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Abstract – An approach for optimising genetic contributions of candidates to control inbreed-
ing in the offspring generation using semidefinite programming (SDP) was proposed. Formu-
lations were done for maximising genetic gain while restricting inbreeding to a preset value
and for minimising inbreeding without regard of gain. Adaptations to account for candidates
with fixed contributions were also shown. Using small but traceable numerical examples, the
SDP method was compared with an alternative based upon Lagrangian multipliers (RSRO).
The SDP method always found the optimum solution that maximises genetic gain at any level
of restriction imposed on inbreeding, unlike RSRO which failed to do so in several situations.
For these situations, the expected gains from the solution obtained with RSRO were between
1.5–9% lower than those expected from the optimum solution found with SDP with assigned
contributions varying widely. In conclusion SDP is a reliable and flexible method for solving
contribution problems.

inbreeding restriction / optimisation of contributions / semidefinite-programming

1. INTRODUCTION

Response to selection in modern breeding schemes has been substantially
increased due to the continuous improvement in the methods of genetic evalu-
ation and high intensity of selection. This trend is expected to accelerate even
more with the animal model BLUP rapidly becoming the standard in com-
mercial selection schemes and the potential shown by the new generation of
evaluation methods using DNA information [8, 9, 16, 19, 21, 22]. In parallel,
the increase in reproduction capacity due to techniques such as AI (artificial
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insemination) and MOET (multiple ovulation and embryo-transfer) has al-
lowed for a higher intensity of selection previously not possible (e.g. [23]).

Despite the success in improving selection response, many of these tech-
niques promote an increase in the rate of inbreeding (∆F) through a higher
probability of coselection of relatives [2, 25]. The increase in breeding risks
arising from a high ∆F in a population has been reviewed (e.g. [26]). There-
fore whilst inbreeding is unavoidable in finite populations, it is important to
manage ∆F. Hence, the aim of selection should be to achieve the maximum
rate of progress (∆G) but restricted to a ∆F specified by the breeder.

Woolliams and Thompson [25] developed the theory where both ∆G and ∆F
can be expressed as a function of the genetic contribution of parents and more
distant ancestors. Under this framework, the genetic contribution of candidates
to the next generation can be optimised taking into account their breeding val-
ues and relationships to maximise ∆G with ∆F controlled to a predefined level.
This approach contrasts with traditional truncation selection where all selected
candidates are expected to have equal numbers of offspring (contribution) in
the next generation. The optimisation of contributions can be implemented us-
ing Lagrangian multipliers [6,7,11,15,27] and this approach has been shown to
offer substantial improvement in ∆G (∼20%) when compared to other forms of
selection at the same rate of ∆F. Others (e.g. [13]) have advocated an approach
to the solution using evolutionary algorithms.

Despite the potential of the methods, to date authors have only used ap-
proximate methods to solve the optimisation problem and these do not guar-
antee to find the optimum solution. In this study, we present a new method
for optimising contribution to maximise ∆G with a restriction on inbreeding
using semidefinite programming. The method can also be applied to minimise
∆F in conservation programmes where ∆G is not important. We illustrate this
method with worked examples to compare results with the method proposed
by Meuwissen [15].

2. MATERIALS ANDMETHODS

2.1. Theory and notation

Formulating the selection problem requires the expected breeding values of
the set of n candidates for selection, given by gt, at a given round of selection t,
and a vector to describe their potential genetic contribution to the next gener-
ation, ct. Since this paper will be concerned with describing events at a single
time point the subscript t will be ignored. For a given candidate i, ci refers to
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the fraction of genes that it contributes to the gene pool in the next generation.
Therefore, ci ≥ 0 with ci = 0 for a candidate that is not selected to be a parent,
and with the total contributions summing to 1. In this formulation the expected
genetic merit attained in the next generation is given by cTg. In diploid species
each sex contributes half the genes to the gene pool so that Σci = 0.5 where the
sum is over all individuals of a single sex, and ci represents half the fraction of
offspring obtained from this parent. Let si = 1 for a male and 0 for a female
and di = 1 − si then these restrictions are cT s = 0.5 and cTd = 0.5 with ci ≥ 0.

Although in principle it is possible that the total contribution originating
from a given sex is from a single candidate (i.e. ci = 0.5), because of bio-
logical limits to reproductive capacity or management policies the maximum
contribution per each candidate may be restricted to a value lower than 0.5.
The vector containing the maximum contribution for each candidate is denoted
as m. The maximum contribution mi may vary across candidates and mi = 0.5
for candidates with no restriction.

