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Abstract – This article investigates the application of meta-analysis on livestock candidate gene
effects. The PvuII polymorphism of the ESR gene is used as an example. The association among
ESR PvuII alleles with the number of piglets born alive and total born in the first (NBA1, TNB1)
and later parities (NBA, TNB) is reviewed by conducting a meta-analysis of 15 published stud-
ies including 9329 sows. Under a fixed effects model, litter size values were significantly lower
in the “AA” genotype groups when compared with “AB” and “BB” homozygotes. Under the
random effects model, the results were similar although differences between “AA” and “AB”
genotype groups were not clearly significant for NBA and TNB. Nevertheless, the most no-
ticeable result was the high and significant heterogeneity estimated among studies. This het-
erogeneity could be assigned to error sampling, genotype by environment interaction, linkage
or epistasis, as referred to in the literature, but also to the hypothesis of population admix-
ture/stratification. It is concluded that meta-analysis can be considered as a helpful analytical
tool to synthesise and discuss livestock candidate gene effects. The main difficulty found was
the insufficient information on the standard errors of the estimated genotype effects in several
publications. Consequently, the convenience of publishing the standard errors or the concrete
P-values instead of the test significance level should be recommended to guarantee the quality
of candidate gene effect meta-analyses.

meta-analysis / candidate gene / estrogen receptors / litter size / pigs

1. INTRODUCTION

Meta-analysis can be defined as the application of statistical procedures to
collections of empirical findings from individual studies for the purpose of
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integrating, synthesising, and making sense of them [60]. Although in live-
stock it is not a usual analytical tool it is in medical research, perhaps because
of the widely recognised importance of being systematic when reviewing the
evidence available on the benefits and risks of medical decisions [54]. Only
recently, meta-analysis has been introduced to study genes of interest in live-
stock [15, 19, 23] although not in the context of candidate gene studies.

The candidate gene approach presents several advantages over genome
scanning and can provide strong knowledge on candidate genes but also
presents some limitations. The main weakness of this approach is that an as-
sociation does not necessarily demonstrate that the gene is causally related to
phenotype. Association could also be because (1) the gene may not itself be
causal, but may be sufficiently close to a causal locus being in linkage disequi-
librium with it, or (2) the association may be due to confounding by population
stratification or admixture [8]. Furthermore, most studies usually test multiple
phenotypes and they do not adjust their significant thresholds for multiple com-
parisons. Consequently the possible involvement of the candidate gene in the
regulation of a trait needs to be validated by other studies [18]. The need for
validation makes the application of meta-analysis in candidate gene reviews
especially interesting.

The Estrogen Receptor gene is an interesting example. The PvuII poly-
morphism at porcine estrogen receptor gene (ESR) [43] was designated in
1994 as a major gene for litter size. One ESR allele with a 3.7-kb fragment
(called the B allele) was reported to be significantly associated with higher to-
tal number born (TNB) and number born alive (NBA) in a 50% Meishan syn-
thetic line [44]. Since then, many studies have been published, mainly aimed
at answering whether the association with litter size exists in other popula-
tions, but also focussed on the role of the ESR gene on other reproductive
traits [22, 55, 56] and also on growth and carcass traits [28, 37].

Reviews on the PvuII ESR polymorphism and litter size relationship tend
to consider that results have clearly demonstrated they are significantly asso-
ciated [2], but several of the last published results, like those of Drogemuller
et al. [13], Gibson et al. [14], Kmiec et al. [25] or Noguera et al. [33], did
not find any significant association, and different reasons, mainly of genetic
nature, have been argued to explain these apparently controversial results. Be-
yond the scientific reasons, the gene is also interesting due to its commercial
implications: the intellectual property of the PvuII ESR gene polymorphism is
protected by patent applications [41, 46] and is exclusively licensed to one pig
breeding company [40]. This fact and the fact that to date a causative mutation
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has not been described should also be considered in order to understand the
commercial controversy that ESR gene results have attracted [42].

The aim of this paper was to investigate the interest of the application of
meta-analysis on livestock candidate gene effect reviews. The relationship be-
tween the PvuII polymorphism of the ESR gene and pig litter size is used as an
example because of a large number of studies published and the controversies
arising from the apparently conflicting results obtained.

