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Abstract – A new multiple trait strategy based on discriminant analysis was studied for efficient
detection of linked QTL in outbred sib families, in comparison with a multivariate likelihood
technique. The discriminant analysis technique describes the segregation of a linear combina-
tion of the traits in a univariate likelihood. This combination is calculated for each pair of po-
sitions depending on the inheritance of the pairs of QTL haplotypes in the progeny. The gains
in power and accuracy for position estimations of multiple trait methods in grid searches were
evaluated in reference to single trait detections of linked QTL. The methods were applied to
simulated designs with two correlated traits submitted to various effects from the linked QTL.
Multiple trait strategies were generally more powerful and accurate than the single trait tech-
nique. Linked QTL were distinguished when they were separated enough to identify informative
recombinations: at least two genetic markers and 25 cM between the QTL under the simulated
conditions. Except in a particular case, discriminant analysis was at least as powerful as the mul-
tivariate technique and its implementation was five times faster. Combining the advantages from
both methodologies, we finally propose a complete strategy for rapid and efficient systematic
multivariate detections in outbred populations.

QTL detection / linked QTL / multiple trait / sib families / simulations

1. INTRODUCTION

Maximum likelihood methods [23], as well as linearised approxima-
tions [11, 15, 16] or variance component methods [1] have been widely used
to detect individual QTL on traits of interest. Hints of joint influence from
several chromosomal regions on some traits e.g. [2, 3] have been frequently
pointed out. Multivariate developments have been explored [13, 32, 35, 36]
to better describe these regions. First, maximum likelihood techniques were
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set up to differenciate two linked QTL from one pleiotropic QTL in inbred
designs [4, 11, 14, 17, 21, 24, 30, 31, 33]. Later, in outbred populations, similar
techniques were applied to detect multiple but unlinked QTL [18] and vari-
ance component methods were conducted to distinguish linked QTL from a
pleiotropic locus [22, 26]. However in practice, outbred populations with a
mixture of half- (and full-) sib families have high computational requirements
and low information contents compared to inbred populations: the QTL allele
contrasts have to be described independently for each sire (and possibly dam,
when full-sibs are used) family [5]. Thus, applying multivariate strategies can
affect the power of detection due to increased numbers of parameters to be
estimated jointly. Alternative single QTL techniques [6, 21, 27, 34] for multi-
ple trait detections have been proposed using linear combinations of the traits.
Thus, the likelihood results in a univariate function similar to single trait mod-
els, saving computational costs and increasing power. The computation of a
pertinent linear combination for the putative QTL has been discussed. A first
proposal [34] was derived from the phenotypic covariance matrix of the traits,
calculated independently from the QTL influence: a high power of detection
was reached only when the correlation between traits due to the QTL was
similar to their phenotypic correlation. A second technique resulted from the
maximisation of the ratio between the genetic covariance due to the putative
QTL and the residual covariance of the model ([21] in inbred crosses, [6, 7] in
outbred populations). In inbred populations, recombinant individuals in inter-
vals between genetic markers were excluded and specific ratios were computed
per interval based on grand-parental origins of the corresponding haplotype. In
outbred populations, calculations were performed at each position considering
the probability that the progeny received one or the other QTL haplotype from
their sire. As a result of the discriminant analysis technique DA [29], the linear
combination of traits that maximises the between group (QTL derived) and the
within group (residual derived) covariance ratio best discriminates the groups
of progeny. This alternative gives results identical to the multivariate likeli-
hoods, when the model of the discriminant transformation is identical to the
model of the multivariate likelihood [6, 27].

In the present paper, multiple trait techniques were applied to the detec-
tion of linked QTL in the framework of likelihood maximization techniques to
get an efficient and more general alternative to variance component methods.
Here, we describe the corresponding discriminant transformation in mixtures
of full and half-sib families, and compare it to a multivariate likelihood tech-
nique for their computing costs, their power and their accuracy of parameter
estimations, and their respective abilities to improve single trait detections.
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Finally we propose a strategy to systematically implement the multivariate
detections. The methods were programmed as options in the QTLMAP soft-
ware [5, 6, 10, 25, 28] available upon request.

