1 missed those
directions, implying a loss of power. This was illustrated by the power of PCA
for two traits when P12 was negative, obtained from PCA2. In this case, it
explains the lowest phenotypic variability but the greatest residual variability.

Accuracy of QTL position estimates

Table II presents both bias and standard deviations of the QTL position
estimates. Their means are respectively 0.073 and 0.025 for ST. The ranking
of the multitrait methods was similar to that obtained for the power, except for
PCA when P12 was positive: it was more accurate than any other methods,
representing a 25 to 50% improvement compared to DA bias, and decreased
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Table II. Power, bias and standard deviations of position estimates, and mean squared
errors (MSE) of QTL effect estimates, depending on the number of traits (NT) and the
sign of ρ12.

ρ12 0.4 −0.4

NT 2 3 4 5 6 2 a 3 4 5 6

Power (%)

ST b 23.6 15.9 12.0 12.2 14.3 22.1 18.3 12.3 11.3 12.3

STv 32.4 29.0 26.5 29.9 30.3 30.1 28.5 28.1 25.7 29.8

DA 43.8 41.1 40.1 41.5 44.3 81.9 79.1 79.6 85.9 97.6

PCA 36.9 36.1 30.0 38.1 38.0 73.8 46.6 36.8 41.4 39.2

MV 29.7 27.7 24.2 22.6 23.7 66.3 52.3 48.0 58.0 UE c

sPCA 32.9 27.3 22.6 16.9 20.7 68.0 46.0 42.7 44.3 57.5

Bias of position estimates (102 cM)

ST 7.17 7.48 6.09 6.89 7.89 8.27 8.41 6.69 7.06 7.33

DA 7.41 4.84 5.04 5.73 5.92 1.88 1.22 1.72 0.70 0.33

PCA 5.63 2.99 3.42 2.54 3.17 2.51 3.22 3.28 0.82 3.30

MV 6.30 7.26 9.06 8.52 9.65 3.07 3.79 3.67 1.86 UE

Standard deviations of position estimates (102 cM)

ST 2.51 2.55 2.37 2.49 2.48 2.47 2.67 2.46 2.55 2.51

DA 2.42 2.22 2.24 2.14 2.13 1.41 1.33 1.30 1.08 0.77

PCA 2.18 2.05 1.85 1.73 1.73 1.61 1.77 1.84 1.53 1.78

MV 2.48 2.57 2.67 2.64 2.68 1.63 1.91 1.92 1.74 UE

MSE of QTL substitution effect estimates (102)

ST 3.04 2.99 3.08 3.03 3.04 3.00 3.07 3.07 3.02 3.04

DA 2.90 2.93 2.97 3.26 3.52 1.16 1.19 1.20 1.09 0.75

PCA 1.86 1.81 1.72 1.63 1.55 1.18 1.51 1.54 1.50 1.47

MV 2.67 2.73 2.86 2.74 2.78 2.60 2.60 2.64 2.52 UE
a The results of PCA obtained from the analysis of PCA2, else it is from the analysis of
PCA1; b ST: single trait method; STv: single trait method, thresholds not corrected
for the number of variables analysed; DA: discriminate analysis; PCA: principal
component analysis; MV: multivariate method; sPCA: sum at each position of the
likelihood ratio tests of the principal component variables; c UE = UnEstimated.

with the number of traits analysed. With ST, the position estimates are usually
biased when the power is low when analysing a mixture of full and half sib
families [18,27]. In such situations, multitrait methods hugely improve the
position estimate accuracy.
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Accuracy of QTL effect estimates