2. MATERIALS AND METHODS

Meta-analysis was performed following the structure of meta-analysis of
Mann and Ralston [31]. Studies in which the PvuII ESR polymorphism has
been related to litter size in pigs were identified by electronic searches of
Science Citation Index ExpandedTM, CAB Abstracts© and Current Contents
Connect© in February 2004 using several combinations of search terms
including “estrogen”, “oestrogen”, “receptor”, “gene”, “locus”, “polymor-
phism”, “pig” and “swine”. Later, the references of retrieved articles were also
screened.

Four litter size traits were considered in meta-analysis: number born alive
and total born in the first parity (NBA1, TNB1) and in later or all the par-
ities (NBA, TNB). The criteria for excluding the identified studies and/or
populations were the following: (1) Mean genotype values or differences for
NBA1, TNB1, NBA or TNB were not estimated (i.e., only allele frequencies
referred) [6, 7, 58] or reported [22, 39]; (2) No sufficient information is pro-
vided in proceedings or English abstracts [24, 36, 50, 51]; (3) Populations are
monomorphic [12, 13, 30, 53] or are analysed in other studies using a different
number of data or methodology [34,44,45,48] (studies with more information
or published in peer review journals were chosen).

Data were analysed using the Revman 4.2.3 software package available
from The Cochrane Collaboration (http://www.cochrane.org). Two compar-
isons were made, “AB” heterozygotes versus “AA” homozygotes, and “BB”
homozygotes versus “AA” homozygotes. An inverse variance method and fixed
and random effects models were employed [1]. Differences between genotype
groups were estimated from published values of genotype or allele effect. The
standard errors of differences were computed based on available information:
(1) the standard errors of genotype effect estimates [11, 14, 21, 30, 32, 33, 57];
(2) the standard deviation and the number of records [25] or, when not avail-
able, the number of animals [5] of each genotype class; (3) the standard de-
viation estimated at the population level and the number of records [29];
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(4) the P-values of t-test and the number of records of each genotype class [13];
(5) the level of significance of t-tests and the number of records of each geno-
type class [26, 47, 49, 52]. When the number of records of each genotype class
was not available, they were deducted from estimated allele frequencies as-
suming Hardy-Weinberg equilibrium.

Funnel plots were performed to look for evidence of publication bias. Fun-
nel plots are a graphical approach to research synthesis that informs on selec-
tive reporting, preferential publication of results consistent with expectation or
statistically significant, that may introduce a profound bias on meta-analysis
results [35]. Funnel plots were drawn as plots of standard error of effect esti-
mate versus the effect estimate for each study.

3. RESULTS

In total, twenty-three of the studies identified were not considered and fif-
teen were included in meta-analysis. The details of the studies included are
summarised in Table I.

3.1. Number of born alive

Ten and eleven studies analysing sixteen and seventeen populations with
8010 and 8012 animals were considered for NBA1 and NBA respectively.
The results are shown in Figure 1. The values for NBA1 were significantly
lower (P ≤ 0.005) in the “AA” (number of animals: n = 2638) versus “AB”
(n = 3512) genotype groups. The difference was 0.38 under the fixed effects
model and 0.41 under the random effects model. The NBA difference estimated
between “AB” (n = 3570) and “AA” (n = 2555) groups under the random
model was not significant (P = 0.06) although it was under the fixed model
(0.20 piglets, P = 0.0002). The differences between “BB” (n = 1860) and
“AA” (n = 2638) groups were significant (P ≤ 0.0009) for NBA1: 1.11 and
1.30 under fixed and random models respectively. Similarly, the differences of
0.22 and 0.61 NBA among “BB” (n = 1887) and “AA” (n = 2555) genotypes,
for fixed and random models respectively, were also significantly different to
zero (P ≤ 0.00001).

3.2. Total number of born

For TNB1 and TNB, ten and twelve studies analysing sixteen and eigh-
teen populations with 7755 and 7932 animals were respectively considered.
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The results are shown in Figure 2. Higher TNB1 values were obtained in car-
riers of the “B” allele (n = 3460) when compared with “AA” homozygotes
(n = 2436). The difference was 0.38 under both models, being the test signifi-
cant for overall effect (P ≤ 0.01). For TNB the difference was 0.24 (P < 0.001)
under the fixed effects models but non significant under the random model
[0.22 (P = 0.07)] (n“AB” = 3578; n“AA” = 2467). The fixed effect model makes
the assumption that there is one single average effect, and that all the studies
come from a population of studies measuring this effect. The random effects
model assumes that the true effect varies with normal distribution and is more
conservative because confidence intervals end up wider. It should be consid-
ered that the random effects model gives less weight to bigger studies than the
fixed effects model and when results from the two methods differ by a lot, the
results can not be considered robust to the assumptions made in the analysis.
Nevertheless, although the P-value of both models was different, the difference
in the effect on TNB was quite small, which is the reason why a priori nothing
indicated that the combination of the studies was inappropriate [1].