The restriction in inbreeding is controlled through consideration of the
group coancestry of the selected parents, where the group coancestry is the in-
breeding coefficient that would result from completely random mating among
the parents, including selfing and given the contribution c. For a set of con-
tributions c among the candidates, the group coancestry is given by cTAc/2,
where A is the Wright’s numerator relationship matrix. If the group coancestry
at time t was Ft, then due to the constraint to the target ∆F it is required that
Ft+1 = 1 − (1 − ∆F)(1 − Ft). Since the paper is concerned only with obtaining
the solution in one generation we will simply denote the target Ft+1 by F∗.

Hence, the problem is to find the optimum genetic contributions, equivalent
to the proportion of offspring, for candidates c in the form:

Maximise: cTg (1a)

Subject to: cTAc/2 ≤ F∗ (1b)

cT s = 0.5 (1c)

cTd = 0.5 (1d)

c ≥ 0 (1e)

c ≤ m (1f)

where 0 is a column vector of zeros. Constraint (1b) is the restriction for the
inbreeding to be less or equal to the predefined value; (1c) and (1d) are to
ensure that the sum of contributions of candidates of a given sex is 0.5; (1e)
and (1f) restrict the contributions to be within the valid parameter space. If
no candidate has a restriction on their maximum contribution, i.e. mi = 0.5
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for all candidates, then restriction (1f) becomes redundant. The optimisation
problem (1) is said to be feasible if there is at least one solution that satisfies
all restrictions. Then the feasible solution which maximises cTg is the optimum
solution.

2.2. Optimisation using semidefinite programming (SDP)

Semidefinite programming is a well-established methodology for optimis-
ing convex problems, where the space of all feasible solutions is convex. Since
the intersection of convex sets is also convex, an optimisation problem is con-
vex when its objective function and all its constraint functions are convex. A
function f(x) is convex if it satisfies λ f (x1)+ (1− λ) f (x2) ≥ f (λx1 + (1− λ)x2),
for any pair of values x1 and x2, and 0 < λ < 1. For an extensive explana-
tion of the methodology, a survey of applications and efficient algorithms, see
Vandengerghe and Boyd [20] and Boyd and Vandengerghe [5].

Semidefinite programming minimises a linear objective function subject to a
linear matrix inequality (LMI) [20]. Maximisation problems can be easily con-
verted to this form by multiplying the objective function by −1. The standard
form for a semidefinite programming problem is the following:

Minimise: aTx (2a)

Subject to: Y ≥ 0, Y = Y0 +

k∑
i=1

Yi xi (2b)

where a is the vector of “cost”, x is the vector of k variables to be optimised,
xi is the i element of x, Y is a positive semidefinite matrix with k + 1 affine
matrices (Yi, i = 0, 1, 2, . . . k). The matrix inequality Y ≥ 0 means that Y is
positive semidefinite.

To recast the optimisation problem in (1) into the semidefinite program-
ming form we need to construct the LMI from the set of constraints. The ma-
trix Y is constructed as a block diagonal matrix with the original constraints
of the problem as the diagonal blocks. For illustration, assume the optimi-
sation problem in (2) has the following two constraints: bTx + b0 ≥ 0 and
−xTQx + q0 ≥ 0, where the first one is a linear constraint and the second is a
(non-linear) quadratic constraint with Q being a positive definite matrix. Be-
fore the quadratic constraint can be included into the LMI, this equation is,
first, transformed into a linear expression using Schur complement [20]. The
linear form of −xTQx + q0 ≥ 0 is equal to:[

Q−1 x
xT q0

]
≥ 0. (3)
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Hence, the LMI containing the two inequality constraints is constructed by
joining them in a single block diagonal matrix equal to:

Y =


bTx + b0 [

Q−1 x
xT q0

]  ≥ 0, (4a)

with the m + 1 affine matrices of Y defined by:

Y0 =


b0 [

Q−1 0
0 q0

]  , Yi =


bi [

0 Ii
ITi 0

]  , i = 1, 2, ... k (4b)

where Ii is the i column of an identity matrix of rank k, and bi is the i element of
the vector b. The elements outside the diagonals blocks are zeros. Additional
constraints of this form can easily be included into the problem by adding an
extra block to the matrix diagonal.

An advantage of casting an optimisation problem as semidefinite program-
ming is that they can be solved very efficiently using approaches such as inte-
rior point algorithms. These algorithms introduced by Karmarkar [12] for lin-
ear programming and later extended for semidefinite programming [17,18] are
interactive methods, which search for the optimum solution within the strictly
feasible parameter space. Currently, several general purpose programmes for
solving SDP are already available (e.g. SDPA [10], CSDP [4], DSDP [3],
SDPSOL [28]). Hence, from a practical point of view, the key process for
using semidefinite programming is demonstrating the problem is convex and
reformulating it in the standard form represented by (2), ready for using the
available programmes.