The MSE of the QTL effect estimates are summarised in Table II. They are
0.03 on average for ST, where the square of the bias represents less than 1%
on average. Ranking of the multitrait methods was different from the previous
cases. For MV, the MSE of the QTL effect estimates are lower than those of
ST, with a difference of 0.0035 on average. The square of its bias represents
1.6% of the MSE. For PCA, they are half of those of ST. The trends depending
on p and the sign of P12 were similar to those of the MSE of the position
estimates. For this method the square of the bias represents 0.16% of the MSE
on average. For DA, the MSE are similar or greater than for ST when P12 is
positive and lower than the other methods when it is negative. This was due to
an increase of the bias of the QTL effect estimate with the number of traits in
the first case, from 0.018 for two traits to 0.075 for six traits (0.017 on average
for ST). Indeed, the coefficients of the linear combination of DA tend to be
null when the power is low, leading to a very small mean of the sums of the
coefficients used to correct the MSE of DA to make them comparable to those
of ST and MV (not shown).

For a mixture of full and half sib families, multitrait methods can then greatly
improve the QTL detection compared to single trait strategies, as shown for
inbred lines [14,20,22,26]. The comparisons demonstrated the good ability to
detect QTL for the methods based on linear combination of the traits and the
related gain of computing time when analysing several traits. Since the number
of correlated traits in such studies can often be greater than 10 (i.e. [3]), this is
strategically crucial.

3.2. The genetic determinism of traits

Power

Table III summarises the power of the methods depending on the residual
correlation and the equal substitution effects α for two traits (point 2 described
in section 2.5). When α = 0.50, the power of ST is 21.9% on average. It
decreases to 6.5% when α = 0.30. The decrease of power for multitrait
methods previously commented in relation with the respective directions of the
genetic and residual correlations was observed. When α = 0.50, these powers
decrease from almost 100% when the residual correlation is−0.9 to 25% when
it is 0.6, similar to the power of ST.

We thus tested the ability of multitrait methods to improve the power of
ST when ρ12 = 0.4 in more favourable conditions, with twice the number of
progeny in the design. On the one hand, we doubled the number of sires and
dams, and on the other hand, we doubled the number of progeny per dam. In
the first case, the power of ST was 37.0%, and it was improved by multitrait
methods to 53.5%, 74.3% and 68.4% respectively for MV, DA and PCA.
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But since this strategy is practically more realistic than the second one, its
consequences on computing times were dramatic, with 18.5, 12, 76.12 and
19 seconds per implementation respectively for ST, DA, MV and PCA. In the
second case, the power of ST was 60.3%, and all multitrait methods improved it
(79.8%, 91.6% and 86.8% respectively for MV, DA and PCA). The computing
times were similar to those of the case of 500 progeny.

Comparing power with α = 0.5 or 0.3 led to ratios of 2 to 3.5. But even
when the power of ST was similar to the type-I error, multitrait methods could
improve it if P12 was negative. Ranking of the methods was similar to the one
previously described when comparing the power for two traits: DA was more
powerful than PCA, which was better than MV, which was more powerful than
sPCA.

In Table III, the power for PCA came either from PCA1 or PCA2 depending
on the simulated residual correlation. As previously shown, when the phen-
otypic correlation was positive, for ρ12 = 0 to 0.6, the principal component
allowing the detection of the QTL was PCA1. Otherwise, it was PCA2.

Accuracy of QTL position estimates

The average of the MSE for the QTL position estimates when α = 0.50
(0.30) was 0.066 (0.115) for ST (Tab. III). Ranking of the methods was
similar to the one previously observed in Section 3.1 concerning the accuracy
of position estimates. Trends depending on the QTL effects and the residual
correlation were similar to those underlined for the power. The use of multitrait
methods reduced both position bias and sampling variation compared to ST.

