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Abstract – A method based on Taylor series expansion for estimation of location parameters
and variance components of non-linear mixed effects models was considered. An attractive
property of the method is the opportunity for an easily implemented algorithm. Estimation of
non-linear mixed effects models can be done by common methods for linear mixed effects mod-
els, and thus existing programs can be used after small modifications. The applicability of this
algorithm in animal breeding was studied with simulation using a Gompertz function growth
model in pigs. Two growth data sets were analyzed: a full set containing observations from the
entire growing period, and a truncated time trajectory set containing animals slaughtered pre-
maturely, which is common in pig breeding. The results from the 50 simulation replicates with
full data set indicate that the linearization approach was capable of estimating the original pa-
rameters satisfactorily. However, estimation of the parameters related to adult weight becomes
unstable in the case of a truncated data set.

Gompertz function / non-linear mixed effects / variance components / breeding values /
likelihood approximation

1. INTRODUCTION

Non-linear functions are particularly suited to model growth data, because
predictions outside the data range can be made more reliably than by linear
models, and the entire growth process can be described by few parameters. For
example, growth data models commonly apply the Gompertz function, where
the estimated parameters can have biological meaning. Non-linear models are,
however, more complicated to solve than linear models, and several algorithms
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have been proposed to estimate the parameters and variance components of
non-linear mixed effects models [4].

In animal production research, the Bayesian framework has received much
attention in growth curve analysis [2, 11]. This popularity is due to the use
of Markov chain Monte Carlo methods that allow the solution of numerically
complicated posterior density integration and calculation of confidence inter-
val estimates. The cost of this procedure is, however, intensive calculations
and the need to assure a sampling equilibrium [3]. Another possibility is to ap-
proximate the likelihood function using linearization [4, 10, 17, 18] or numeri-
cal integration [10]. Also, both of these alternatives are computationally diffi-
cult, yet, linearization may enable the inference of linear mixed effects models.
All linearization methods in the literature are quite similar. Early methods use
first-order Taylor series expansion of non-linear functions around expectation
of the random effects, and are solved by either maximum likelihood (ML) or
generalized least squares (GLS) estimation [4]. Lindstrom and Bates [9] sug-
gested a more accurate method of making the expansion around current es-
timates of the random effects. Subsequent research has focused more on the
second-order Taylor series expansion of integrals invoked by the Laplacian
approximation [10, 17, 18].

Because of generality and familiar formulation, the most interesting choice
of approximation is based on the second-order Taylor series expansion with
respect to random effects that were presented by Wolfinger and Lin [18].
They gave two alternative approaches to select points of expansion: a zero-
expansion method using expected values, and an EBLUP-expansion method
using the empirical best linear unbiased predictors of the random effects. Both
approximations lead to algorithms that iteratively fit mixed linear models to
the suitably transformed data using either ML or restricted maximum likeli-
hood (REML). Therefore, they allow the use of commonly applied methods
for linear mixed effects models, and the use of existing programs after small
modifications. A similar algorithm was proposed by Breslow and Clayton [3]
in the context of generalized linear mixed models. Because conditions to func-
tionality of the approximation methods are difficult to identify, Wolfinger and
Lin [18] recommended simulation studies for assessing the performance of the
methods in diverse kinds of non-linear models and data sets.

The aim of this work was to describe and examine the performance of the
EBLUP-expansion method for the Gompertz function applied to the analysis of
growth in the pig through simulation. The EBLUP-expansion is recommended
especially for cases where the variance components are large, which may be
the case for an adult weight parameter for pigs. Also, Lindstrom and Bates [9]



Estimation of non-linear growth models 345

suggested that the expansion around the expected zero value may lead to poor
estimates when substantial inter-individual variation exists. We chose to exam-
ine the method through the analysis of two data sets. The first analysis tested
general performance of the EBLUP-expansion technique, and the second anal-
ysis tested performance of the method for incomplete data. Incomplete data
are common in pig production, where the adult weight is unavailable due to an
earlier slaughter age.

2. MATERIALS ANDMETHODS

2.1. Simulations

The Gompertz function has been shown to fit pig growth data, such as live
weight and protein retention, well [14–16]. We assumed that weights of an
individual i followed the Gompertz model:

yi j = α exp(−β exp(−κ ti j)) + ei j, j = 1, . . . , ni

where ni is the number of observations for individual i, yi j is the observed
weight at age ti j (in days), α, β and κ are the parameters of the Gompertz func-
tion, and ei j is the random residual. The parameters have biological meaning:
α is the adult weight, κ is the rate of exponential decay of the initial growth
rate, and β is the logarithm of the ratio of birth weight to adult weight.