A detailed description of interior point methods in SDP is not presented
since the main objective is to show how the optimisation of contribution (1) can
be reformulated as a SDP, but details may be found in [1,5,20]. Briefly they are
iterative methods utilising a barrier function for the Y matrix to keep proposed
solutions strictly within the space of feasible solutions. The methods involve
identifying a central path consisting of analytic centres for the problem, where
the sequence of centres is identified using Newton’s method. In practice, the
major complexity of implementing Newton’s method is to solve a least squares
problem of size k. Several methods implementing interior points to solve SDP
problems have been proposed (see [1, 5, 20]) and these are categorised based
on whether they solve the primal or the dual problem or both simultaneously.
The latter category, called primal-dual methods, are more efficient in term of
the steps they need to find the solution. For a comparison on the computer
efficiency of primal-dual algorithms using Newton’s method see [1].
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2.3. Maximisation of genetic response with restricted inbreeding

Semidefinite programming is appropriate to the set of equations (1) be-
cause the problem is convex as all involved functions are convex. Consider
the quadratic constraint cTAc/2 ≤ F∗: the space of feasible solutions for this
constraint forms a convex set if it holds that λ

(
cT1 Ac1/2

)
+ (1− λ)

(
cT2 Ac2/2

)
≥

(λc1 + (1 − λ)c1)T A (λc1 + (1 − λ)c1) /2, for any two solutions c1 and c2, and
0 < λ < 1. Moving the expression at the right side of the inequality to the
left, expanding it and rearranging the resulting terms, it can be shown that this
inequality is equivalent to λ(1 − λ) (c1 − c2)T A (c1 − c2) /2 ≥ 0. Since λ is a
positive constant <1 and A is a positive definite matrix representing the vari-
ance and covariance among the true breeding values, this inequality is always
true. The linear functions in (1) are also convex and this can be shown in the
same way as for the quadratic constraint.

Hence, the task is to reformulate the optimisation problem given in (1) into
standard SDP form. The constraints mostly take the form as described previ-
ously however the quadratic constraint (1b) is given its linear form using Schur
complement and the two equality constraints (1c) and (1d) are replaced with
two inequality constraints. The problem (1) is, then, formulated as:

Minimise: − cTg (5a)

Subject to:


A−1 c

cT 2F∗

 ≥ 0 (5b)

cT s − 0.5 ≥ 0 (5c)

− cT s + 0.5 ≥ 0 (5d)

cTd − 0.5 ≥ 0 (5e)

− cTd + 0.5 ≥ 0 (5f)

c ≥ 0 (5g)

m − c ≥ 0 (5h)

where (5b) is the linear equivalent of the quadratic constraint (1b), (5c)
and (5d) are equivalent to constraint (1c), and the same for (5e) and (5f) for
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constraint (1d). This results in Y described by:

Y =



[
A−1 c
cT 2F∗

]
[
cT s − 0.5

]
[
−cT s + 0.5

]
[
cTd − 0.5

]
[
−cTd + 0.5

]
[
diag(c)

]
[
diag (m − c)

]



≥ 0

(6a)
with the (n + 1) affine matrices being:

Y0 =



[
A−1 0(n×1)

0(1×n) 2F∗

]

−0.5
+0.5

−0.5
+0.5 [

0(n×n)
]
[
diag(m)

]


(6b)

and

Yi =



[
0(n×n) Ii
ITi 0

]

si
−si

di
−di [

diag(Ii)
]
[−diag (Ii)

]



, i = 1, 2, ... n (6c)

where the size of the first block is (n + 1) × (n + 1), the next four are 1 × 1
and the last two blocks are of size n × n. 0( j×k) are matrices/vectors of zeros of
size j × k, Ii is the i column of the identity matrix of size n × n and diag(Ii)
is a diagonal matrix with diagonal equal to Ii. All elements outside the block
diagonal matrices are zero. Hence, with this reformulation the optimisation
problem can now be solved using SDP.

Similarly to constrain (5h) imposing a restriction in the maximum contribu-
tion allowed from each candidate, restriction (5g) can also be modified to set a
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restriction on the minimum contribution (h) that is desired from each individ-
ual. The restriction (5g) becomes c − h ≥ 0, where hi = 0 for individuals with
no restriction in their minimum contribution. Hence, for the SDP formulation,
the sixth block diagonal in Y0 becomes –diag(h) rather than 0(n×n). Using this
approach, the contribution of individual i, may be fixed to a certain value very
easily by setting hi = mi. Although setting mi = hi may be the easiest and
simplest way for fixing contribution of candidate i, a more computationally
efficient approach would be to eliminate individuals with fixed contribution
from the optimisation problem. The casting of the problem as SDP eliminating
candidates with fixed contributions is given in Appendix A.

2.4. Minimisation of inbreeding without regard to genetic gain

Conservation programmes have as their sole objective the minimal accumu-
lation of inbreeding without any regard to genetic gain, and this can also be
achieved by optimising the genetic contributions of the parents. Semidefinite
programming can be used to find the optimum contribution for each candidate
to minimise the inbreeding in the next generation.

