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Abstract – A Markov chain Monte Carlo (MCMC) algorithm to sample an exchangeable co-
variance matrix, such as the one of the error terms (R0) in a multiple trait animal model with
missing records under normal-inverted Wishart priors is presented. The algorithm (FCG) is
based on a conjugate form of the inverted Wishart density that avoids sampling the missing
error terms. Normal prior densities are assumed for the ‘fixed’ effects and breeding values,
whereas the covariance matrices are assumed to follow inverted Wishart distributions. The in-
verted Wishart prior for the environmental covariance matrix is a product density of all patterns
of missing data. The resulting MCMC scheme eliminates the correlation between the sampled
missing residuals and the sampled R0, which in turn has the effect of decreasing the total amount
of samples needed to reach convergence. The use of the FCG algorithm in a multiple trait data
set with an extreme pattern of missing records produced a dramatic reduction in the size of the
autocorrelations among samples for all lags from 1 to 50, and this increased the effective sample
size from 2.5 to 7 times and reduced the number of samples needed to attain convergence, when
compared with the ‘data augmentation’ algorithm.

FCG algorithm / multiple traits / missing data / conjugate priors / normal-inverted
Wishart

1. INTRODUCTION

Most data sets used to estimate genetic and environmental covariance com-
ponents, from multiple trait animal models, have missing records for some
traits. Missing data affect the precision of estimates, and reduce the conver-
gence rates of the algorithms used for either restricted maximum likelihood
(REML, [13]) or Bayesian estimation. The common Bayesian approach for
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estimating (co)variance components in multiple trait animal models or test-day
models with normal missing records, is to use prior distributions that would be
conjugate if the data were complete. Using this approach Van Tassell and Van
Vleck [17] and Sorensen [15] implemented ‘data augmentation’ algorithms
(DA, [16]) by sampling from multivariate normal densities for the fixed effects
and breeding values, and from inverted Wishart densities for the covariance
matrices of additive genetic and environmental effects. The procedure needs
sampling of all breeding values and errors for all individuals with at least one
observed trait, conditional on the additive genetic and environmental covari-
ance matrices sampled in the previous iteration of the Markov chain Monte
Carlo (MCMC) augmentation scheme. The next step is to sample the addi-
tive genetic and environmental covariance matrices conditional on the breeding
values and error terms just sampled. Therefore, the MCMC samples of breed-
ing values tend to be correlated with the sampled covariance matrix of additive
(co)variances and the sampled errors tend to be correlated with the sampled
environmental covariance matrix, due to the dependence between one set of
random variables to the other. Also, samples of the covariance matrices tend
to be highly autocorrelated, indicating problems with slow mixing and hence
inefficiency in posterior computations. The consequence of the correlation
between parameter samples and autocorrelations among sampled covariance
matrices is that the number of iterations needed to attain convergence tend to
increase [10] in missing data problems, a situation similar to that which hap-
pens when the expectation-maximization algorithm of Dempster et al. [4] is
used for REML estimation of multiple trait (co)variance components.

It would then be useful to find alternative MCMC algorithms for estimating
covariance matrices in normal-inverted Wishart settings with smaller autocor-
relations among samples and faster convergence rates than regular DA. Liu
et al. [11] suggested that MCMC sampling schemes for missing data that col-
lapse the parameter space (for example, by avoiding the sampling of missing
errors) tend to substantially increase the effective sampling size and to conse-
quently accelerate convergence. Dominici et al. [5] proposed collapsing the
parameter space by integrating the missing values rather than imputing them.
In the normal-inverted Wishart setting for multiple traits of Van Tassell and
Van Vleck [17] or Sorensen [15], this would lead to the direct sampling of
the covariance matrices of additive breeding values and/or error terms, with-
out having to sample the associated missing linear effects. The scheme is
possible for the environmental covariance matrix only, since error terms are
exchangeable among animals while breeding values are not. The objective
of this research is to show how to estimate environmental covariance compo-
nents with missing data, using a Bayesian MCMC scheme that does not involve
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sampling missing error terms, under a normal-inverted Wishart conjugate ap-
proach. The procedure (from now on called FCG for ‘full conjugate’ Gibbs) is
illustrated with a data set involving growth and carcass traits of Angus animals,
and compared with the DA sampler for multiple normal traits.