Each of the parameters α, β and κ can be described by a linear mixed effects
model. In this study, we will consider a sire model, although notation could be
for an animal model. The full model for observation j of animal i is

yi j = (xαi jbα + zs,αisα + zp,αipα)

exp(−(xβi jbβ + zs,βisβ + zp,βipβ)

exp(−(xκi jbκ + zs,κisκ + zp,κipκ)ti j)) + ei j, (1)

where (bα, bβ, bκ)T = b is a d × 1-vector of fixed effects, (sα, sβ, sκ)T = s is a
l × 1-vector of random additive genetic sire effects and (pα, pβ, pκ)T = p is a
q × 1-vector of random animal effects other than sire. Vectors x, zs and zp are
from the design matrices of fixed, random sire and random animal effects X,
Zs and Zp, respectively. It is assumed that


s
p
e

 ∼ N



0
0
0

 ,

G 0 0
0 P 0
0 0 R
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Here, G = G0 ⊗ A, where A is a matrix of additive relationships between
sires and G0 is a 3× 3 genetic covariance matrix for the Gompertz parameters.
Similarly, P = P0 ⊗ Iq, where P0 is a 3 × 3 covariance matrix, i.e. the random
animal effects p were identically and independently distributed for the animals.
Furthermore, the residuals were assumed to be independently distributed and
homoscedastic, e ∼ N(0, Inσ2

e).
The Gompertz function coefficients were generated to simulate pig growth.

The model had one fixed effect with two levels, and the random effects were
the genetic sire effect and the animal effect other than the sire. The first fixed
effect level had values 210, 5 and 0.017 for the parameters α, β and κ, respec-
tively. The other fixed effect level had values 220, 4.7 and 0.016 for α, β and κ,
respectively. The random effects were assumed to be normally distributed with
mean zero and block diagonal covariance matrices. Variance and covariance
components in the matrices for the genetic sire effect and for the animal effect
are shown in Tables I and II. The residual variance σ2

e was one. These parame-
ters approximated the variances calculated by the NLMIXED procedure of the
SAS© program that fitted the Gompertz model to growth performance data of
Finnish pigs [12].

Simulation of the random sire effect required taking into account the pedi-
gree. The pedigree had three generations of animals with 10 unrelated founder
grandsires. Each of the 10 grandsires was mated with 20 unrelated dams that
produced one son each, i.e., 20 half-sibs. The half-sibs were mated with un-
related dams to produce 24 progeny per sire. Only the last generation of ani-
mals had records. Thus, the data included 4800 tested animals. Two data sets
were made: a complete set, and a truncated time trajectory set. The complete
data contained 30 equally-distanced observations per animal between 50 and
253 days. The truncated time trajectory data contained slaughter weights up to
115 kg, which is similar to the common slaughter weight in pigs, and occurs
at about 120 days of age. Consequently, the number of observations was re-
duced from 30 to about 11 per animal, i.e., almost two thirds of the data were
discarded.

2.2. Method to estimate the values of the growth parameters

The non-linear mixed model considered was

y = f (X, b,Zs, s,Zp, p) + e,

where y is an n × 1-vector of observations, f is the Gompertz function, and e
is an n × 1-vector of random residuals. Vectors b, s and p, with matrices X, Zs
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and Zp, were defined as before. For the random effects, denote uT = (sTpT ),
Z =
[
Zs Zp

]
and

D =
(
G0 ⊗ A 0
0 P0 ⊗ Iq

)
.

Now the distribution assumptions were(
u
e

)
∼ N

((
0
0

)
,

(
D 0
0 R

))
.

Although R is diagonal here, any form is allowed, so the general form R will
be used hereinafter. Unknown elements of covariance matrices G0, P0 and R
are denoted by parameter vector θ.