2. MATERIALS ANDMETHODS

2.1. Tests

To discriminate one QTL from two QTL segregating on a chromosome, the
null hypothesis was set to “there is one QTL in the linkage group” and the alter-
native hypothesis was “there are two QTL at the tested positions”. In notations,
single trait hypotheses and multiple trait hypotheses, which imply pleiotropic
QTL, were distinguished: the null hypotheses are denoted H1 (single trait) and
H11 (multiple traits), and the alternative hypotheses are denoted H2 (single
trait) and H22 (multiple traits).

Following [6], likelihoods at position x were noted Λxl under H1 for trait l
and Λx under H11 for traits l = 1, . . . , p. Under the hypothesis of two QTL
located at x = (x1; x2), x1 < x2, likelihoods were Λxl for H2 for trait l, and
Λx for H22. Maximum likelihood techniques were used to get parameter
estimates, so likelihood ratio tests were applied at each x. For single trait
models, LRT x

l was −2 ln[maxx(Λxl )/maxx(Λxl )], and for multiple trait tests
LRT x = −2 ln[maxx(Λx)/maxx(Λx)]. Since the tests compare the two QTL vs.
the best single QTL hypothesis, it may be over conservative, due to putative
ghost effects under the single QTL model.

2.2. Likelihood

Techniques for detecting two QTL were developed from single QTL meth-
ods proposed for mixtures of half- and full-sib families using partially lin-
earised likelihoods [6, 25]. Main notations are summarised in Table I. Three
techniques were addressed for two QTL tests: a single trait method (ST2), and
two multiple trait strategies, MV2 using a multivariate likelihood, and DA2
based on a univariate likelihood applied to a linear combination of traits ob-
tained from a discriminant analysis. Likelihood calculations under H1 and H11
were described in [6], we focussed this paper on the two-QTL models.

Grid search detections [9] were retained, supported by risks of “ghost QTL”
detections [23] or missing QTL with single QTL models. Thus, the likelihoods
described the joint distribution of traits due to each pair of QTL. In a first step,
at positions x = {x1; x2}, the probabilities that the progeny inherited a given
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Table I. Notations for half- and full-sib family observations.

Notation Signification
i for i=1, . . . , n sire
j for j=1, . . . , ni dam (within sire)
k for k=1, . . . , ni j progeny (within mate)
Mi marker information for sire i family
ypi jkl for l=1, . . . , p phenotype for quantitative trait l of progeny i jk
ypi jk vector for p phenotypes for quantitative traits l of progeny i jk
ĥsi most probable sire i genotype for genetic markers
hdi j dam i j genotype having a probability greater than

0.1 for the genetic markers
xr for r=1,2 QTLr position
x = {x1, x2} vector of QTL positions
qrs for r=1,2 sire haplotype transmitted for QTLr

qrs=1 from the grand sire, qrs=2 from the grand dam
qs = {q1s, q2s} pair of haplotypes inherited from the sire at positions x
qrd for r=1,2 dam haplotype transmitted for QTLr

qrd=1 from the grand sire, qrd=2 from the grand dam
qd = {q1d, q2d} pair of haplotypes inherited from the dam at positions x
dxi jk = {qs, qd} pairs of haplotypes inherited by progeny i jk at positions x
µ
xqs
il phenotypic mean of the progeny, which received q1s and q2s

at x = (x1; x2) from the sire i for the quantitative trait l
µxqdi jl phenotypic mean of the progeny which received q1d and q2d

at x = (x1; x2) from the dam i j for the quantitative trait l
σ2
il variance of the sire i family for the quantitative trait l

f (ypi jkl; µ
xqs
il + µ

xqd
i jl , σ

2
il) normal penetrance function, conditional on the haplotypes

dxi jk transmitted

pair dxi jk = (qs, qd) of QTL haplotypes from its sire (haplotypes qs = (q1s, q2s))
and dam (haplotypes qd = (q1d, q2d)) were calculated (see Tab. I for notation
and [5]). The probabilities that progeny inherited the QTL haplotypes at posi-
tion x1 and x2, p