The objective here is to minimise the inbreeding function F = cTAc/2,
subject to the constraints that contributions are positive values between 0 and
mi and their sum within candidates of the same sex is 0.5. Since the objective
function is quadratic, an auxiliary variable ν is introduced that serves as the
upper limit of the objective [20]. Then the optimisation problem is:

Minimise: v (7a)

Subject to:

[
A−1 c
cT 2ν

]
≥ 0 (7b)

cT s − 0.5 ≥ 0 (7c)

− cT s + 0.5 ≥ 0 (7d)

cTd − 0.5 ≥ 0 (7e)

− cTd + 0.5 ≥ 0 (7f)

c ≥ 0 (7g)

m − c ≥ 0 (7h)

where (7b) is the linear equivalent of ν − cTAc/2 ≥ 0, and the variables to
optimise are ν and c.
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The LMI accounting for the seven constraints is:

Y =



[
A−1 c
cT 2ν

]
[
cT s − 0.5

]
[
−cT s + 0.5

]
[
cTd − 0.5

]
[
−cTd + 0.5

]
[
diag(c)

]
[
diag (m − c)

]



≥ 0

(8a)
with the (n + 2) affine matrices of Y equal to:

Y0 =



[
A−1 0(n×1)

0(1×n) 0

]

−0.5
+0.5

−0.5
+0.5 [

0(n×n)
]
[
diag (m)

]



, (8b)

Yi =



[
0(n×n) Ii
ITi 0

]

si
−si

di
−di [

diag(Ii)
]
[−diag (Ii)

]



, i = 1, 2, ... n (8c)

and

Yn+1 =



[
0(n×n) 0(n×1)

0(1×n) 2

]

0
0

0
0 [

0(n×n)
]
[
0(n×n)

]



(8d)
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where the size of the first block is (n + 1) × (n+1), the next four are 1 × 1 and
the last two blocks of size n × n. The missing elements outside the block di-
agonal matrices are zeros. The affine matrix Yn+1 corresponds to the auxiliary
variable ν.

When optimised, ν is equal to the minimum expected inbreeding achiev-
able in the next generation when candidates are assigned their optimum
contribution.

2.5. The RSRO method

Here, we briefly describe an iterative method proposed and described in
detail by Meuwissen [15] to optimise contributions for maximising ∆G and
restricting ∆F. We have chosen to call this method Relaxed Successively Re-
duced Optimisation method (RSRO) as it obtains the solution through a series
of relaxed optimisations using Lagrangian multipliers.

Briefly, the optimisation problem given in (1) is modified by converting the
inequality restriction (1b) into equality so that cTAc/2 = F∗, and eliminating
restrictions (1e) and (1f), so the solution can be found using Lagrangian mul-
tipliers. Meuwissen [15] justified the modification to (1b) by pointing out that
the objective function in (1) is linear, so the optimal solution to maximise gain,
if it exists is at the boundary of the space limited by cTAc/2 ≤ F∗, where the
equality holds.

However, the elimination of restriction (1e) can result in some individuals
being assigned invalid negative contributions. This problem is solved by fixing
the contribution for these candidates to be zero and repeating the optimisation
in a smaller subset of candidates. This iterative process of repeating optimisa-
tions with fewer and fewer candidates is continued until a solution satisfying
the restriction (1e) is found. A similar iterative process is also done to account
for restriction on the maximum contribution (1f). In any iteration, candidates
assigned contributions greater than their maximum have their values fixed to
their maximum at all subsequent iterations. Since the restriction on the max-
imum contribution also imposes a requirement on the number of candidates
to be selected, candidates assigned negative contribution should not be elimi-
nated in the same iteration when another has its contribution fixed. Note that
once a candidate is eliminated, it is no longer considered in further iterations
and, therefore, is not selected in the final solution. Similarly when a candi-
date’s contribution is fixed, it remains so in the further iterations and in the
final solution.
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Figure 1. Surface representing the space of solutions for the constraints: cTAc/2 ≤ F∗
(F∗ = 0.3), cT s = 0.5 and cTd = 0.5 in a hypothetical example containing three male
candidates. The z-axis is the expected F for the offspring, while the x- and y-axes are
the contribution of sires 1 and 2, respectively. The contribution of sire 3 is 0.5-x-y.
Figure 1a is the surface of solutions allowing for negative contributions, 1b is the sur-
face of feasible solutions with c ≥ 0, hence the space of valid solutions, and Figures 1c
and 1d are the corresponding contour plots.

