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Abstract – The genotypic and allelic effect models are equivalent in terms of QTL detection
in a simple additive model, but the QTL allelic model has the advantage of providing direct
information for marker-assisted selection. However, the allelic matrix is four times as large as
the genotypic IBD matrix, causing computational problems, especially in genome scans exam-
ining multiple positions. Transformation from genotypic to allelic effects, after estimating the
genotypic effects with a smaller IBD matrix, can solve this problem. Although the validity of
transformation from genotypic to allelic effects has been disputed, this work proves that trans-
formation can successfully yield unique allelic effects when genotypic and allelic IBD matrixes
exist.

QTL / transformation /marker assist selection / genotypic effect / allelic effect

1. INTRODUCTION

The variance component method with random QTL effects is preferred for
estimation of QTL genotypic or allelic effects [6, 19], since this method does
not require specification of the number of alleles, and the relationship matrixes
allow separate estimations of the polygenic and QTL effects. After the first
report of QTL analysis in commercial pig populations [2, 14] using the least
squares method [7, 11], Nagamine et al. [15] used variance component anal-
ysis to estimate the heritabilities and genotypic effects of QTL in commercial
breeds. These authors also showed the transformation from genotypic to allelic
effects [13] and applied this transformation to large pig data sets [15]. Since
the allelic or gametic IBD, identity-by-descent, matrix is four times as large
as the genotypic IBD matrix, inversion of the allelic matrix demands com-
putational resources, especially when multiple positions are examined. Thus,
the estimation of genotypic effects with the smaller IBD matrix followed by
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transformation from genotypic to allelic effects has the benefit of decreasing
computational cost. However, Tuchscherer et al. [17] wrote that this transfor-
mation was impossible and did not provide unique results. This paper offers
derivation details proving that this transformation is possible, and shows that
the transformation gives unique solutions.

2. MODELS AND DERIVATION

The genotypic and allelic effect models are equivalent when it comes to
QTL detection in a simple additive model [10,18]. An animal model including
polygenic, QTL, genotypic and allelic effects is presented below [6, 10].
For the QTL genotypic effect model:

y = Xf + Zu + Zw + e.

For the QTL allelic effect model:

y = Xf + Zu + ZTv + e.

In these cases, X is a design matrix for fixed effects, Z is an incident matrix
relating records in y to the animals, and vectors f , u, w and e are values for
fixed, polygene, QTL genotypic and residual effects, respectively. The sizes
of u and w are calculated as n× 1 for n individuals. Vector v is the QTL allelic
or gametic effect having a size of 2n × 1, and T is an incident matrix relating
each animal to its two allelic effects [18]. If all animals have records, using the
Kronecker product *, T is:

I * [1 1] =



1 1 0 0 0 0 . . .

0 0 1 1 0 0 . . .

0 0 0 0 1 1 . . .

. . . . . . . . . . . .



.

The fixed and random values are estimated using mixed model equations.
G represents the allelic IBD matrix, while A is the relationship matrix for
the polygenic effect [9]. The genotypic IBD matrix, Q, is (1/2) TGT’ [18].
The j and k values are the ratios of error variance/polygenic variance and error
variance/QTL genotypic variance, respectively.

The QTL genotypic effect model can be written as:


X’X X’Z X’Z

Z’X Z’Z + A−1j Z’X

Z’X Z’Z Z’Z +Q−1k





f

u

w


=



X’y

Z’y

Z’y


.
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Using the third row of the left hand matrix, we see that:

Z’Xf + Z’Z u + [Z’Z +Q−1k]w = Z’y. (1)

The QTL allelic effect model can be written as:



X’X X’Z X’ZT
Z’X Z’Z + A−1j Z’ZT
T’Z’X T’Z’Z T’Z’ZT +G−1(2k)





f
u
v

 =



X’y
Z’y

T’Z’y

 .

If there is no interaction between alleles, i.e. v11 + v12 = w1 for Animal 1,
the QTL allelic variance is half of the QTL genotypic variance. Therefore, the
variance ratio for the allelic IBD matrix is taken to be 2k. Here, Q−1 and G−1

are the inverses, not the generalized inverses, of Q and G, respectively [16].
Using the third row of the left hand matrix, we see that:

T’Z’X f + T’Z’Z u + [T’Z’ZT +G−1(2k)]v = T’Z’y. (2)

Then, multiply Eq. (1) by T’:

T’Z’X f + T’Z’Z u + T’[Z’Z +Q−1k]w = T’Z’y.