Accuracy of QTL effect estimates

The MSE for the QTL effect estimates are presented in Table III. For ST
and MV, the MSE were independent of the correlation, respectively 0.0297 and
0.0270 on average when α = 0.50 and 0.0312 and 0.0287 on average when
α = 0.30. The square of the bias represented for each of them 1, 0.91, 0.90 and
0.89% respectively. Concerning DA and PCA, the MSE increased when the
residual correlation increased. For PCA, these MSE were lower than for the
other methods, representing from 13 to 90% of the MSE of ST. The estimation
was 10% more precise when α = 0.50 than when α = 0.30. For DA, when the
residual correlation was negative, the MSE of the QTL effect estimates were
equivalent to those of PCA. When the residual correlation was positive, they
became higher. When α = 0.50, they were still lower than those of ST and
MV, but when the effects were lower, the MSE of DA became larger than the
others. As previously mentioned, the difference between DA and PCA came
from a larger increase of the bias for DA with an increasing residual correlation
than for PCA (not shown).
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Using residual correlation to detect single trait QTL

A practically common use of the multitrait methods is presented in Table IV.
The QTL only determined the second trait. The residual correlation between
the two traits was 0.6 or −0.6. Also in such situations, using some of the
multitrait methods improved the power compared to ST. The most powerful
method was DA, improving the power by 40%. PCA2 allowed a better detection
than PCA1, whatever the residual correlation. The power of PCA was lower
than the power of the other multitrait methods. Indeed, since the QTL was no
longer pleiotropic, the axis representing the variability due to the QTL was no
longer the axis explaining the greatest phenotypic variability. In contrast to
previous situations, sPCA power was better here than MV, due to the big excess
of the number of parameters estimated in the latter method. We also compared
the accuracy of the QTL position estimation (Tab. V). Results similar to those
of power were obtained.

The big improvement of ST results in such cases seemed to be limited to
the detection of QTL with a relatively high effect. These QTL must have
already been detected by ST. But multitrait methods can state more precisely
the parameter estimates.

3.3. The experimental design informativity

Thresholds

Table V synthesises the thresholds obtained depending on the marker density
and the number of progeny per female. The most important factor was
the number of progeny per female, since it directly modifies the number of
parameters to estimate. Thresholds for marker densities equal to 12.5 and
50 cM are greatly different due to a various amount of information on the
transmission pattern. As noted previously, corrected thresholds of ST and PCA
are similar to the thresholds of DA, and thresholds for sPCA are equivalent to
those of MV.

The comparison of the empirical and theoretical thresholds (χ2
df ,5%) for large

samples (Tab. V) shows great differences between practical and asymptotical
frameworks, even for sparse genetic maps. This underlines the difficulty to
approximate such thresholds, increased by the mixture of different distributions
in the likelihood for our study. Therefore, fast methods are required to estimate
empirical thresholds accurately.

Power, accuracy of estimates of the QTL position,
and accuracy of QTL effect estimates

As expected from single trait methods [18], power and mean squared error
of the QTL position were improved by higher marker density and number of
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Table IV. Power and mean squared errors of position estimates, depending on the sign
of ρ12 and the QTL substitution effect α2.

Power (%) MSE of position estimates (102)

α2 0.50 0.30 0.50 0.30

ρ12 −0.6 0.6 −0.6 0.6 −0.6 0.6 −0.6 0.6

ST1 a 3.8 2.7 2.6 2.2 14.70 15.73 16.15 15.91

STv1 6.2 4.3 4.4 4.5

ST2 20.0 21.9 7.5 6.4 6.58 7.05 11.36 11.90

STv2 29.3 31.4 11.7 11.3

MV 24.5 38.1 8.4 11.5 5.68 4.34 11.65 10.11

DA 35.1 54.4 11.5 15.7 7.50 5.38 12.63 10.40

PCA 17.1 34.8 6.0 8.7 7.28 5.84 11.99 11.03

sPCA 26.6 40.0 11.4 13.1
a STi: single trait method for the ith trait; STiv: single trait method for the ith trait,
thresholds not corrected for the number of variables; DA: discriminate analysis;
PCA: principal component analysis; MV: multivariate method; sPCA: sum at each
position of the likelihood ratio tests of the principal component variables.

Table V. Empirical and theoretical threshold, depending on the marker density and
the number of progeny per female.