2. THE FCG SAMPLER

2.1. Multiple normal trait model with missing data

The model for the data on a normally distributed trait j ( j = 1, ..., t) taken
in animal i (i = 1, ..., q), is as follows:

yi j = Xi j‘β j + ai j + ei j (1)

where yi j, ai j, and ei j are the observation, the breeding value and the error
term, respectively . The vector β j of ‘fixed’ effects for trait j is related to the
observations by a vector Xi j’ of known constants. As usual, yi j is potentially
observed, whereas ai j and ei j are not, i.e., some animals may not have records
for some or all of the traits. All individuals that have observations on the same
traits (say tg ≤ t), share the same ‘pattern’ of observed and missing records. A
pattern of observed data can be represented by a matrix (Mg) having tg rows
and t columns [5], where g = 1, ... G, and G is the number of patterns in a
given data set. Let n be the total number of animals with records in all traits.
All elements in any row of Mg are 0’s except for a 1 in the column where trait j
is observed. Thus, Mg = It whenever tg = 0. For example, suppose t = 6 and
traits 1, 2 and 5 are observed. Then:

Mg =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

 .

There are 2t-1 different matrices Mg related to patterns with at least one trait
observed. We will set the complete pattern to be g = 1, so that M1 = It. We
will also assume that the complete pattern is observed in at least t animals,
and denote with ng the number of animals with records in pattern g. Then,
n =

∑G
g=1 ng so that n is the total number of animals with at least one trait

recorded.
Let y be the vector with the observed data ordered by traits within animal

within pattern. Stacking the fixed effects by trait and the breeding values by
animal within trait, results in the following matrix formulation of (1):

y = Xβ + Za + e. (2)
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The matrix Z relates records to the breeding values in a. In order to allow for
maternal effects, we will take the order of a to be rq × 1(r ≥ t), rather than
rt × 1. The covariance matrix of breeding values can then be written as:

Var(a) =



g1,1A g1,2A . . . g1,rA
g2,1A g2,2A . . . g2,rA
. . . . . .
. . . gi, jA . .
. . . . . .
gr,1A gr,2A . . . gr,rA


= G0 ⊗ A (3)

where g j j′ is the additive genetic covariance between traits j and j′ if j � j′,
and equal to the variance of trait j otherwise. As usual [7], the matrix A
contains the additive numerator relationships among all q animals.

In (2), the vector e contains the errors ordered by trait within animal within
pattern. Thus, the vectors e(g 1), e(g 2),..., e(g tg) denote the tg × 1 vectors of er-
rors for the different animals with tg observed traits in pattern g. Error terms
have zero expectation and, for animal i with complete records, the variance-
covariance matrix is equal to Var(e(1i)) = R0 = [r j j′ ], with r j j′ the environmen-
tal (co)variance between traits j and j′. If animal i′ has incomplete records in
pattern g, the variance is then Var(e(i′g)) = MgR0M′g. For the entire vector e
with errors stacked traits within animal within pattern, the variance-covariance
matrix is equal to:

R =



In1 ⊗ M1R0M′1 0 . 0
0 In2 ⊗ M2R0M′2 . 0
. . . .
. . . .
. . . .
0 0 ... Ing ⊗ MgR0M′g



=

G⊕
g=1

Ing ⊗ MgR0M
′
g. (4)

Under normality of breeding values and errors, the distribution of the ob-
served data can be written as being proportional to:

p(y|β, a, R0,M1, ...,MG) ∝ |R|− 1
2 exp

[
−1

2
(y − Xβ−Za)′R−1(y − Xβ − Za)

]
.