This is equivalent to Eq. (2), therefore:

[T’Z’ZT +G−1(2k)]v = T’[Z’Z +Q−1k]w.

Here, T’Z’ZT v = T’Z’Z w, because in the absence of allelic interactions,
Tv = w. Therefore:

G−1(2k)v = [T’Q−1k]w, and

v = GT’Q−1(1/2)w.

The size of G is 2n × 2n; however Q (=(1/2) TGT’) is an n × n matrix. The
values of v can be calculated without the inverse of the G matrix. Essentially, it
is not necessary to calculate Q−1 for this conversion, because the parameter is
already specified to estimate w. When allelic effects are simple additive effects
and Q−1 and G−1 exist, this transformation can give unique estimators of allelic
effects, because genotypic and allelic effects are known to be unique solutions
from mixed models [3,9,12], and the transformation does not affect the allelic
values.
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3. NUMERICAL EXAMPLE

This example utilizes the allelic relationships among four animals previ-
ously described by Fernando and Grossman [3]. Animals 1 and 2 are the par-
ents of Animal 3. In order to create a highly inbred offspring, Animal 3 was
mated with Animal 1 to produce Animal 4. The allelic relationship matrix
is G and the genotypic relationship matrix is Q, which was easily transformed
from G.

G =



1 0 0 0 0.9 0 0.5 0.81
0 1 0 0 0.1 0 0.5 0.09
0 0 1 0 0 0.1 0 0.01
0 0 0 1 0 0.9 0 0.09

0.9 0.1 0 0 1 0 0.5 0.9
0 0 0.1 0.9 0 1 0 0.1

0.5 0.5 0 0 0.5 0 1 0.45
0.81 0.09 0.01 0.09 0.9 0.1 0.45 1



(1/2) TGT’ = Q =



1 0 0.5 0.95
0 1 0.5 0.05

0.5 0.5 1 0.75
0.95 0.05 0.75 1.45


.

The QTL allelic effects were assumed to be completely additive. For simplicity,
the example only utilizes the QTL effect, and ratio k is set to one. Vector y is
for animal observations, but in this case Animals 1 and 2 have no records.
Matrix Z is a design matrix, with all elements set to zero except for the two
diagonal elements, (3, 3) and (4, 4), which have values of one. This yields:

y’ =
(
0 0 100 120

)
.

If the model for QTL genotypic effects is

(Z’Z +Q−1k)(w) = Z’y,

then the estimated genotypic effects are w’ = (54.006, 19.770, 64.265, 81.959).

Similarly if the model for QTL allelic effects is

(T’Z’ZT +G−12k)(v) = T’Z’y,

then the estimated allelic effects are v’ = (40.997, 13.009/1.977, 17.793/
44.496, 19.769/36.513, 45.447). Thus, we can confirm that the sum of the al-
lelic effects is equal to the genotypic effect, e.g. 54.006 = 40.997 + 13.009 for
Animal 1.
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For the transformation from genotypic to allelic effects,

Q−1 =



2.6666 0.1666 −0.1666 −1.6666
0.1666 1.5952 −1.2381 0.4762
−0.1666 −1.2381 2.5952 −1.1904
−1.6666 0.4762 −1.1904 2.3809


.

The transformation gives v as the following:

v = GT’Q−1(1/2)w = GT’Q−1(1/2)



54.006
19.770
64.265
81.959


=



40.997
13.009
1.977

17.793
44.496
19.769
36.513
45.447



.

We can confirm that the transformation form, v = GT’Q−1(1/2)w, gives the
same v as the estimators from the allelic model.

