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Abstract – The aim of this study was to compare the variance component approach for QTL
linkage mapping in half-sib designs to the simple regression method. Empirical power was de-
termined by Monte Carlo simulation in granddaughter designs. The factors studied (base values
in parentheses) included the number of sires (5) and sons per sire (80), ratio of QTL variance
to total genetic variance (λ = 0.1), marker spacing (10 cM), and QTL allele frequency (0.5).
A single bi-allelic QTL and six equally spaced markers with six alleles each were simulated.
Empirical power using the regression method was 0.80, 0.92 and 0.98 for 5, 10, and 20 sires,
respectively, versus 0.88, 0.98 and 0.99 using the variance component method. Power was 0.74,
0.80, 0.93, and 0.95 using regression versus 0.77, 0.88, 0.94, and 0.97 using the variance com-
ponent method for QTL variance ratios (λ) of 0.05, 0.1, 0.2, and 0.3, respectively. Power was
0.79, 0.85, 0.80 and 0.87 using regression versus 0.80, 0.86, 0.88, and 0.85 using the variance
component method for QTL allele frequencies of 0.1, 0.3, 0.5, and 0.8, respectively. The log10

of type I error profiles were quite flat at close marker spacing (1 cM), confirming the inability to
fine-map QTL by linkage analysis in half-sib designs. The variance component method showed
slightly more potential than the regression method in QTL mapping.

quantitative trait loci / QTL detection / half-sib design / power

1. INTRODUCTION

During the last ten years, many molecular genetic markers have been devel-
oped and improved, leading to the possibility of obtaining genotypes for many
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markers within a very small physical distance on the genome. The inheritance
of chromosomal regions within a data set can be traced by molecular mark-
ers and used to detect and localize QTL in linkage analysis. Linkage analysis
uses the recombination information within the marker genotype data in current
generations.

QTL detection and mapping methods are based on the assumption that QTL
is either a fixed or a random effect. A simple regression method for flanking
markers in inbred line crosses was developed for interval mapping and multiple
QTL in outbred half-sib designs [7,10,16]. The regression method is based on a
general linear model that treats the QTL as a fixed effect [4,14,15,18]. The vari-
ance component approach is based on a mixed inheritance linear model and the
QTL is treated as a random effect. This method is based on an identity by de-
scent (IBD) probability matrix between all individuals at the putative QTL po-
sition. Mixed inheritance models use phenotypic records and genotypes of
marker information in current generations. Fernando and Grossman [5] pre-
sented a methodology for the application of BLUP to marker-assisted selec-
tion (MAS) in which QTL alleles were considered random in the context of
the mixed model terminology. They presented recursive algorithms to calcu-
late IBD probabilities for a QTL as a gametic relationship matrix. Further stud-
ies developed this algorithm to efficiently compute the conditional covariance
matrix and its inverse in less restrictive conditions [1, 12, 22, 25]. Alternative
methods for computing IBD probability are a correlation based algorithm and
a segregation algorithm [2, 3, 6, 20]. Both methods are based on the IBD prob-
ability matrix between all individuals at the putative QTL position obtained
using the markers to trace the inheritance of the QTL. These approaches are
possible for pedigrees with incomplete marker information, unknown linkage
phase and multiple linked markers. The variance component approach using
restricted maximum likelihood (REML) is an approach derived to estimate
the position of the QTL. The likelihood is maximized over the parameters at
each position and the position with the largest maximized likelihood is se-
lected [6, 9, 21].

The aim of this study was to investigate the variance component approach
to QTL linkage mapping in half-sib designs and to compare it with the sim-
ple regression method. Simulated data sets were generated and analyzed to
determine the empirical power at four different levels of QTL variance ratios
relative to total genetic variance, four different marker spacings, and a vari-
ety of granddaughter designs differing in number of sire families and sons per
family. The variance component approach was considered for situations with
and without marker information of the dam.
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2. METHODS