A graphical representation of how RSRO searches for the solution is shown
in Figure 1. Figure 1a shows the space of possible solutions for an hypothetical
example containing three males candidates taking into account the restrictions
cTAc/2 ≤ F∗, cT s = 0.5 and cTd = 0.5, which includes solutions with invalid
negative contributions, and Figure 1b shows the space of solutions when the
constraint c ≥ 0 is also taken into consideration thus the true space of feasible
solutions. The modifications done to the constraints in RSRO means that, at
any iteration, the solution is sought only at the ellipse curve delimiting the
surface in Figure 1a, so any solution where F would be less than F∗ is ignored.
If the resulting solution is invalid, some candidates with negative contributions
are eliminated or are fixed to their maximum contribution, and the optimisation
redone with the remaining candidates until a valid solution is found. Any valid
solution found with RSRO would lay on the section of the ellipse which is
shown in Figure 1b.

Meuwissen [15] proposed that all candidates assigned negative contribu-
tions in an iteration be eliminated together. An alternative is to eliminate only
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the candidate with the most negative contribution or to fix the candidate ex-
ceeding their maximum by the greatest amount. This alternative way of elim-
inating or fixing candidates will increase the computational need as more
iterations are required to obtain the final solution, but might give greater
opportunity for finding the optimum solution.

3. RESULTS

In this section two numerical examples are given to demonstrate that, in cer-
tain situations, RSRO does not guarantee that the final solution is the global
maximum, but rather a suboptimal solution. Each example contains six candi-
dates: three male and three female candidates, where only the contributions of
male candidates were optimised (female contributions were fixed to be 1/6).
Optimising only the male contributions allowed the examples to be traceable
and easy to illustrate. All feasible solutions could be evaluated so the true op-
timum was known with absolute certainty. Similar behaviour may also be ob-
served when optimising a larger set of candidates, as they may contain clusters
of individuals with similar structures as the small examples presented here.
Genetic contributions of candidates were optimised in both examples using
RSRO and SDP. The RSRO was carried out implementing the algorithm pro-
posed by Meuwissen [15]. The SDP was done by reformulating the problem to
the standard SDP form as described before, and using the software SDPA [10].
SDPA uses a primal-dual interior point algorithm for searching the solution
during the optimization.

Example A

This example mimics a closed population where external sires are intro-
duced. The relationship for the candidates was obtained from the pedigree
shown in Figure 2. A pedigree with full sib mating was used to keep its graph-
ical representation small and simple.

Figure 3 shows the contour plot for the surface of feasible solutions when
imposing a restriction on the inbreeding in the offspring to be less or equal to
0.29. The solution from the optimisation using SDP assigned the contributions
to be [0.0495, 0.0000, 0.4505] for sires 1, 2 and 3, respectively, with an ex-
pected genetic gain of 0.935. Testing all possible combinations confirmed that
this was the optimum solution to maximise genetic gain.

On the other hand, the solution using RSRO depended on the approach
for eliminating individuals assigned negative contributions. Under the re-
striction of F∗ ≤ 0.29, the solution from the first iteration of optimisation
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Figure 2. Pedigree structure for Example A. Values in bracket are their estimated
breeding value and their relationship was calculated using the shown pedigree struc-
ture.

Figure 3. Contour plot showing the space of feasible solutions for Example A. The
x- and y-axes are the contribution of sires 1 and 2, respectively. The contribution of sire
3 is 0.5-x-y. Shadow area is the space of feasible solutions. The ellipse curve is contour
line for F = 0.29, and where RSRO searches for the solution. The solid triangle (�) is
the solution for first iteration of RSRO. The solid circle (•) is the optimum solution.

was [−0.012, −0.015, 0.527] (see Fig. 3). As sires 1 and 2 were assigned nega-
tive contributions they were eliminated, so only sire 3 remained to be selected
for the final solution (i.e. c = [0.000, 0.000, 0.500]). This solution was shown
to be suboptimal with an expected genetic gain 3.7% lower than the expected
gain for the SDP solution (0.93 vs. 0.90). Similar results were found for other
degrees of restriction on the maximum inbreeding, e.g. when the restriction on
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Figure 4. Pedigree structure for Example B. Values in bracket are their estimated
breeding value and their relationship was calculated using the shown pedigree struc-
ture.

maximum inbreeding was set to 0.3 (m = 0.5), the expected gain for the RSRO
solution was 8.8% lower than the maximum achievable (0.987 vs. 0.900).

In this example suboptimum solutions using RSRO were avoided if only one
candidate was eliminated per iteration. Eliminating only the candidate with the
most negative contribution increased the number of iterations but, for this ex-
ample assuming m = 0.5, the final solution with RSRO was the true optimum.
However, in different scenarios where the set of candidates is very large, the
elimination of candidates one by one could have some practical implications
when implementing RSRO. Additionally, the certainty with which the opti-
mum would be found is still unclear.