(5)
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2.2. Prior densities

In order to avoid improper posterior densities, we take the prior distribution
of the p × 1 vector β to be multivariate normal: β ∼ Np (0, K). If vague prior
knowledge is to be reflected, the covariance matrix K will have very large
diagonal elements (say kii > 108). This specification avoids having improper
posterior distributions in the mixed model [8]. The prior density of β will then
be proportional to:

p(β|K) ∝

∣∣∣∣∣∣∣
p∏
i=1

kii

∣∣∣∣∣∣∣
− 1

2

exp

−
1
2

p∑
i=1

β2
i

kii

 . (6)

The breeding values of the t traits for the q animals are distributed a priori
as a ∼ Nrq(0, G0 ⊗ A), so that:

p(a|G0, A) ∝ |G0|−
q
2 |A|− r

2 exp

{
−1

2
a′

(
G−1

0 ⊗ A−1
)
a
}
. (7)

The matrix of the additive (co)variance components G0 follows a priori an
inverted Wishart (IW) density: G0 ∼ IW(G∗0, nA), where G∗0 is the prior covari-
ance matrix and nA are the degree of belief. Thus:

p(G0|G∗0, nA) ∝ |G∗0|
nA
2 |A|− nA+r+1

2 exp

{
−1

2
tr
(
G∗0G

−1
0

)}
. (8)

We now discuss the prior density for R0. Had it been the data complete
(no missing records for all animals and for all traits), the prior density for R0

would have been IW (R∗0, ν), the hyperparameters being the prior covariance
matrix R∗0 and the degrees of belief ν. In order to allow for all patterns of miss-
ing data, and after the work of Kadane and Trader [9] and Dominici et al. [5],
we take the following conjugate prior for R0:

p(R|R∗0,M1, ..., MG, νg) ∝
G∏
g=1

|MgR0M′g|−
(νg+2tg+1)

2

× exp

{
−1

2
tr
[
MgR

∗
0M
′
g(MgR0M

′
g)
−1

]}
. (9)

In words of Dominici et al. [5], the specification (9) mimics the natural con-
jugate prior for the tg-dimensional problem of inference on the variables of
pattern g.
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2.3. Joint posterior distribution

Multiplying (5) with (6), (7), (8) and (9), produces the joint posterior density
for all parameters, and this is proportional to:

p(β, a,G0, R0|y,M1, ..., MG) ∝

|R|− 1
2 exp

[
−1

2
(y − Xβ − Za)′R−1(y, Xβ − Za)

]
exp

−
1
2

p∑
i=1

β2
i

kii


× exp

{
−1

2
a′

(
G−1

0 ⊗ A−1
)
a
}
|G0|−

(nA+r+q+1)
2 exp

{
−1

2
tr
(
G∗0G

−1
0

)}

×
G∏
g=1

|MgR0M
′
g|−

(νg+2tg+1)
2 exp

{
−1

2
tr
[
MgR

∗
0M
′
g(MgR0M

′
g)
−1

]}
. (10)

A hybrid MCMC method may be used to sample from (10), by combining
the classic DA algorithm for normal multiple traits of Van Tassell and Van
Vleck [17] and Sorensen [15], for β, a and G0, with the conjugate specifica-
tion (9) for R0 proposed by Dominici et al. [5].

2.4. Conditional posterior distributions of β, a and G0

The algorithm employed by Van Tassell and Van Vleck [17] and
Sorensen [15] involves the sampling of the fixed effects and the breeding values
first. In doing so, consider the following linear system:

[
X′R−1X + K−1 X′R−1Z

Z′R−1X ZR−1Z + G0 ⊗ A−1

] [
β̂
â

]
=

[
X′R−1y

Z′R−1y

]
. (11)

The system (11) is a function of K, G0 and R0, and allows writing the joint
conditional posterior density of β and a as:

[
β
a

]
1/2G0, R0, y ∼ Np+qr


[
β̂
â

]
,

[
X′R−1X + K−1 X′R−1Z

Z′R−1X Z′R−1Z + G0 ⊗ A−1

]−1 .
(12)

The normal density (12) can be sampled either by a parameter or by a block of
parameters [17].



Full conjugate Gibbs algorithm for missing traits 55

To sample from the posterior conditional density of G0, let S be

S =



a′1A
−1a1 a′1A

−1a2 . . a′1A
−1ar

a′2A
−1a1 a′2A

−1a2 . . a′2A
−1ar

. . a′iA
−1a j . .