The TNB1 difference between genotypes for the “BB” (n = 1859) and “AA”
(n = 2436) comparison under a fixed effects model was 1.08 (P < 0.001) and
1.21 (P = 0.003) for the random effects model. For TNB these differences
were 0.36 (P < 0.001) and 0.66 (P = 0.002) (n“BB” = 1887; n“AA” = 2467).

3.3. Heterogeneity and inconsistency among results

The Chi-square test for heterogeneity was significant for all the traits and
contrasts (P ≤ 0.03). The measure of inconsistency among the results, l2 statis-
tic, ranged from 43.8 to 80.2 % (Figs. 1 and 2). The l2 statistic should be in-
terpreted as the proportion of total variation that is due to heterogeneity rather
than sampling error [1]. The results show that there is more variation in the
results of studies than expected by chance. They suggest that the studies are
different enough to be combined, at least without trying to work out why these
studies came up with such different results to one other.

3.4. Funnel plot analysis

Funnel plots were symmetrical for the “AB” versus “AA” genotype group
comparisons, providing no clear evidence in favour of selective publication
of positive studies on these traits (Fig. 3). When “BB” versus “AA” genotype
groups were compared, funnel plots also showed symmetry for first parities.
For all parities, more studies referred positive than negative difference in favour
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Figure 1. Meta-analysis for ESR PvuII polymorphism and association with the num-
ber of born alive in (1) the first parities (NBA1) and (2) all the parities (NBA):
(a) “AB” heterozygous versus “AA” homozygous, (b) “BB” homozygous versus “AA”
homozygous. The confidence interval (CI) for each study is represented by a hori-
zontal line and the point estimate is represented by a square. Weight (%) and overall
effect (95% Confidence Interval) and its tests are shown for fixed and random effects
models.

←

of the “BB” genotype and some bias in publishing positive B allele effects
could be suspected, although we think that there is not clear evidence. The
effect of selective reporting on meta-analysis can be addressed in several ways,
but funnel graphs allow the readers to judge for themselves how well behaved
the data are [35].

4. DISCUSSION

The present meta-analysis shows several limitations. The first drawback
concerns the diversity among studies in traits (e.g. all or later parities), ex-
perimental design, models of analysis of genotype effects, etc. Nevertheless,
the main problem that could be addressed is the diversity on the quality of
standard error estimates of genotype effects. Standard errors originally not re-
ported and computed in this work to make meta-analysis possible are over
or underestimated. For example, for Korwin-Kossakowska et al. [26], Roth-
schild et al. [47], Short et al. [49] and Southwood et al. [52] standard errors
were overestimated when the differences were significant, since they repre-
sent the maximum standard error inferred by the level of significance reported.
And, oppositely, when differences were not significant, standard errors were
underestimated, since they represent the minimum standard error inferred by
the level of significance reported.

This problem is especially important because the inverse variance method
was used in the present work. However, it could not be better surpassed given
the information available in the publications of the studies. If no information
is available in the study report to perform the meta-analysis, the reviewer is
forced (1) to exclude the study and risk introducing bias, (2) to impute missing
data and risk making a different type of error, or (3) to use a narrative ap-
proach to synthesis [1]. Here, the option to impute approximated, or threshold
values, to missing data was chosen. A first unpretentious conclusion can be
derived suggesting referees and editor’s journals to demand the publication of
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Figure 2. Meta-analysis for ESR PvuII polymorphism and association with the total
number of born in (1) the first parities (TNB1) and (2) all the parities (TNB): (a) “AB”
heterozygous versus “AA” homozygous, (b) “BB” homozygous versus “AA” homozy-
gous. The confidence interval (CI) for each study is represented by a horizontal line
and the point estimate is represented by a square. Weight (%) and overall effect (95%
Confidence Interval) and its tests are shown for fixed and random effects models.

←

standard errors or concrete P-values instead of the significance level of per-
formed tests. In general, it is particularly unhelpful to state that significant
differences between means are achieved at the 5% level without stating (a) the
mean values and the sample size, (b) the standard error and (c) the name of the
test chosen [38].