The maximized likelihood function was

L(b, θ|y) = (2π)−
n
2 |R|− 1

2 (2π)−
l+q
2 |D|− 1

2∫
exp

(
−1

2
(y − f (X, b,Z, u))TR−1(y − f (X, b,Z, u)) − 1

2
uTD−1u

)
du. (2)

Only in some cases is the closed form of (2) found, so the integral is often
solved numerically. However, numerical methods for the non-linear functions
are usually slow to converge and numerically unstable. Instead, the integral
may be approximated by quadratic Taylor-series expansion of the exponent.
The second-order expansion was made about the EBLUP before integration of
the likelihood function (see Appendix). This gave approximation to the loga-
rithm of the likelihood function (2):

l∗(b, θ|y) = −1
2
n ln (2π) − 1

2
ln(|R||I + Z∗TR−1Z∗D|)

− 1
2

(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ)) − 1
2
ũTD−1ũ, (3)

where Z∗ = ∂ f
/
∂uT |u=ũ and ũ is the empirical BLUP-estimate of random

effects. For the Gompertz function and two random effects in the model, Z∗ had
elements

∂ f
∂αi
= exp(−βi exp(−κit j)) cαi

∂ f
∂βi
= αi exp(−βi exp(−κit j)) (− exp(−κit j)) cβi (4)

∂ f
∂κi
= αi exp(−βi exp(−κit j)) (−βi exp(−κit j)) (−t j) cκi

where c is zs or zp depending on the random effect differentiated (see (1)).
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Pinheiro and Bates [10] used the approximation (3) in estimation of parame-
ters by the Laplacian approximation. However, no straightforward generaliza-
tion to the REML-estimation was presented. Wolfinger and Lin [18] developed
formula (3) further. Denote V = Z∗DZ∗T + R |u=ũ . Then,

l∗(b, θ|y) = −1
2
n ln(2π) − 1

2
ln |V|

− 1
2

(y − f (X, b,Z, ũ) + Z∗ũ)TV−1(y − f (X, b,Z, ũ) + Z∗ũ),

where V−1 = R−1 − R−1Z∗D(I + Z∗TR−1Z∗D)−1Z∗TR−1 and |V| = |R||I +
Z∗TR−1Z∗D| [5]. This led to a similar estimation function for variance compo-
nent estimation presented by Lindstrom and Bates [9], although through dif-
ferent derivation.

2.2.1. Estimation of the fixed and random effects

Assume that the variance component vector θ is known. Maximum likeli-
hood estimation for the parameters b and u leads to solving equations:

X∗TR−1(y − f (X, b̃,Z, ũ)) = 0
Z∗TR−1(y − f (X, b̃,Z, ũ)) = D−1ũ,

(5)

where X∗ = ∂ f
/
∂bT
∣∣∣b=b̃ and b̃ is the estimate of fixed effects b. Elements

of X∗ are similar to Z∗, except that coefficient c in (4) is replaced by x due
to the differentiated fixed effect. However, in order to arrive to these simple
equations, dependency of V on b through Z∗has to be ignored. On the basis of
arguments made by Bates and Watts [1], Wolfinger and Lin [18] justified this
by appealing to intrinsic non-linearity instead of non-linearity of the parame-
ters.

Denote Y = y− f (X, b̃,Z, ũ)+X∗b̃+Z∗ũ. Equations (5) can now be written as

[
X∗TR−1X∗ X∗TR−1Z∗
Z∗TR−1X∗ Z∗TR−1Z∗ +G−1

] (
b̃
ũ

)
=

[
X∗TR−1Y
Z∗TR−1Y

]
. (6)

This is similar to the mixed model equations (MME) for the linear models.
Thus, already established methods for solving linear models can be used to
analyse the pseudo-data Y created from the original data y with b̃ and ũ equal
to their most recent estimates.
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2.2.2. Estimation of the variance components

After finding estimates of the location parameters, profile likelihood can be
used to estimate the variance components by setting b = b̃(θ). The logarithmic
likelihood function of the parameter vector θ can be written with the pseudo-
data as

l∗ML(θ) = −1
2
n ln(2π) − 1

2
ln |V| − 1

2
(Y − X∗b̃)TV−1(Y − X∗b̃). (7)

Differentiating equation (7) with respect to θ gives

−1
2

tr

(
V-1 ∂V
∂θ j

)
+

1
2

(Y − X∗b̃)TV-1 ∂V
∂θ j

V-1(Y − X∗b̃). (8)

Maximum likelihood estimates of variance components are found by equating
(8) to zero and solving for θ.

Instead of the ML-estimates, REML-estimates are commonly used in prac-
tise. These estimates account for losses in degrees of freedom caused by the
estimation of fixed effects b [5]. The logarithmic likelihood function is now

l∗REML(θ) = −1
2
n ln(2π) − 1

2
ln |V| − 1

2
ln |X∗TV−1X∗|

− 1
2

(Y − X∗b̃)TV−1(Y − X∗b̃). (9)

Differentiation with respect to θ and equating to zero gives

−1
2

tr

(
P
∂V
∂θ j

)
+

1
2

(Y − X∗b̃)TV-1 ∂V
∂θ j

V-1(Y − X∗b̃) = 0, (10)

where P = V−1 − V−1X∗(X∗TV−1X∗)−1X∗TV−1. Solutions in θ are REML-
estimates of variance components.