4. CONCLUSION

Genotypic QTL effects can be estimated with computer software pack-
ages such as SOLAR [1], and the two-step method [4] using LOKI [8] and
ASReml [5]. In practice, after estimating genotypic effects by the two-step
method, Nagamine et al. [15] applied the transformation from the genotypic
effect to the allelic effect. However, only the final derivation of transforma-
tion from QTL genotypic effects to allelic effect was written in the previous
papers [13, 15]. Here, I have detailed the derivation with a numerical exam-
ple, showing that the transformation is possible and that it successfully gives
a unique estimator of allelic effects in the additive effect model when Q−1

and G−1 exist.

REFERENCES

[1] Almasy L., Blangero J., Multipoint quantitative-traits linkage analysis in general
pedigrees, Am. J. Hum. Genet. 62 (1998) 1198–1211.

[2] Evans G.J., Giuffra E., Sanchez A., Kerje S., Davalos G., Vidal O., Illan S.,
Noguera J.L., Varona L., Velander I., Southwood O.I., de Koning D.J., Haley
C.S., Plastow G.S., Anderson L., Identification of quantitative trait loci for pro-
duction traits in commercial pig populations, Genetics 164 (2003) 621–627.



584 Y. Nagamine

[3] Fernando R.L., Grossman M., Marker assisted selection using best linear unbi-
ased prediction, Genet. Sel. Evol. 21 (1989) 467–477.

[4] George A.W., Visscher P.M., Haley C.S., Mapping quantitative trait loci in com-
plex pedigrees, Genetics 156 (2000) 2081–2092.

[5] Gilmour A.R., Cullis B.R., Welham S.J., Thompson R., ASREML Program user
manual, Orange Agricultural Institute, NSW, 1999.

[6] Grignola F.E., Hoeschele I., Tier B., Mapping quantitative trait loci in outcross
populations via residual maximum likelihood. I. Methodology, Genet. Sel. Evol.
28 (1996) 479–490.

[7] Haley C.S., Knott S.A., Elsen J.M., Mapping quantitative trait loci in crosses
between outbred lines using least squares, Genetics 136 (1994) 1195–1207.

[8] Heath S.C., Markov chain Monte Carlo segregation and linkage analysis for oli-
gogenic models, Am. J. Hum. Genet. 61 (1997) 748–760.

[9] Henderson C.R., Application of linear models in animal breeding, University of
Guelph, Ontario, 1984.

[10] Hoeschele I., Mapping quantitative trait loci in outbred pedigrees, in: Balding
D.J., Bishop M., Cannings C. (Eds.), Handbook of statistical genetics, John
Wiley & Sons, Chichester, 2001, pp. 599–644.

[11] Knott S.A., Elsen J.M., Haley C.S., Methods for multiple-marker mapping of
quantitative trait loci in half-sib populations, Theor. Appl. Genet. 93 (1996)
71–80.

[12] Mrode R.A., Linear Models for the prediction of animal breeding values, CAB
International, Oxon, 2000.

[13] Nagamine Y., Knott S.A., Visscher P.M., Haley C.S., Simple deterministic
identity-by-descent coefficients and estimation of QTL allelic effects in full and
half sibs, Genet. Res. 80 (2002) 237–243.

[14] Nagamine Y., Haley C.S., Sewalem A., Visscher P.M., Quantitative trait loci
variation for growth and obesity between and within lines of pigs (Sus scrofa),
Genetics 164 (2003) 629–635.

[15] Nagamine Y., Visscher P.M., Haley C.S., QTL detection and allelic effects for
growth and fat traits in outbred pig populations, Genet. Sel. Evol. 36 (2004)
83–96.

[16] Searle S.R., Matrix algebra useful for statistics, John Wiley & Sons, New York,
1982.

[17] Tuchscherer A., Mayer M., Reinsch N., Identification of gametes and treatment
of linear dependencies in the gametic QTL-relationship matrix and its inverse,
Genet. Sel. Evol. 36 (2004) 621–642.

[18] van Arendonk J.A.M., Tier B., Kinghorn B.P., Use of multiple genetic markers
in prediction of breeding values, Genetics 137 (1994) 319–329.

[19] Xu S., Atchley W.R., A random model approach to interval mapping of quanti-
tative trait loci, Genetics 141 (1995) 1189–1197.


	1. INTRODUCTION
	2. MODELS AND DERIVATION
	3. NUMERICAL EXAMPLE
	4. CONCLUSION
	REFERENCES