Number of progeny per female 25 50

Density (cM) 12.5 50 12.5 50

Empirical thresholds (5% type-I error)

ST a 60.60 57.97 44.59 41.20

STv 57.56 53.68 41.19 38.12

DA 58.87 56.08 43.20 40.71

PCA 60.74 56.64 44.51 42.01

PCAv 57.75 53.75 41.47 38.12

MV 100.02 94.07 69.97 64.98

sPCA 98.82 93.08 69.89 65.24

Theoretical threshold (χ2
df ,5%)

Univariate test 44.98 (31) b 32.67 (21)

Multivariate test 81.38 (42) 58.12 (62)
a ST: single trait method; STv: single trait method, thresholds not corrected; DA: dis-
criminate analysis; PCA: principal component analysis; PCAv: principal component
analysis, thresholds not corrected; MV: multivariate method; sPCA: sum at each
position of the likelihood ratio tests of the principal component variables; b threshold
(df).
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progeny per female (Tab. VI). Improving ST QTL detection with low power
using multitrait methods was efficient only if the genetic map was relatively
dense or the residual and genetic correlations were in favourable relationships
(not shown). These characteristics did not modify the ranking of the multitrait
methods observed previously.

The number of progeny per female did not greatly influence the MSE of the
QTL effect estimates. On the contrary, using a relatively dense genetic map
reduced the MSE by a factor greater than 20 compared with a sparse map. In the
case of a relatively sparse map, MV reduced the MSE of the QTL effect from
25 to 38% compared with ST. PCA reduced them by almost 30 to 50%. For
DA it reduced the MSE by 20 to 65%. Once again, the greatest improvement
of the MSE of the QTL effects was generally obtained from DA. But when the
power was low, PCA was more accurate.

4. CONCLUSIONS

We compared three multitrait methods with a single trait method applied to
a mixture of full and half sib families. One multitrait method was based on a
multivariate analysis and was assumed to be greatly limited by its important
number of parameters to estimate compared to the population size. The others
rested on a univariate analysis of linear combinations of the traits.

Our results for the single trait method were in agreement with those of
previous studies (see [10,11,18,27]) on half sib families or a mixture of full
and half sib families. Particularly, such methods are precise for the estimation
of QTL effects, but their estimation of the QTL position is frequently not very
accurate, especially when the power is low.

The impact of the relationship between the residual and genetic correlations
for each pair of traits has been previously reported when analysing inbred
populations with MV and PCA [14,20,22,26]. It is also the major limit
of the enhancement of the detection of a pleiotropic QTL by any multitrait
method in our study. But the most practical situation consists in adding a trait
with equivalent or lower effect from the QTL, eventually undetected by the
ST methods. The effects and residual correlation due to the QTL are then
generally unknown. The improvement from multitrait methods can then not be
quantified before the analysis.

We confirmed the assumed limit of the multivariate method applied to a
mixture of full and half sib families. Its high number of parameters greatly
limits the power of detection and the accuracy of the position estimation of
the method, and the computing time. This last point is mostly important when
estimating thresholds through simulations or permutations, or when analysing
big populations (more than 40 females seems unaffordable for systematic
detection). We showed, however, that thresholds obtained from sPCA are
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equivalent to those obtained from complete multivariate analysis. This strategy
takes as much time as the ST method carried out on all the traits.

The multitrait methods behaved similarly in terms of power and MSE of the
position estimates. These trends were consistent with those of previous studies
from inbred lines [14,20,22,26]. DA, since it is QTL-specific, is generally the
most powerful and precise method for the estimation of QTL location. But it is
not the most accurate for the QTL effect when the detection power is low. This
seemed to be due to the correction factor applied to the MSE of QTL effects
for DA and PCA in order to compare them to those of ST and MV. Indeed,
when no QTL was detected, the coefficients of the linear combination for DA
were very low. Thus, the correcting factor was small, increasing the MSE.