2.2.3. EBLUP-algorithm

The approximate ML-solutions of location parameters and variance compo-
nents can be obtained by iteratively solving the equations (6) and (8) until con-
vergence. Correspondingly, the REML-solutions for the EBLUP-expansion are
obtained by iteratively solving the equations (6) and (10). Hence, the algorithm
fits the linear mixed effects model Y = X∗b + Z∗u + e for the pseudo-data Y
and the working vectors X∗ and Z∗, where u ∼ N(0,G(θ)) and e ∼ N(0,R(θ)).
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2.3. Implementation

We chose to implement the REML-based EBLUP-algorithm, because pro-
grams to solve the linear mixed effects models are available and commonly
used by animal breeders. MiX99 [13] was used to solve the mixed model equa-
tions (6), and DMU [6], modified for random regression by Kettunen et al. [7],
was used to solve the REML estimates of covariance components (10). The ca-
pability of fitting fixed and random regression models is crucial for implemen-
tation, because the coefficients in X∗ and Z∗ can have any values. Implemen-
tation of the linearization procedure required the Gompertz function formulas
to be included in MiX99. However, there was no need to make changes to the
variance component estimation program.

Starting values for both the location parameter effects and the variance com-
ponents had to be assigned before first iteration. A natural choice was to
initialize random effects with the expected value zero. However, initial val-
ues for fixed effects were derived with the model function of growth curve
and available data. When the Gompertz model is used, only the asymptotic
weight parameter has a natural initial value, which is the maximum value of
the dependent variable. In the other cases, complex equations were derived
in order to have a stable algorithm. Initial values for covariance matrices of
the genetic sire effect and animal effect were diagonal matrices having values
diag{100,10,1}. The initial value for the residual variance was 100.

Additionally, variance components were reparametrized for computational
reasons, because the variance component κ was close to zero. Convergence
was improved by scaling the time before every round of the EBLUP-algorithm.
Each time of measurement ti j was multiplied by a scaling factor c, which was
set equal to the most recent estimate of κ. Consequently, the variance compo-
nent estimate for the scaled parameter κ∗ was 1

c2 Var(κ), and thus larger than
the original parameter κ when c < 1.

Convergence of the EBLUP-algorithm was assumed when the relative round
to round change was less than 10−3. Furthermore, within every iteration of
the EBLUP-algorithm, the location parameters were iterated until the relative
difference between right-hand and left-hand sides of the MME was less than
1× 10−7. Covariance component estimates were calculated by the Expectation
Maximization (EM) -algorithm, and convergence was assumed when the round
to round change was less than 5 × 10−7.

The results are from 50 simulation replicates. Relative bias, relative standard
deviation (Rel. SD) and relative mean squared error (Rel. MSE), as percentage
from the true value, were calculated for the difference of two levels of fixed
effect and for the variance component parameter estimates. The relative bias
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was calculated as (mean-true)/|true|, where mean is the arithmetic average of
50 estimates and true is the original value used to generate the data.

3. RESULTS

3.1. Complete data

The average number of iterations of the EBLUP-algorithm was 7 in the full
data simulations. The residual error variance converged well and its estimate
was equal to the original value used in the simulations (relative bias and rela-
tive standard deviation were 0% and 0.5%, respectively).

The estimated (co)variance components of the genetic sire effects were in
fairly good agreement with the original parameter values used to simulate the
data (Tab. I). Both the relative bias and the relative SD were higher for the
covariance components (12.5% and 61.8% on average, respectively) than for
the variance components (1.7% and 15.6% on average, respectively).

The estimated (co)variance components of animal effects were more accu-
rately estimated than for the genetic sire effects (Tab. II). Estimated variance
components had negligible relative bias and an average relative SD of 2.1%,
but covariance components had an average relative bias of 1.4% and an average
relative SD of 8.6%.

Simulation results for the difference of the two levels of fixed effects in
the model are shown in Table III. The results of the parameters β and κ showed
fairly good agreement with the initial values, with relative bias (Rel. SD) being
3.0% (5.2%). However, estimates for the parameter α were slightly biased.
Relative bias was −10.0% and relative SD was 6.1%.