2.1. The simple regression model

The simple regression method is based on the multiple linked marker ap-
proach described by Knott et al. [16]. This is the analysis of individual linkage
groups across several half-sib families. The probability of inheritance of the
first haplotype of the parent of a linkage group at every 1 cM interval con-
ditional to its marker genotype is computed for each offspring. The QTL are
fitted at each fixed interval along the linkage group by regression of a pheno-
typic trait on the conditional probability. The analysis is based on the nested
design within families and the residuals are pooled across families to calcu-
late a test statistic. The multiple linear regression model with multiple linked
markers for every linkage group is as follows:

yi j = xi jβi + αi + ei j, (1)

where yi j is the trait value of individual j from half-sib family i, xi j is the
conditional probability of individual j inheriting the first haplotype of sire i,
βi is the regression coefficient within family i, αi is the polygenic effect of
sire i and ei j is the residual effect. Sires could be heterozygous for at least
one marker locus. If all markers in a linkage group were uninformative for an
individual, the conditional probability would be equal to 0.5. If the first allele
of the sire was transmitted to his son, the conditional probability would be
equal to one and otherwise is equal to zero. The test statistic was an F-test
and F-ratios were computed at every map position. F-ratios were converted to
log10 of probabilities of type I errors in order to compare the regression method
to the variance component method. The critical values for test statistics were
computed from the F-test with the degrees of freedom of the numerator based
on the number of sire families and the degrees of freedom of the denominator
based on the total number of sons in the simulated data [16].

2.2. The mixed inheritance model (VC)

The mixed inheritance model for variance component estimation (VC) is
presented in matrix notation as follows:

y = Xb + Zg + e, (2)

where y is an (n × 1) vector of phenotypes of the quantitative trait, X is an
(n × t) matrix of fixed effects, b is a (t × 1) vector of fixed effects, Z is an
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(n × p) incidence matrix relating phenotypes to random animal effects, g is a
(p×1) vector of additive polygenic, cumulative effects of infinitesimal loci (a),
and additive QTL effects (q) and e is an (n × 1) residual vector. The random
effects g and e are assumed to be distributed as multivariate normal variables
(probability density function) as follows: g ≈ N (0, Hσ2

g) and e ≈ N (0, Rσ2
e).

Where σ2
g and σ2

e are the variances of additive genetic and residual effects, re-
spectively. H is the (co) variance matrix related to total additive genetic value
of polygenic and QTL effects which can be expressed as H = (A∗(1 − λ)) +
(G∗λ). A is a standard numerator relationship matrix for the polygenic effects.
The (co) variance matrix, G, is a (p × p) matrix for the additive effects of the
QTL conditional on marker information. The elements of G represent the pro-
portion of alleles IBD between all pairs of individuals in the pedigree. Lambda
(λ) is the proportion of total additive genetic variance due to additive QTL
variance (λ = σ2

q/σ
2
g). The inverse of H was calculated directly. R is a known

(n × n) diagonal matrix, which is equal to Iσ2
e .

The mixed linear model assuming no QTL segregating in the population is
as follows:

y = Xb + Za + e, (3)

with a ≈ N (0, Aσ2
a) and e ≈ N (0, Rσ2

e).
In this study, Loki software was used to compute the G matrix [11]. Thomp-

son and Heath gave a detailed description of the Markov chain Monte Carlo
(MCMC) method and segregation algorithm used in Loki [20].

2.3. Likelihood ratio test

The likelihood ratio test was used to estimate the position of the QTL using
VC model. For every 1 cM on the chromosome segment, the (co) variance
matrix, H, is estimated to obtain the position based on the VC model. The
following likelihood function was used for the VC model [8]:

l = −0.5(log |C| + log |R| + log |H| + (n − t) logσ2
e + y

′Py/σ2
e) (4)

where, l is the log of likelihood function for VC model, C is the coefficient
matrix of mixed model equations, R is the error (co) variance matrix given by
Iσ2

e , H = (A∗(1 − λ)) + (G∗λ) as described above, n is the number of animals
that have a record, t is the number of fixed effects or rank of the X matrix, and

P = R−1 − R−1WC−1W′R−1, (5)

and W=[X: Z].
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The likelihood was estimated at each putative QTL position and a likelihood
function (Eq. (4)) was built along the chromosome region. The likelihood value
was estimated for different values of lambda λ = 0, 0.1, 0.2, 0.3, 0.4 or 0.5.
When λ is zero there was no QTL segregating in this chromosome region and
there were only random polygenic effects in the model. The likelihood function
from this reduced model was used in a likelihood ratio test. The null hypothesis
in this study was that the QTL variance equals zero and there was no QTL
segregation in this chromosome region. The following likelihood ratio test uses
the test of the null hypothesis,

LR = −2(lr − l f ), (6)

where lr is the log likelihood value for the reduced model and l f is the log
likelihood value for the full model with λ > 0. The critical values for test
statistic were computed from a chi-square test with one degree of freedom.
LR values were converted to log10 of the probabilities of a type I error in order
to be compared to the regression method.