Example B

The pedigree relating the candidates for Example B is shown in Figure 4.
The simple half-sib relationship between the candidates is commonly found
in practical situations. When no restriction in the maximum contribution was
imposed (i.e. constraint (1f) was eliminated or m = 0.5), both RSRO and
SDP yielded the same results. Testing the whole space of feasible solutions
by evaluating all possible combinations of contributions of the candidate sires
showed that the solutions were the true optimum given the constraint in the
maximum inbreeding. For example, when F∗ = 0.2 and m = 0.5, the optimum
contributions are [0.296, 0.204, 0.000] for sires 1, 2 and 3, respectively, to give
a gain of 1.41. This was found with both RSRO and SDP.

However, when a restriction in the maximum contribution was included,
RSRO failed to find the optimum solution for many cases. For example, con-
sider the case with F∗ = 0.2, with a constraint in m added so sires cannot have
a contribution higher than 0.3. The solution must be the same as when there
is no restriction on m as it already fulfills this restriction, since ci ≤ 0.3 for
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all three sires. SDP managed to find the correct optimum when adding the re-
striction on m, but a suboptimal solution was obtained with RSRO, even when
removing a candidate at a time. Examining the results from the first iteration
of RSRO, the initial assigned contributions were [0.191, 0.370, −0.061]. Then,
based in this invalid solution, RSRO fixed the contribution of sire 2, so the final
solution obtained after further iterations was [0.200, 0.300, 0.000] compared
with the true optimum [0.296, 0.204, 0.00]. For this particular example, with
the extra restriction on c ≤ 0.3, RSRO failed to find the true optimum solution
whenever F∗ was imposed to be 0.188 or greater.

The expected gain for the solution from RSRO when a restriction on m
was imposed was approximately 1.4% less than the optimum found with SDP
(1.39 vs. 1.41), because both sires which were selected have similar breeding
values. But when examining the differences in the contribution assigned to
each candidate, RSRO assigned around 50% more contribution to sire 2 than
the optimum (0.30 vs. 0.20).

Paradoxically, if the restriction on maximum contribution is less stringent,
the problem of RSRO can become worse. For instance, the optimum solu-
tion found by SDP when F∗ = 0.22 and m = 0.4 was [0.375, 0.125, 0.000].
Whereas the final solution obtained with RSRO was [0.100, 0.400, 0.000],
with sire 2 being assigned over 3-fold its optimum contribution. With m = 0.4,
RSRO failed to find the optimum value in any case whenever F∗ was set to be
0.215 or higher.

An interesting observation is that if candidates are ordered by their assigned
contribution, their ranking when considering the optimum solution is not the
same as in previous rounds of optimisation of RSRO (e.g. in the optimum
solution, the candidate assigned the greatest contribution was sire 1, but this
was not the case in the first iteration). Hence, one would extrapolate that the
candidate assigned the most negative contribution may not necessarily be the
one with the least chance of being selected. So the elimination of candidates
one by one still has the risk of wrongly removing a candidate which should be
included in the optimum solution.

Intuitively the restriction on the maximum contribution also imposes a re-
quirement on the number of candidates to be selected and the option of fixing
candidates in RSRO (as above) appears preferable. However, in Example B,
if sire 3 would have been eliminated before sire 2 was fixed, the final solu-
tion would have been the same as the one found with SDP. But this is not
a general panacea: for example, consider Example B where F∗ = 0.181 and
m = 0.2. Although both SDP and RSRO find the optimum solution of [0.200,
0.200, 0.100] with an expected gain of 0.56, this is not the case if another
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unrelated sire 4 with breeding value equal to −6.0 is included in the optimi-
sation. The optimum solution for the extended set of candidates is the same
since the extra candidate has lower breeding value than the original three can-
didates. However, in the first iteration of RSRO, the assigned contribution was
[0.161, 0.356, −0.109, 0.092], where the extra sire 4 was preferred over sire
3 despite having a lower breeding value. Hence, if the elimination of candi-
dates is done before others are fixed, sire 3 would be eliminated and the final
solution would be [0.200, 0.200, 0.000, 0.100] with an expected gain of 0.52
(i.e. 7.1% less than the optimum). Hence, the correct decision on whether to
fix or to eliminate candidates at a given iteration of RSRO is very specific to
the situation being optimised and no general rules can be applied. The small
size of Example B allows all options to be tested to determine which decision
was the correct one, but this would not be practical in a much larger data set.

4. DISCUSSION

In this study a new method based upon semidefinite programming was im-
plemented to optimise genetic contributions of candidates to selection for max-
imising genetic gain while restricting inbreeding. The method was also im-
plemented to minimise inbreeding without regard to genetic gain (results not
shown). Using numerical examples it was shown that the proposed method-
ology would find the optimum solution even in situations where a previous
method based in Lagrangian multipliers failed to do so.