3.2. Truncated time trajectory data

The average number of iterations of the EBLUP-algorithm increased from
7 to 8 for the truncated time trajectory data. Residual error variance converged
in this case as well and its estimate was equal to the original input value for the
simulations (the relative bias and the relative standard deviation as percentages
were −0.2% and 0.6%, respectively).

Compared to the full data, analysis for the truncated time trajectory data
showed larger bias and SD for both the (co)variance components of genetic sire
effect (Tab. I) and animal effect (Tab. II). The genetic sire effect had average
relative bias (Rel. SD) of 9.6% (29.4%) for the estimated variance components
and 33.4% (118.7%) for the estimated covariance components. The estimation
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of covariance between α and κ parameters was especially unstable. Animal ef-
fects had an average relative bias (Rel. SD) of 7.3% (5.5%) for the estimates of
variance components. This increase was mostly due to increased uncertainty
with parameter α. For the same reason, average relative bias (Rel. SD) in-
creased to 18.2% (22.3%) for the estimates of covariance components.

Simulation results for the difference of the two fixed effect levels corre-
sponded to results with the full data (see Tab. III). The results of parameters
β and κ again showed fairly good agreement with the initial values, but the
results for the parameter α were 14% biased. For the truncated time trajectory
data, both bias and SD were on average 60% larger than for the full data.

4. DISCUSSION

The results from the simulation showed fairly good agreement with the orig-
inal values for the data, when observations from the whole growing period
were available. The largest discrepancies were seen in the estimates of covari-
ance components for the genetic effect. When the animals were slaughtered
prematurely, the adult weight was not reached and the latter part of the growth
function curve contained no data. This especially influenced the estimation of
(co)variance components related to adult weight. For the genetic effect, the un-
certainty of estimation was also seen in the (co)variance components related to
the exponential decay of the initial growth rate.

A direct comparison of our study to the literature cannot be made. Further-
more, the non-linear curves in the animal breeding literature generally rely
on Bayesian analysis for case-specific problems [2, 11], and therefore com-
parisons are difficult to make. However, Wolfinger and Lin [18] considered a
logistic model where variance component estimation results were similar to
our case with full data. With respect to the fixed effects, the results were more
biased for the Gompertz model than for the logistic model. For the truncated
time trajectory data, no earlier results to compare were found in the scientific
literature, where observations were available far over the inflection point [2,8].
This improves the quality of results compared to our truncated data, where the
slaughter time exceeded the inflection point only slightly.

The initial parameter values for simulation of pig growth in our study are
approximations from field data. Correct values may differ, but the close prox-
imity of slaughter time and the inflection point is a common situation in field
data. However, there may be pigs that have observations until adult weight.
This is due to selection of tested pigs as breeding animals. To test the effect
of partial truncation, the principles of full and truncated time trajectory data
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simulations were combined, i.e. approximately 5% of the tested progeny had
observations until day 253, whereas observations from the rest of the progeny
were truncated at 115 kg weight. Even a small proportion of fully observed
animals improved the results when compared to the estimates produced from
completely truncated data. For the genetic effect, improvements were espe-
cially shown as smaller relative bias and standard deviations for the covari-
ance components and the variance component of parameter κ. For the variance
and covariance components of genetic sire effect, the average relative biases
(Rel. SD) were 3.4% (20.2%) and 6.6% (74.0%), respectively. For the animal
effect, smaller biases were seen for the variance and covariance components
of parameter α. The average relative bias (Rel. SD) was 4.6% (3.7%) for the
variance components and 10.2% (13.5%) for the covariance components. We
cannot make general recommendations about the proportion of animals with
full data, because the results may be influenced by the population structure.

Starting values are important for the non-linear models in order for the
algorithm to converge. We tried different strategies for defining the starting
values, but general and simple equations were not discovered. Thus, the con-
vergence of the algorithm with the presented parametrization depends on the
proper starting values. However, the convergence may be improved by a differ-
ent parametrization of the Gompertz model. Alternatively, a completely multi-
plicative model using log-transformed data can be analysed. This takes account
of the common nature of the residuals in real growth data. In addition, log-
transformation removes the dependence of the derivative of the adult weight
parameter on the others.