. . . . .
a′rA−1a1 a′rA−1a2 . . a′rA−1ar


. (13)

Then, Van Tassell and Van Vleck [17] observed that the conditional posterior
distribution of G0 is inverted Wishart with the scale matrix G∗0 + S and degrees
of freedom equal to nA + q, so that:

p(G0|y,β, a, R0) ∝ |G0|−
(nA+r+q+1)

2 exp

{
−1

2
tr
(
(G∗0 + S)G−1

0

)}
. (14)

2.5. Conditional posterior distribution of R0

In this section the sampling of the environmental covariance matrix R0 is
implemented. The procedure is different from the regular DA algorithm pro-
posed by Van Tassell and Van Vleck [17] or Sorensen [15], since no missing
errors are sampled: only those variances and covariances of R0 that are miss-
ing from any particular pattern are sampled. In the Appendix it is shown that
the conditional posterior distribution of R0 has the following density:

p(R0|y,β, a,G0) ∝
G∏
g=1

|MgR0M′g|−
(νg+ng+2tg+1)

2

× exp

{
−1

2
tr
[
(MgR

∗
0M
′
g + Eg)(MgR0M

′
g)
−1

]}
. (15)

To sample the covariance matrix of a normal distribution, Dominici et al. [5]
proposed an MCMC sampling scheme based on a recursive analysis of the
inverted Wishart density described by Bauwens et al. [1] (th. A.17 p. 305).
This approach is equivalent to characterizing (15) as a generalized inverted
Wishart density [2]. We now present in detail the algorithm to sample R0.
The first step of the algorithm requires calculating the “completed” matrices
of hyperparameters for each pattern. We denote this matrix for pattern g as R∗g,
being composed by submatrices R∗goo, R∗gom and R∗gmm for the observed, observed
by missing and missing traits, respectively. Once the R∗g’s are computed, R0 is
sampled from an inverted Wishart distribution with the parameter covariance
matrix equal to the sum of the “completed” matrices obtained in the previous
step. The sampling of R0 then involves the following steps:
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2.5.1. Sampling of the hypercovariances between observed andmissing
traits in the pattern

This step requires a matrix multiplication to a sampled random matrix.
Formally:

(
R∗goo

)−1
R∗gom|R0, Rmm.o ∼ R∗goo × Ntg×(t−tg)

[
R∗gooRom, R−1

oo ⊗ Rmm.o

]
. (16)

In practice, the sampling from the matricvariate normal matrix (see [1] p. 305)
in (16) can be achieved by performing the following operations. First, multiply
the Cholesky decomposition of the covariance matrix (R∗goo)−1 ⊗ Rmm.o times a
[tg(t − tg)] vector of standard normal random variables, with Rmm.o = Rmm −
RmoR−1

ooRom. The resulting random vector is then set to a matrix of order a tg×
(t − tg) by reversing the vec operation: the first column of the matrix is formed
with the first tg elements of the vector, the second column with the next tg
elements, and so on to end up with column (t−tg). Note that Roo, Rmm and Rmo

are submatrices of R0 from the previous iteration of the FCG sampling. Then,
the mean R−1

oo Rom should be added to the random tg × (t − tg) matrix. Finally,
the resulting matrix should be premultiplied by the tg × tg matrix associated
with the observed traits in pattern g equal to R∗oo = R∗0oo+Eg. The matrix R∗0oo
contains the hypervariances and covariances in R∗0. The matrix with the sum
of squared errors in pattern g (Eg) is defined in the Appendix.

2.5.2. Sampling of the hypervariance matrix among missing traits
in pattern g

This step is performed by sampling from:

R∗gmm.o|R0 ∼ Wm

(
νg + 2t, Rmm.o

)
(17)

where Wm denotes the Wishart density. The covariance matrix is Rmm.o and
the degrees of freedom are νg plus two times the number of traits.

2.5.3. Computation of the unconditional variance matrix among
the missing traits in pattern g

R∗gmm = R∗gmm.o + R∗gmo(R∗goo)−1R∗gom (18)

2.5.4. Obtaining the hypercovariance matrix

Let Pg be a permutation matrix such that the observed and missing traits
in pattern g recover their original positions in the complete covariance ma-
trix. Then, the contribution of pattern g to the hypercovariance matrix for
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sampling R0 is equal to:

Pg

[
R∗goo R∗gom
R∗gmo R∗gmm

]
P′g = R∗g (19)

so that the complete hypercovariance matrix is equal to
∑G
g=1 R

∗
g.