Despite this serious limitation, the present meta-analysis can be helpful to
disentangle the relationship between ESR PvuII polymorphism and sow litter
size. The results show that a difference between B carriers and homozygote
non-carriers was around 0.2 in all parities and 0.4 in first parities, for both
traits piglets alive and total born. The difference between both homozygotes
was close to 0.5 in all parities and close to 1.2 in first parities. It is a common
practice to infer the genetic effects such as dominant, additive or recessive at
candidate genes when significant effects are found. Here, ESR PvuII polymor-
phism did not reflect a consistent mode of gene action for all the traits. Under
the fixed effects model, additive and dominant effect estimates were, respec-
tively, 0.56 and –0.18 for NBA1, 0.54 and –0.16 for TNB1, 0.11 and 0.09 for
NBA, and 0.18 and 0.06 for TNB.

The results also showed a high statistical heterogeneity among studies. The
origin of this heterogeneity should be clarified before inferring from the results
obtained. A common criticism of meta-analyses is that they combine ‘apples
with oranges’ [60]. If there is considerable variation in the results, it may be
misleading to quote an average value for the treatment effect [1]. The hetero-
geneity we observed was not free of standard estimation problems, but contro-
versial results have been remarked in almost all the studies reviewed. Several
explanations have been argued.

The first hypothesis, frequently discussed in the literature, is the sample
size of experiments carried out. This hypothesis could be considered for sev-
eral of the experiments reviewed but it could be rejected for the studies of
Rothschild et al. [47], Short et al. [49] and Southwood et al. [52] given the
number of pigs involved. However, the sampling error is not the only cause that
explains the diversity found in the results of the literature. While Rothschild
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Figure 3. Funnel plots of (1) NBA1, (2) TNB1, (3) NBA and (4) TNB comparisons
of (a) “AB” versus “AA” and (b) “BB” versus “AA” genotype groups to determine
publication bias. The genotype difference values for litter size from individual studies
are plotted on the X-axis while their standard errors are plotted on the Y-axis.
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et al. [47] and Short et al. [49] found differences for all traits, Southwood
et al. [52] did not find a significant effect of the B allele in NBA and TNB.
This lack of significance was mainly due to a second parity drop, which had
its largest effect impact in the more productive genotypes [52]. Rothschild and
Plastow [42] explain how this drop was related to the nutritional regime used
and indicate that the results obtained are an interesting example of genotype
by environment interaction. Recently, and this is the reason for the non inclu-
sion in this meta-analysis, the results of another large sample size study have
been published [16, 17], reinforcing the idea that sample size is not the only
source of heterogeneity among studies. Upon analysing data of approximately
1250 sows and 3600 litters, the B allele was found to be disadvantageous to
the A allele for prolificacy [16].

The second hypothesis is that the ESR gene is not a major gene but a marker.
The PvuII polymorphism could be linked with the causative mutation within
the ESR gene or closely linked with unknown quantitative trait loci with an
effect on litter size. It should be kept in mind that the PvuII site is located in an
intron which makes a difference in expression or in structure of ESR relative
unlikely, and ESR being a marker for litter size more likely [57]. Different
linkage relationships may be the reason why estimates vary across populations,
although it has been observed that the ESR effect can differ in its magnitude
and direction not only across but also within populations [17]. The genome
scanning approach had not shown evidence for QTL influencing litter size in
the region harbouring the ESR locus on chromosome 1 e.g., [4,13,39,59], but it
should be considered that these screenings were of poor power to detect a QTL.
The fact that a causative mutation has not been described and made public
continues to be the main obstacle to conclude the evidence for the hypothesis of
the PvuII polymorphism being a marker of a gene affecting sow litter size [42].

The third hypothesis in the literature is background effects of other genes
interacting with the ESR gene, i.e., epistasis. The effect of PvuII polymorphism
would depend on its frequency and the frequency of alleles at other loci, and
it could have a small effect in one population and explain a significant portion
of the variance in another population [30]. However, little is known about the
magnitude of epistatic variation in sow litter size and consequently there is no
knowledge to support this speculative hypothesis.