The procedure presented is similar to that commonly used in animal breed-
ing for linear models. The variance components estimated by REML are used
in the mixed model equations to solve the location parameters. Consequently,
even large models and data sets can be analysed when the variance compo-
nents are assumed known. Easy implementation in already existing programs
for linear mixed effects models is an advantage, although the two-step iterative
procedure with each step itself being iterative can be regarded as computa-
tionally intensive. Another advantage of the method presented by Wolfinger
and Lin is generality. It can be used for different types of models because it
is developed for general non-linear mixed models. Also, generalization of this
simple model to have multiple effects and traits is straightforward.

Linearization enables the linear mixed model procedures given the validity
of the linear approximation. Simulation study is a convenient way to verify the
appropriateness of the approximation method to specific situations. The full
data set in our simulations shows that linearization works moderately well for



356 K. Vuori et al.

the Gompertz function. Some enhancement may be achieved by reparametriza-
tion, which is a subject for additional research. Another motivation for lin-
earization is allowance for sparse data. This is common in field data, where
varying amounts of information are available for the animals. The truncated
data analysis showed, however, that if observations are missing from the tails
of all animal growth curves, uncertainty increases and the estimation method
can be distorted. This distortion diminished considerably when at least some of
the animals had observations until or close to their mature weight. Therefore,
the success of the Gompertz model greatly depends on the amount and nature
of available information.
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APPENDIX

Linearization of the likelihood function

Assume y|u ∼ N( f (X, b,Z, u),R), u ∼ N(0,D) and e ∼ N(0,R). Then, the
likelihood function to be maximized is the following:

L(b, θ|y) = (2π)−
n
2 |R|− 1

2 (2π)−
l+q
2 |D|− 1

2∫
exp

(
−1

2
(y − f (X, b,Z, u))TR−1(y − f (X, b,Z, u)) − 1

2
uTD−1u

)
du.

The term in the exponent to be integrated can be linearized using a second-
order Taylor series expansion around the predicted value of random effects u:

− 1
2

(y − f (X, b,Z, u))TR−1(y − f (X, b,Z, u)) − 1
2
uTD−1u

≈ −1
2

(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ)) − 1
2
ũTD−1ũ

+
[
(y − f (X, b,Z, ũ))TR−1 f ′(X, b,Z, ũ) − D−1ũ

]
(u − ũ)

+
1
2

(u − ũ)
[
− f ′(X, b,Z, ũ)TR−1 f ′(X, b,Z, ũ)

+(y − f (X, b,Z, ũ))TR−1 f ′′(X, b,Z, ũ) − D−1
]

(u − ũ)

≈ −1
2

(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ)) − 1
2
ũTD−1ũ

− 1
2

(u − ũ)T
[
Z∗R−1Z∗ + D−1

]
(u − ũ) .



358 K. Vuori et al.

Here Z∗ = ∂ f
/
∂uT |u=ũ and ũ is the empirical BLUP-estimate of the ran-

dom effects. In addition, the linear term in the expansion vanishes, be-
cause the first derivative of the function at ML-solutions is zero. Also
(y − f (X, b,Z, ũ))TR−1 f ′′(X, b,Z, ũ) is assumed to be negligible, because the
residual vector (y − f (X, b,Z, ũ))TR−1 has mean zero.

Now, approximation for the likelihood function L is

L∗(b, θ|y) = (2π)−
n
2 |R|− 1

2 (2π)−
l+q
2 |D|− 1

2∫
exp

(
−1

2
(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ))

− 1
2
ũTD−1ũ −1

2
(u − ũ)T

[
Z∗R−1Z∗ + D−1

]
(u − ũ)

)
du

= (2π)−
n
2 |R|− 1

2 |D|− 1
2
∣∣∣Z∗R−1Z∗ + D−1

∣∣∣− 1
2

exp

(
−1

2
(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ)) − 1

2
ũTD−1ũ

)
∫

(2π)−
l+q
2
∣∣∣Z∗R−1Z∗ + D−1

∣∣∣ 12

× exp

(
−1

2
(u − ũ)T

[
Z∗R−1Z∗ + D−1

]
(u − ũ)

)
du

= exp

(
−1

2
n ln(2π) − 1

2
ln |R| − 1

2
ln |D| − 1

2
ln
∣∣∣Z∗R−1Z∗ + D−1

∣∣∣
−1

2
(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ)) − 1

2
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)

and the logarithm of L∗(b, θ|y) is

l∗(b, θ|y) = −1
2
n ln (2π) − 1

2
ln(|R||I + Z∗TR−1Z∗D|)

− 1
2

(y − f (X, b,Z, ũ))TR−1(y − f (X, b,Z, ũ)) − 1
2
ũTD−1ũ.
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