2.5.5. Sampling of R0

The matrix R0 is sampled from:

p(R0|y,β, a,G0) ∼ IW


G∑
g=1

νg + n + (G − 1)(t + 1),


G∑
g=1

R∗g


 . (20)

2.6. A summary of the FCG algorithm

1. Build and solve equations (11).
2. Sample β and a from (12).
3. Calculate the residuals: e = y − Xβ − Za.
4. For every pattern do the following:

4.1. Sample the hypercovariances between observed and missing traits
in the pattern using (16).

4.2. Sample the hypervariance matrix among missing traits in the pat-
tern using the inverted Wishart density in (17).

4.3. Calculate the unconditional variance matrix among the missing
traits in the pattern using (18).

5. Calculate the hypercovariance matrix for R0 by adding all R∗g as∑G
g=1 R

∗
g.

6. Sample R0 from (20).
7. Calculate S.
8. Sample G0 from (8), and go back to 1.

2.7. Analysis of a beef cattle data set

A data set with growth and carcass records from a designed progeny test
of Angus cattle collected from 1981 to 1990, was employed to compare the
autocorrelations among sampled R0 and the ‘effective sample sizes’ of the
FCG and DA algorithms. Calves were born and maintained up to weaning at
a property of Universidad de Buenos Aires (UBA), in Laprida, south central
Buenos Aires province, Argentina. There were 1367 animals with at least one
trait recorded, which were sired by 31 purebred Angus bulls and by commer-
cial heifers. Almost half of the recorded animals were females that did not
have observations in all traits but birth weight. Every year 6 to 7 bulls were
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Table I. Descriptive statistics for the traits measured.

Trait N Mean SD CV Minimum Maximum

(kg) (%) (kg) (kg)

Birth weight 1367 30.9 4.6 15 20 45

Weaning weight 561 194.5 31.2 16 99 305

18 months weight 405 332.1 53.4 16 180 472

Weight of three retail cuts 474 13.4 15.0 11 9.3 18.6

Hind pistola weight 474 50.7 51.0 10 32 66

Half carcass weight 466 121.6 12.7 10 75 154

tested, and either 1 or 2 sires were repeated the next year to keep the data
structure connected. Every year different heifers were artificially inseminated
under a completely random mating scheme. After weaning (average age = 252
days), all males were castrated and taken to another property for the fattening
phase. The steers were kept on cultivated pastures until they had at least 5 mm
of fat over the ribs, based on visual appraisal. The mean age at slaughter was
28 months and the mean weight was 447 kg. Retail cuts had the external fat
completely trimmed. The six traits measured were: (1) birth weight (BW);
(2) weaning weight (WW); (3) weight at 18 months of age (W18); (4) weight
of three retail cuts (ECW); (5) weight of the hind pistola cut (WHP) and (6)
half-carcass weight (HCW). Descriptive statistics for all traits, are shown in
Table I.

The year of measure was included as a fixed classification variable in the
models for all six traits, and sex was included in the model for BW. Fixed
covariates were age at weaning for WW, age at measure for W18, and age at
slaughter for ECW, WHP and HCW. Random effects were the breeding val-
ues and the error terms. The parameters of interest were the 6 × 6 covariance
matrices G0 and R0. An empirical Bayes procedure was used to estimate the
hyperparameters. The prior covariance matrices G∗0 and R∗0 were taken to be
equal to the Expectation-Maximization [4] REML estimates of G0 and R0,
respectively, as discussed by Henderson [7]. The degrees of belief were set
equal to 10. After running 200 000 cycles of both FCG and DA, autocorrela-
tions from lag 1 to 50 for all 21 parameters of R0 were calculated using the
BOA program [14]. Once the autocorrelations were calculated, the ‘effective
sample size’ (Neal, in Kass et al. [10]) were computed as:

ES S =
T

1 + 2
∑k

i=1 ρ(i)
,
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Figure 1. Lag correlations of the environmental variance of BW for FCG and DA.

Figure 2. Lag correlations of the environmental covariance between BW and ECW
for FCG and DA.

where ρ(i) is the autocorrelation calculated at lag i, K is the lag at which ρ
seems to have fallen to near zero and T is the total number of samples drawn.
We took K = 50 and T = 200 000.