The main advantage of the proposed method is that the supporting theory
guarantees that the optimum solution is found in an efficient manner. The the-
oretical tractability from convexity and the development of primal-dual interior
point algorithms ensure the solution found using the SDP framework would be
the true optimal [5, 20], unlike the approach used in RSRO. In RSRO, the re-
placement of the inequality in (1b) with equality and the iterative process of
eliminating candidates or fixing their contributions, in essence, re-direct and
restrict the search for the optimum to a smaller space. Whilst focusing the
search only at the boundary (by using cTAc/2 = F∗) may be justified, the ex-
amples show that the use of invalid solutions as criteria to narrow the search
space in this way does not have theoretical validity, with the possibility that
the optimum solution be eliminated during this process. Eliminating one can-
didate per iteration in Example A improved the performance of RSRO, but did
not prevent the contribution of a candidate in Example B being fixed when it
should not be. Moreover, whether or not RSRO yielded the true optimum solu-
tion when imposing a restriction on m, depended on the decision on the order
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of fixing or on the elimination of candidates which appeared case specific. Ad-
ditionally, the results from Example B showed that the ranking of candidates
according to their optimum contribution differ with their ranking in previous
RSRO iterations. Hence, the candidate assigned the most negative contribu-
tion is not necessarily the least likely to be selected in the optimum solution,
so eliminating only this candidate would not prevent that the wrong candidate
be eliminated or fixed.

Another desirable characteristic of the SDP framework is that new complex
constraints can easily be added to the optimisation. Provided the new restric-
tions are convex functions (which include linear and quadratic functions) they
are accounted for by adding them as an extra block diagonal in the LMI. In
principle, RSRO can also be extended to take into account other restrictions.
However, it requires the reformulation and solving a new set of equations for
the extra Lagrangian multipliers introduced with the extra constraints. The
properties of an extended RSRO with the new set of constraints are unclear
when it involves additional quadratic restrictions and or inequalities. For in-
stance, if the intersection of two quadratic inequality constraints does not in-
clude the boundaries for one of them, converting the inequalities to equalities
will result in RSRO finding no feasible solution either optimal or suboptimal.
Interior point algorithms commonly used for searching the solution in SDP
would always search the solution within the whole feasible space, hence the
optimum solution can be found.

The set of constraints included in the optimisation problem given in (1) are
the basic restrictions required to control inbreeding while maximising genetic
gain, but other restrictions may be included into the optimisation to suit the
breeders’ objectives, provided they are convex. However, such constraints in-
clude a number which may be of value to the breeders. For instance, the vari-
ance of the response can be accounted for by adding a quadratic constraint in-
volving the prediction error variance (PEV) matrix for the estimated breeding
values [24]. The level of inbreeding at specific locations of the genome may
also be restricted using the genetic relationships among individuals at the lo-
cation in question estimated with linked marker information. Changes in allele
frequency at specific major genes or QTL may also be controlled by including
additional constraints using candidate genotypes, for example, to optimise the
fixation rate of the QTL [8].

The output from both the SDP algorithm used here and the RSRO are ex-
pressed as proportions on a continuous scale, although subsequently these need
to be interpreted as an integer number of matings or offspring. An ad hoc
solution is to round the values scaled by twice the total number of matings
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(offspring) to the nearest integer, but the optimality of the final result may
not be guaranteed longer, especially when population size is small. A refine-
ment of the optimisation of contributions would be to implement an integer
programming to express the output of the optimisation as the number of off-
spring, so the problem arising from “rounding” the solution is avoided and the
optimality of the solution retained. Integer programming under a SDP frame-
work is possible and for further information about its implementation see [14].
The implementation of integer programming using the RSRO framework may
also be possible but the optimality problems would remain. The use of integer
programming may also be useful for other practical constraints of breeding
programmes. For instance, where differential contributions may not be practi-
cal and the solution to equation (1) is required in the form of a simple sequence
of 1’s and 0’s where 1 indicates select for breeding, and 0 indicates cull. How-
ever, the inability to utilise differential contributions will have consequences
for genetic gain.

From a more practical point of view, another advantage of SDP is the avail-
ability of general purpose softwares for solving SDP optimisation problems.
Currently, several programmes such as SDPA [10], CSDP [4], DSDP [3] and
SDPSOL [28] are already available. Hence from a practical point of view, the
key process to optimise contributions using SDP is to re-cast the problem in the
standard form as shown here. However, a characteristic of interior point algo-
rithm is that the data structure influences its computational efficiency. Hence,
the development of a specialised algorithm considering specific characteristics
and properties of the A matrix may be of significant benefit for the practical
implementation of the optimisation.