3. DATA SIMULATIONS

Half-sib data, commonly found in outbred populations (i.e., dairy cattle),
were simulated. The polygenic and residual variance components were as-
sumed known. The genotype for all sires and sons for six marker loci and a
QTL was simulated for a small segment of the genome. A single bi-allelic QTL
and six equally spaced markers each with six alleles were simulated along with
a recombination fraction (θ). The allele frequency in the QTL was equal to 0.5
and the frequencies of the six alleles of each marker were equal. The base
haplotypes, which included the pair of haplotypes for each sire and dam, were
generated assuming complete linkage and Hardy Weinberg Equilibrium. The
paternal and maternal haplotype for each son were generated based on each
parent using the Haldane mapping function (no interference). Sires and dams
were assumed to be unrelated. Dam genotypes were simulated to consider the
performance of the VC approach for the situation with dam genotypes known.

The heritability of the quantitative trait was set to 0.3 and the total pheno-
typic standard deviation was assumed to be 100. The total genetic variance was
3000 and in different scenarios the proportions of QTL variance relative to to-
tal genetic variance were 0.05, 0.1, 0.2 and 0.3. The daughter yield deviations
(DYD) created for each son were based on a progeny test with 100 daughters.
DYD is an average of the phenotypes of the daughters adjusted for systematic
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Table I. Parameter combinations for simulated datasets.

Parameter Scenario one Scenario two Scenario three Scenario four Scenario five

Data set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sires 5 10 20 5 5 5 5 5 5 5 5 5 5 5 5

Sons/sire 80 80 80 50 100 200 80 80 80 80 80 80 80 80 80

Genotyped1 405 810 1620 255 505 1005 405 405 405 405 405 405 405 405 405

λ2 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1

Interval3 10 10 10 10 10 10 10 10 10 1 5 20 10 10 10

Allele Freq.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.8

1 Number of animals genotyped.
2 QTL variance ratios.
3 Interval sizes between markers (cM).
4 Allele frequency of Q1.

environmental effects and genetic values of the daughters and the dams [24].
The DYD were generated for each son as:

DYD = 0.5BVsire + δ,

δ =
∑

(0.5BVdam +MendelianSampling + E)/n,

V(δ) = n(3/4σ2
A + (1 − h2)σ2

P)/n2, (7)

where n is the number of daughters per sire (i.e. 100), BVsire is the breeding
value of the sire, BVdam is the breeding value of dam, σ2

A is the total additive
genetic variance, σ2

P is the total phenotypic variance, E is the residual effect
and δ ∼ N (0, V(δ)).

Five different scenarios were used; varying the number of sires (5, 10, 20),
varying the sons per sire (50, 80, 100, 200), varying QTL variance ratios (λ)
(0.05, 0.1, 0.2, 0.3), varying marker interval cM (1, 5, 10, 20), and varying the
QTL allele frequencies (0.1, 0.3, 0.5, 0.8). Table I shows the structure of the
five scenarios. The number of animals needing to be genotyped was allowed
to increase as needed, and therefore, the costs of the designs would increase.

The critical values of the test statistic corresponding to 5% type I error were
determined empirically by simulating 500 replicates based on the null hypoth-
esis of no QTL segregating at the segment of the chromosome. To achieve
the same variance structure, a QTL was simulated with the appropriate λ for
a given scenario, but it segregated independently of the markers. Critical val-
ues for the maximal LR statistic in any bracket were determined from the 25th
largest value in the 500 replicates. Another 500 replicates were simulated under
the alternative hypothesis, with the QTL situated in the center of the markers,
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and the empirical power was computed as the proportion of replicates in which
the test statistic exceeded the critical value.