3. RESULTS

To summarize the results, the environmental variances of a growth trait
(BW, rBW), and a carcass trait (ECW, rECW), as well as the covariance between
them (BW and ECW, rBW−ECW) are reported. The autocorrelation functions of
the MCMC draws for rBW, rBW−ECW, and rECW for the FCG and DA samplers
are displayed in Figures 1, 2 and 3, respectively.

For all environmental dispersion parameters the autocorrelations of the FCG
sampler were in between 0.5 to 4 times smaller than those obtained with
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Figure 3. Lag correlations of the environmental variance of ECW for FCG and DA.

Table II. Posterior means (above main diagonal) and posterior standard deviations
(below main diagonal) of the environmental parameters expressed as correlations.

BW WW W18 ECW HPW HCW

BW - 0.303 0.291 0.112 0.147 0.240

WW 0.396 - 0.640 0.247 0.468 0.577

W18 0.438 0.533 - 0.308 0.562 0.695

ECW 0.345 0.345 0.375 - 0.363 0.361

HPW 0.452 0.480 0.544 0.387 - 0.714

HCW 0.471 0.534 0.615 0.402 0.615 -

the DA procedure. The ‘effective sample sizes’ were ESS rBW = 32 560,
ESS rBW−ECW = 12 480, and ESS rECW = 36 480, for FCG. The figures for
DA were ESS rBW = 11 320, ESS rBW−ECW = 4880 and ESS rECW = 5240.
As a result, the ESS were 2.87, 2.54, and 6.96 greater for rBW, rBW−ECW, and
rECW, respectively. In other words, FCG required in between 2.5 to 7 times
less samples to reach convergence than DA, a substantial decrease. Table II
shows the posterior means and the posterior standard deviations, for all envi-
ronmental (co)variance components, expressed as correlations. A graph of the
posterior marginal density of rBW−ECW is displayed in Figure 4.

4. DISCUSSION

The original contribution of this research was to implement a Bayesian con-
jugate normal-inverted Wishart approach for sampling the environmental co-
variance matrix R0, in an animal model for multiple normal traits with missing
records. This conjugate setting for normal missing data was first proposed by
Kadane and Trader [9], and later implemented by Dominici et al. [5] to an
exchangeable normal data vector with missing records. The procedure was



Full conjugate Gibbs algorithm for missing traits 61

Figure 4. Posterior marginal density of the environmental correlation between BW
and ECW.

different from the regular DA algorithm implemented by Van Tassell and Van
Vleck [17] for multiple traits, or by Sorensen [15] for multivariate models, in
the sense that there is no need to sample the residuals of missing records: only
those variances and covariances of R0 that are missing from any particular pat-
tern are sampled. By avoiding the sampling of missing residuals from R0, the
effect that the correlation between these latter terms and the sampled R0 has
on the convergence properties of the algorithm is eliminated [11], which in
turn has the effect of decreasing the total amount of samples needed to reach
convergence. The use of the algorithm in a data set with an extreme pattern of
missing records produced a dramatic reduction in the size of the autocorrela-
tions among samples for all the lags from 1 to 50. In turn, this increased the
effective sample size from 2.5 to 7 times, and reduced the number of samples
needed to attain convergence compared with the DA algorithm of Van Tassell
and Van Vleck [17] or Sorensen [15]. Additionally, the time spent on each
iteration of FCG was approximately 80% of the time spent on each iteration of
DA. The total computing time will depend on the fraction of missing to total
residuals to sample and the total number of patterns, for the particular data set.

The sampling of the environmental covariance matrix without having to
sample the residuals presented here was facilitated by the fact that error terms
are exchangeable among animals. This allowed collapsing the parameter space
by integrating out the missing residuals, rather than imputing them. Unfortu-
nately, breeding values are not exchangeable (for example, the breeding values
of a sire and its son can not be exchanged) so that the sampling can not be
performed with the additive genetic covariance matrix. A possibility is to pa-
rametrize the model in terms of Mendelian residuals (ϕ) rather than breeding
values, by expressing a = [It ⊗ (Iq − P)−1]ϕ in (2) [3]. The matrix P has
row i with all elements equal to zero except for two 0.5 in the columns corre-
sponding to the sire and dam of animal i. However, this reparametrization does
not reduce the number of random genetic effects and the programming is more
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involved, so there is not much to gain with this formulation. The alternative
parametrization of a leaving only the breeding values of those animals with
records requires direct inversion of the resulting additive relationship matrices
by trait one by one, since the rules of Henderson [7] can not be used, a rather
impractical result for most data sets.