(
dxi jk = (qxs, qxd)/ĥsi, hdi j,Mi

)
[25] were multiplied, giving

the joint probability p
(
dxi jk/ĥsi, hdi j,Mi

)
: due to properties of interval map-

ping, the inheritance probabilities at positions x1 and x2 are conditionnally
independent, given that there is at least one informative marker between the
tested positions [23]. In a second step, given that only the most probable sire
haplotype ĥsi was retained to compute the sire likelihood, the partial lineari-
sation of the likelihood within full-sib families was obtained. Finally, the joint
distribution of the traits depended on two QTL effects and a polygenic value
for the genetic part [11, 12, 30]. Thus, Yi jkl the linearised performance for the
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individual i jk for trait l was the following:

Yi jkl = ypi jkl −
(2,2)∑

qs=(1,1)

(2,2)∑
qd=(1,1)

p
(
dxi jk = (qs, qd)/ĥsi, hdi j,Mi

) (
µ
xqs
il + µ

xqd
i jl

)
(1)

where µxqsil (respectively µxqdi jl ) is the phenotypic mean of the progeny which
received qs = (q1s; q2s) (respectively qd = (q1d; q2d)) at x = (x1; x2) from
sire i (respectively dam i j) for quantitative trait l. These phenotypic means
were

µ
xqs
il = µil − (−1)q1s

αx1il
2
− (−1)q2s

αx2il
2
,

and µxqdi jl was obtained similarly, where µil, µi jl are respectively the within half-

sib and within full-sib phenotypic means, and αx1il , αx2il , αx1i jl and αx2i jl are re-
spectively the within half-sib and within full-sib average effects of substitution
following Fisher of the QTL1 (x1 location) and QTL2 (x2 location) for the
quantitative trait l. Thus at x, with φi jk the penetrance function for progeny i jk
from sire i and dam i j, the partially linearised likelihood under any alternative
hypothesis is the following:

n∏
i=1

ni∏
i j=1

∑
hdi j

p(hdi j/ĥsi,Mi)
ni j∏
k=1

φi jk (2)

Single trait method (ST2): In the single trait model, the trait value had a
gaussian distribution f , so the penetrance function was:

φi jk = f (ypi jkl/ĥsi, hdi j,Mi) =
1√

2πσil
exp

−1
2

(
Yi jkl
σil

)2.
Additional parameters were estimated compared to the likelihood under the
null hypothesis H1: one QTL effect per sire i = 1, . . . , n, one per dam
i j = 1, . . . , ni, and one position, giving theoretically n +

∑n
i=1 ni + 1 degrees

of freedom for the comparison of H1 vs. H2.
Multivariate penetrance function (MV2): The first multiple trait model was

based on a multivariate penetrance function. It was a multivariate extension
of the single trait model (cf. previous paragraph), or equivalently a two-QTL
extension of the multivariate MV method in [6] for single QTL detection. The
multinormal penetrance function is given by:

φi jk = f (ypi jk/ĥsi, hdi j,Mi) =

√
|VC−1

i |
2π

exp

(
−1

2
Y′i jkVC

−1
i Yi jk

)
,
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where Yi jk =
[
Yi jkl; l = 1, . . . , p

]
, VCi is the residual covariance matrix be-

tween traits for the sire family i, Y′i jk is the transposed vector, VC−1
i the inverse

and |VC−1
i | the determinant.

Comparing the multiple QTL (H22) vs. the single QTL (H11) multiple trait
hypotheses, (n +

∑n
i=1 ni) ∗ p + 1 additional parameters were estimated under

H22: one QTL effect for each sire and dam and each trait at the second position,
plus the position.

Discriminant transformation (DA2): The discriminant analysis is an effi-
cient alternative to the multivariate likelihood in multiple trait detections, based
on a univariate analysis of a linear combination of the traits [6]. The major gain
is expected for computing time, in comparison to the multivariate likelihoods
in MV2.