4. RESULTS

QTL detection was performed using the VC model and the regression model
for all data sets. The factors studied (base values in parentheses) included num-
ber of sires (5) and sons per sire (80), ratio of QTL variance to total genetic
variance (λ = 0.1), marker spacing (10 cM), and QTL allele frequency (0.5).
The results concerning the power of QTL detection in all scenarios examined
are summarized in Table II.

4.1. Sire family size

By increasing the number of sire families (first scenario), the empirical
power of the two models increased substantially. The VC model was slightly
more powerful than the regression model, especially in the design with five
families. The difference in power between the two models for a moderately
sized design with 10 families was 6%, whereas for five sires the difference
was 7.6%. The total number of animals genotyped in scenario one with five
families was 405 animals. This family data set is economically justifiable for a
QTL detection design. The power of the test with 20 sires using the VC model
was not very different from 10 sires. The power of VC method using 10 sire
families was 0.98 for detecting QTL, whereas, the optimal number of families
to achieve this power using the regression method was 20 sires. The difference
between the two models using 20 sires was not significant. The test statis-
tic at the QTL position using the Reg model was exceeds the critical value
for only 20 sires (P < 0.05). The test statistic at the QTL position using the
VC model was exceeds the critical value with 10 (P < 0.05) and 20 (P < 0.01)
sires. Figures 1 and 2 show the average of minuses log10 P-values for Reg and
VC models, respectively. The curves of the VC model (Fig. 2) compared to the
curves of the Reg model were very similar (Fig. 1).

4.2. Sons per sire

By increasing the number of sons per sire, the empirical power of the two
models was increased. The VC approach was slightly more powerful than the
regression method. Both models showed more than a 0.96 level of power for
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Table II. The empirical power using the simple regression method and the variance
component approach.

Data # #Sons/ Allele Power

Scenarios λ

sets sires sire freq. Regression method Variance component

1 5 80 0.1 0.5 0.80 0.88

One 2 10 80 0.1 0.5 0.92 0.98

3 20 80 0.1 0.5 0.98 0.99

4 5 50 0.1 0.5 0.76 0.81

Two 5 5 100 0.1 0.5 0.87 0.89

6 5 200 0.1 0.5 0.96 0.98

7 5 80 0.05 0.5 0.74 0.77

Three 8 5 80 0.2 0.5 0.93 0.94

9 5 80 0.3 0.5 0.95 0.97

10 5 80 0.1 0.5 0.89 0.93

Four 11 5 80 0.1 0.5 0.85 0.90

12 5 80 0.1 0.5 0.76 0.89

13 5 80 0.1 0.1 0.79 0.80

Five 14 5 80 0.1 0.3 0.85 0.86

15 5 80 0.1 0.8 0.87 0.85

Figure 1. Average of –log P-values using the regression method for scenario one.



Power of QTL detection in half-sib designs 609

Figure 2. Average of –log P-values using the variance component approach for sce-
nario one.

QTL detection only with 200 sons per sire. The total number of animals geno-
typed in this situation was 1000. The results confirmed that increasing the fam-
ily size was more effective than increasing the number of families, given the
constant number of animals genotyping, for increasing the power of the test
for QTL detection. Increasing the number of families was more economically
justifiable than increasing the number of sons per sire. The difference in power
between the two models using a small number of sons per sire was significant.
The test statistic at the QTL position using the VC model was exceeds the crit-
ical value at 100 (P < 0.05) and 200 (P < 0.01) sons per sire. The test statistic
at the QTL position using the regression model was exceeds the critical values
only in a situation with 200 sons per sire.

4.3. Proportion of QTL variance

By increasing the QTL variance ratio, the empirical power increased in the
two models. The VC approach was slightly more powerful than the regression
method. The maximum power of the VC model was 0.97 at λ = 0.3. In this
situation, the power of the regression model was 0.95. To increase the power of
the test for QTL detection specifically when the QTL ratio is low required the
number of sires in the data set to increase. When λ = 0.1 the difference between
the two models was maximized. The minimum difference was at λ = 0.2. The
test statistic at the QTL position using the regression model were exceeds the
critical value with λ = 0.2 (P < 0.01) and λ = 0.3 (P < 0.01). The test statistics
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at the QTL position using the VC model were exceeds the critical value with
λ = 0.2 (P < 0.05) and λ = 0.3 (P < 0.01).