Although the algorithm FCG was presented for a multiple trait animal
model, it can be equally used for the environmental covariance matrix of lon-
gitudinal data with a covariance function, such as the one discussed by Meyer
and Hill [12]. In that case let R0 = ΦΓΦ

′ in (9) and onwards, where the para-
metric matrix of (co)variance components is Γ and Φ is a known matrix that
contains orthogonal polynomial functions evaluated at given ages. Also, the
prior covariance matrix is such that R∗0 = ΦΓ

∗Φ′.
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APPENDIX: DERIVATION OF THE FULL CONDITIONAL
DENSITY OF R0 IN (15)

Collecting all terms in (10) that are a function of R0 results in:

p(R0|y,β, a,G0) ∝ |R|− 1
2 exp

[
−1

2
(y − Xβ − Za)′R−1(y − Xβ − Za)

]

×
G∏
g=1

|MgR0M′g|−
(νg+2tg+1)

2 exp

{
−1

2
tr
[
MgR∗0M

′
g(MgR0M′g)−1

]}
. (A.1)

Let e(g1) , e(g2),..., e(go) be the ng × 1 vectors of errors for the different ob-
served traits in pattern g. The notation in parenthesis means, for example, that
trait (g1) is the first trait observed in the pattern and not necessarily trait 1.
Using this notation, let the matrix Eg (of order tg × tg) containing the sum of
squared errors for pattern g be:

Eg =



e′(g1)e(g1) e′(g1)e(g2) . e′(g1)e(g5) e′(g1)e(tg)

e′(g2)e(g1) e′(g2)e(g2) . e′(g2)e(g5) e′(g2)e(tg)

. . . . .

. . . e′(i)e( j) .

e′(tg)e(g1) e′(tg)e(g2) . . e′(tg)e(tg)


. (A.2)
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Using this specification we can write:

(y − Xβ− Za)′R−1(y − Xβ− Za) = tr
[
ee′R−1

]
= tr

ee′


G⊕
g=1

(
MgR0M

′
g

)−1




=

G∑
g=1

tr


∑
i, j

e(gi)e′(g j′)
(
MgR0M′g

)−1

 =
G∑
g=1

tr
[
Eg

(
MgR0M′g

)−1
]
. (A.3)

Now, by replacing on the exponential term in (A.1) with (A.3) produces:

exp

−
1
2

e′R−1e + tr


G⊕
g=1

MgR
∗
0M
′
g(MgR0M

′
g)
−1



 =

exp

−
1
2


G∑
g=1

tr
(
Eg

(
MgR0M

′
g

)−1
) G∑
g=1

tr
(
MgR

∗
0M
′
g(MgR0M

′
g)
−1

)
 =

exp

−
1
2

G∑
g=1

tr
((
Eg + MgR

∗
0M
′
g

) (
MgR0M

′
g

)−1
) . (A.4)

Operating on the determinants of (A.1) allows us to write down:

|R|− 1
2

G∏
g=1

|MgR0M′g|−
(νg+2tg+1)

2 =

G∏
g=1

|Ing ⊗ MgR0M′g|−
1
2 |MgR0M′g|−

(νg+2tg+1)
2

which, after using the formula for the determinant of a Kronecker product [6]
is equal to:

G∏
g=1

|MgR0M
′
g|−

ng
2 |MgR0M

′
g|−

(νg+2tg+1)
2 =

G∏
g=1

|MgR0M
′
g|−

(νg+ng+2tg+1)
2 . (A.5)

Finally, multiplying (A.4) to (A.5) gives the density of R0 as in (15):

G∏
g=1

|MgR0M
′
g|−

(νg+ng+2tg+1)
2 exp

{
−1

2
tr
((
Eg + MgR

∗
0M
′
g

) (
MgR0M

′
g

)−1
)}
.
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