In summary, the three main hypotheses discussed in the literature review-
ing the controversial results of different studies do not seem to give a suffi-
cient explanation for the heterogeneity found in the present work, and other
additional hypotheses could be considered. One of them is the effect of pop-
ulation admixture/stratification on association analyses. It is well known that
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admixture/stratification could have a severe incidence in association analysis
e.g. [10]. This has been discussed in the analysis of other candidate genes as
for example the Melanocortin 4-Receptor in pigs [20], but not in the context
of the ESR gene. Only Noguera et al. [33] introduced the idea that population
structure, with one boar contributing to a larger extent in one of two lines anal-
ysed, could affect the results although they rejected this possibility in the light
of further analysis performed excluding its offspring.

In the present meta-analysis, an important number of studies reviewed were
performed on mixed populations. For example, the larger population anal-
ysed [49] resulted from the mixture of four different lines. Three of the lines
were of Large White origin and the fourth was a synthetic line 3/4 Duroc
and 1/4 Large White. The frequency of the B allele was similar in the three
Large White lines (range 0.64 to 0.74) but was considerably less in the
3/4 Duroc line (0.17). This disparity in frequencies could arise because each
population has a unique history. It has been postulated that the B allele has a
Chinese pig origin and that this presence in occidental selected lines may be
the result of interbreeding of Chinese and English pigs and the later crosses of
resulting crossed populations with other breeds and populations e.g. [49]. Un-
der this hypothesis the population frequency discrepancies will be widespread
throughout the genome. Consequently, the assumption of no confounding ef-
fects could be violated. Indeed, nearly all outbred populations are confounded
by genetic admixture at some level; the challenge is not merely to show that
it exists, but to avoid the possibility of making erroneous conclusions because
of it [3].

All fifteen studies included in the present meta-analysis tested the difference
in prolificacy between genotypes, applying a methodology based on ANOVA
models (mixed models, animal model, etc.). It is known that this kind of test
is prone to detect spurious results due to the confounding effects of popula-
tion admixture/stratification [10]. Unless samples are drawn from populations
known to be genetically homogeneous, other tests than those based on ANOVA
are recommended in order to avoid misleading results [20]. In a meta-analysis
context it should be remarked that population admixture/stratification could
arise in false positive but also in false negative effects [9]. It is important to cor-
rectly interpret the results because usually, only positive results are regarded
as being potentially confounded by population admixture/stratification.

Lander and Schork [27] indicated that a first step that should be taken to pre-
vent spurious associations arising from admixture/stratification is to perform
the association studies within relatively homogeneous populations. If an asso-
ciation can only be found in large mixed populations but not in homogeneous
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groups, one should suspect admixture/stratification and conclude that no evi-
dence on genetic association exists. Therefore, an additional meta-analysis was
performed for the “AB” versus “AA” genotype groups in which results from
mixed populations [5, 11, 21, 29, 47, 49, 52] were excluded. Eight studies in-
volving ten populations and a total of 1722 sows were considered. The contrast
between “BB” and “AA” groups was not performed because the small number
of contrasts in not mixed populations. The test for heterogeneity is not very
sensitive at detecting excess variation if there are few studies [1]. In this ad-
ditional meta-analysis the test for heterogeneity was not significant for NBA1
and TNB1 (P = 0.52 and 0.69 respectively) and for NBA and TNB P-value
was smaller than when all the studies were considered (P = 0.02 in front of
P ≤ 0.001). On the contrary, it did not show any significant difference between
“AB” and “AA” genotype groups in opposition with previous results (NBA1:
P f = Pr = 0.80; NBA: P f = 0.70, Pr = 0.68; TNB1: P f = Pr = 0.42; TNB:
P f = 0.27, Pr = 0.51; being P f and Pr, P-values for fixed and random effects
models respectively). In summary, when studies that analysed mixed popula-
tions were excluded, heterogeneity was reduced and no significant association
was found. As result, the admixture/stratification effect could be suspected af-
fecting positive results. However, a solid conclusion cannot be extracted from
this second meta-analysis because the largest sample size studies were not con-
sidered because they analysed mixed populations.

In conclusion, meta-analysis is revealed like a helpful analytical tool to
synthesise and discuss livestock candidate gene effects. The meta-analysis
performed shows that there is a large heterogeneity in results on ESR PvuII
polymorphism association with sow prolificacy. Although it is not usually
discussed in the livestock framework, population admixture/stratification can
be a source of heterogeneity in candidate gene analyses, and it could be inter-
esting to separately analyse populations with different genetic background or
to apply methodologies robust to the effect of population structure e.g. [20]. Fi-
nally, the publication of standard errors or concrete P-values instead of the test
significance level is convenient in order to guarantee the quality of candidate
gene effect meta-analyses.
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