The relative computational efficiency of the RSRO and the SDP methods
were beyond the objectives of this study and would require implementing
methods using the same programming languages and operating systems. How-
ever, in general, the performance of both methods appeared similar within our
study, with RSRO slightly faster especially with small data sets and with all
candidates assigned negative contributions eliminated simultaneously. One of
the characteristics of interior point algorithms is that they are very computer ef-
ficient for solving SDP problems with 1000s of variables and constraints [20].
Currently, a version of SDPA able to efficiently solve problems with a matrix
size of 20 000 is already available [10]. Our experience when optimising the
contributions of large data sets (hundreds of candidates) showed that the com-
putational efficiency of SDP was comparable with those obtained with RSRO
(results not shown). The main task when implementing the Newton’s method
for interior points is mainly to solve a least-squares problem with size equal to
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the number of candidates and, using a common animal breeding task as anal-
ogy, the computational need for each interior-point step would be similar to
that required to perform a BLUP evaluation with an equal number of individ-
uals in the pedigree. Vandengerghe and Boyd [20] pointed out that the rule-of-
thumb is that interior point may solve an SDP problem with 5–50 iterations,
then the computational need would be comparable to performing 5–50 BLUP
iterations. Methods to solve SDP problems can also account for data structure
of the problem and exploit the sparseness of the LMI to improve its computa-
tional efficiency since computational demand depends on the number of non-
zero elements in the LMI matrix. For the case of optimisation of contributions,
including an extra candidate increases the LMI by 3 extra rows but many fewer
non-zero elements are added to the Y matrix (see equations (6) and (8)).

Another method used to maximise gain with a constraint in inbreeding is
evolutionary algorithms [13]. The comparison between the performance of
SDP and evolutionary algorithms for optimising contribution has not been
done yet, but because of the stochastic nature of genetic algorithms, there is
never absolute certainty that the solution is optimal. In principle, genetic algo-
rithms can cope with a large number of constraints of variable form, but their
convergence rate decreases according to the complexity of the constraints, so
the accuracy of their performance may further decrease if new restrictions are
added to the problem.

In conclusion, the problem of obtaining optimum solution for managing ge-
netic variation either in maximising ∆G with restricted ∆F or simply minimis-
ing ∆F irrespective of gain can be solved using SDP. The strength of SDP is
that it guarantees the finding of the optimum, unlike other computational ap-
proaches. One of the benefits of the method is that it can encompass extended
problems including constraining PEV and or separately managing genetic vari-
ation at different locations within the genome.
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APPENDIX A: OPTIMISATIONWITH CANDIDATES
WITH FIXED CONTRIBUTIONS

In this appendix we will show a more computationally efficient way to ac-
count for candidates with fixed contributions. Let assume no candidates with
contributions that may vary and need to be optimised and nf candidates with
fixed contributions (n = nf + no). Ordering candidates with the ones to be
optimised being first:

c =
[
co
c f

]
, g =

[
go
g f

]
, s =

[
so
s f

]
, d =

[
do
d f

]
and A =

[
Aoo A f o

A f o A f f

]

where c f is the vector containing the contribution assigned to candidates with
fixed contribution.
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Then the problem is to find the optimum co such as:

Minimise: − cTo go (Aa)

Subject to: 2F∗ − cTf A f f c f − 2cToAo f c f − cToAooco ≥ 0 (Ab)

cTf s f + c
T
o so − 0.5 ≥ 0 (Ac)

− cTf s f − cTo so + 0.5 ≥ 0 (Ad)

cTf d f + cTo do − 0.5 ≥ 0 (Ae)

− cTf d f − cTo do + 0.5 ≥ 0 (Af)

co ≥ 0 (Ag)

mo − co ≤ 0 (Ah)

Note that sometimes all candidates from a given sex can have fixed contribu-
tions. If this is the case, the pair of constraints to ensure that their contributions
sum to 0.5 become redundant and they can be dropped out from the optimi-
sation. An example where this may be appropriate is when female candidates
have a single offspring per litter, so optimisation is done only in males with
contributions of females fixed. In this situation constraints (Ae) and (Af) are
eliminated from the problem.

Hence, the Y matrix forming the LMI is:

Y = diag



[
A−1oo co
cTo 2F∗ − 2cTf A f oco − cTf A f f c f

]
[
cTo so + c

T
f s f − 0.5

]
[
−cTo so − cTf s f + 0.5

]
[
cTo do + c

T
f d f − 0.5

]
[
−cTo do − cTf d f + 0.5

]
[co]

[(mo − co)]



≥ 0
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with the no + 1 affine matrices:

Y0 = diag



[
A−1oo 0(no×1)

0(1×no) 2F∗ − cTf A f f c f

]
[
cTf s f − 0.5

]
[
−cTf s f + 0.5

]
[
cTf d f − 0.5

]
[
−cTf d f + 0.5

]
[
0(1×no)

]
[mo]



,

Yi = diag



[
0(no×no) Ii
ITi −2cTf A f oIi

]

si

−si
di

−di
[Ii]

[Ii]



, i = 1... no.

Now the problem can be solved as a standard SDP. This is more computation-
ally efficient because the number of variables is no while with the formulation
in the main text is no + nf .
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