Moreover, to exploit the residual correlation between two traits to detect a
single trait QTL, DA is also the best method. It makes it easy to select traits
actually contributing to the detection of a QTL. Criteria to select traits could
be comparing the maximum of the test statistics of DA with p and p− 1 traits
with the χ2

1df , or with some information criterion like the Akaike Information
Criterion (AIC, [1]). Compared to the solution proposed by Korol et al. [22] to
perform 10 000 permutations to test the significance of the contribution of each
trait, it would save much time by limiting the number of implementations.

As for PCA and DA, the estimated effects cannot be directly transformed to
effects from the QTL on each trait, we suggest a two-step procedure: (1) the
use of DA (or PCA if the genetic structure is known to be simple, with only one
QTL determining the traits for example) to rapidly identify the chromosomic
segment of interest and the traits involved; and (2) the implementation of
MV restricted to this small region to get estimates of effects and a residual
covariance matrix.

In this study, the simulations were performed with fixed alleles in the grand
parental breeds. The robustness of linear transformations based on the overall
population variability has been confirmed elsewhere [6]. Moreover, we did not
consider the problem of missing phenotypic data when performing multitrait
analysis. One strategy could consist in replacing the missing data by the
weighted mean of the phenotypes of individuals carrying the same haplotype
at the studied position for the trait. Another could consist in removing the
individual from the linear combination estimation and integrating it in the test
statistic. But since no study has tested these proposals, it should be more secure
to remove the individuals from the analysis, even if this means withdrawing a
lot of progeny missing only one phenotype over all the traits.

We concentrated on detecting a QTL that determines at least one of the traits.
Many authors [7,19,21,25,30,33,34] have proposed strategies to deal with the
more complex and practical question: how to distinguish a pleiotropic QTL
from linked QTL? Further work is being performed to find relevant strategies
to apply to a mixture of full and half sib families.
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APPENDIX

The data were assumed coming from a cross between grand parental breeds
fixed for the QTL alleles. The determinism of the traits was assumed additive.
We will demonstrate that linear combinations obtained from DA are identical
when calculated from G = 2, 3 or 4 groups. For the G groups, the linear
combination was obtained from the eigenvector zG associated to the greatest
eigenvalue κG of W−1

G BG, where WG is the residual covariance matrix (the
within group covariance matrix), BG is the genetic covariance matrix (the
between group covariance matrix). zG is also the eigenvector associated to
the greatest eigenvalue of T−1BG [28], where T is the total covariance matrix.
Since T is independent of the number of groups, we will focus on BG. It
can be estimated as

∑G
h=1 Phghgh

′, where gh is the vector of the means of the
performances of the group h and Ph is the sum of the weights of the individuals
of the group h, with

∑G
h=1 Ph = 1. Haplotypes of progeny are considered

as known, thus Ph is the proportion of individuals in the group h. αl is the
substitution effect of the QTL alleles on trait l. +αl corresponds to the effect of
the QTL genotype 1/1, whereas−αl corresponds to 2/2. a = {αl; l = 1, . . . , p},
and A = aa′.

For two groups of haplotypes, transmitted by the sires, gq corresponds to the
QTL allele q transmitted from the sire. g1 = a/2 = −g2, which means that
g1g1

′ = g2g2
′ = A/4. With P1 = P2 = 0.5, we then have B2 = A/4.

For four groups of pairs of haplotypes, transmitted by the sires and the dams,
gh will respectively correspond, for h = 1, . . . , 4, to the QTL genotypes 1/1,
1/2, 2/1, 2/2. Then g1 = a = −g4 and g2 = 0 = g3, which means that g1g1

′ =
g2g2

′ = A. With Ph = 0.25 whatever h, we then have B4 = A/2 = 2B2. The
extension to G = 3 is obvious, and conducts to the same results as G = 4.

Since κG comes from |T−1BG−κGI| = 0, it is obvious to show that κ4 = 2κ2.
We then just have to combine

(
T−1B2 − κ2I

)
z2 = 0 and

(
T−1B4 − κ4I

)
z4 = 0,

knowing that κ4 = 2κ2 and B4 = 2B2, to show that z2 = z4(= z3), whereas
they do not explain the same proportion of the variability κG.
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