4.4. Interval between markers

The empirical power of the test of the position of the QTL decreased with in-
creased intervals between markers. The test statistic at the QTL position using
the regression model was not exceeds the critical value for 1, 5, 10, and 20 cM.
The test statistic at the QTL position using the VC model was not exceeds the
critical value for 1, 5, 10, and 20 cM.

4.5. QTL allele frequency

The empirical power of the test decreased as the QTL allele (Q1) frequency
departed from 0.5 using the VC method. The maximum empirical power using
the regression method was with the QTL allele (Q1) frequency of 0.8. For the
different allele frequencies there was very little difference between the regres-
sion and VC methods.

4.6. Dam genotypes

Figure 3 shows the log10 of the probabilities of type I error values using
the variance component method with and without dam genotypes. Both sce-
narios reached maximum values at the QTL position. The graph with the dam
genotypes known was sharper than the graph without dam genotypes. The two
curves were very similar and the difference was not statistically significant.

5. DISCUSSION

Several statistical approaches have been developed for the detection and lo-
calization of QTL in outbred populations [6,9,13,16,17]. The regression model
method includes the uncertain QTL genotypes as a covariate in the model [16],
and the VC method.

Several studies have estimated the theoretical power for both methods using
deterministic approaches [23, 26, 27]. The empirical powers of this study for
both models were compared to a deterministic approach. Powers of all scenar-
ios using the deterministic approach were overestimated compared to empiri-
cal power using simulation data. For scenarios with small population size, like
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Figure 3. Average of –log P-values using the variance component approach with or
without dam genotypes.

5 sires and 50 sons per sire, the differences between deterministic and empir-
ical powers were significant (P < 0.05). With 5 sires and 200 sons per sire,
the differences between deterministic and empirical power were small and not
significant.

The VC method was slightly more accurate than the regression method in
QTL mapping. The empirical power of the test of the position of the QTL de-
creased with an increased interval between markers. However, the simulations
with small intervals assumed prior knowledge that a QTL exists in that small
region. The log10 P profiles were quite flat for both methods at close marker
spacing (1 cM), confirming the inability of both methods to fine map QTL by
linkage analysis in half-sib designs of the magnitude considered here.

The VC method showed slightly more potential than the regression method
in QTL mapping and was certainly feasible for real data sets, even with ex-
tensive permutation testing to determine significance levels. The power of the
regression method was slightly less than the VC approach in all scenarios.

The most likely position for a QTL was predicted in these studies to be in
the same position regardless of the method and test statistic. The VC approach
would yield proportionally better results than the regression model when the
markers are less informative or very widely spaced, or when family size is
small. The other advantage of the VC approach is that it is useful for complex
pedigrees with unknown linkage phase and missing information.
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The dam genotypes were considered using the variance component ap-
proach. The dam genotype models showed larger log10 P-values at the
QTL position than the model without dam genotypes. Without dam genotypes,
Loki assumed marker data were missing on dams and used the MCMC method
to calculate the expectation of the genotypes for dams. The difference between
the two methods was not statistically significant. Therefore, the model without
dam genotypes was more economically justifiable than the model with dam
genotypes.

The test statistics using the VC approach were only slightly larger than with
the regression method. The shape of the log10 P-values for the test statistics
across the entire chromosome was the same using the two methods. When
the number of families, family sizes and QTL variance ratios to total genetic
variance increased, the power of both methods increased and the statistical
differences were not significant. The VC approach could better handle a small
number of families, small family sizes, small QTL variance, missing marker
data and unknown linkage phases. For detection of QTL or genome scans,
the regression method and the VC approach are appropriate methods in half-
sib designs. The power of QTL detection using these methods depends on the
QTL effects and the recombination fractions between markers and QTL.

The linkage analysis methods were not successful for precise estimation
of QTL positions. For fine mapping QTL both models were not successful.
For tightly linked markers the VC approach was stronger than the regression
method. The VC approach in a situation with 5 cM intervals was better than
the regression method. The log10 P profile using either model were quite flat
at close marker spacings, such as 1 cM intervals.
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