For two-QTL models, linear combinations of traits were calculated at each
x, maximising the ratio of the genetic variability due to the QTL (variabil-
ity between the four groups of progeny inheriting the different QTL hap-
lotype combinations qs = (q1s, q2s)), and the residual variability due to
any other factor (variability within those groups). In practice, QTL hap-
lotypes inherited from the sire were known in probabilities, derived from
the p

(
dxi jk = (qs, qd)/ĥsi, hdi j,Mi

)
described in equation (1): each progeny

thus belonged to every QTL haplotype group, weighted by this probabil-
ity. At x, a unique linear combination of traits zxi jk =

∑p
l=1 β

x
l yi jkl was ob-

tained, and the Gaussian distribution f was used in equation (2) for φi jk,
f (zxi jk/ĥsi, hdi j,Mi) resulting in a univariate likelihood. Thus now the mean,
variance and QTL effect estimates from the likelihood maximisation refer to
the linear combination.

2.3. Simulations

The three methods were compared for detection of two QTL using simula-
tions. An intercross design was simulated, with 10 unrelated males from popu-
lation P1 and 10 unrelated females from population P2 in a grand-parental gen-
eration (F0). Each mating produced one sire and two dams (parental generation
F1), mated to obtain 10 half-sib families split into 20 balanced full-sib families
to get 500 progeny (generation F2). The linkage group was sized 100 cM, with
9 equally spaced genetic markers. Each genetic marker had five alleles with a
0.2 frequency either in P1 and P2. Grand-parental haplotypes were randomly
drawn and allelic transmissions followed Mendelian rules. Different QTL al-
leles were fixed in P1 and P2, so all F1 individuals were heterozygous for the
biallelic QTL (this was not the case for genetic markers). Four sets of locations



Detection of multiple linked QTL 145

Table II. Combinations of QTL simulated effects under the alternative hypothesis:
QTL effects on the traits from one given haplotype.

Case 1 2 3 4 5 6
Trait 1 2 1 2 1 2 1 2 1 2 1 2
QTL1 a 0 a a a 0 a a a –a a –a
QTL2 a 0 a a –a 0 –a –a a –a –a a

of a first QTL (QTL1) and second QTL (QTL2) were considered: (1) QTL1 at
31 cM and QTL2 at 81 cM (QTL physically independent), (2) QTL1 at 31 cM
and QTL2 at 57 cM (two genetic markers between the QTL), (3) QTL1 at
31 cM and QTL2 at 43 cM (one genetic marker separates the QTL), (4) QTL1
at 29 cM and QTL2 at 34 cM (with no genetic marker separating them).

Two traits were simulated in the present study, using a completely additive
model. For both traits, besides the QTL, the polygenic heritability was 0.2, the
residual variance was 1 and the residual correlation was −0.4. We defined a
panel of six combinations for the QTL effects (Tab. II), with respect to consid-
erations on multiple trait or linked QTL detection in the literature:

– the number of traits influenced by the two QTL: in single QTL models,
a significant improvement of QTL detection was achieved using multiple
trait techniques if traits were correlated, either genetically or residually [6,
17, 21]. The effect of QTLr on trait l was |arl| = 0.5 = a, r = 1, 2, l = 1, 2,
except for cases 1 and 3, where the QTL were not pleiotropic (ar2 = 0, ∀r);

– the relationship between the residual and the genetic (due to the QTL) cor-
relations: multiple trait detections proved to be more powerful and precise
if the residual correlation had a sign opposite to the correlation due to the
pleiotropic QTL allele segregation [14, 19, 27]. For two QTL models, the
sum of the QTL effects from a given haplotype on each trait was considered
to define a genetic correlation sign due to the QTL: cases 1, 2 and 4 cor-
responded to opposite genetic and residual correlations between the traits,
whereas in cases 3, 5 and 6 they were in similar directions;

– the phase of the QTL alleles for each trait: a one-QTL analysis was demon-
strated to be very powerful when the effects of two linked QTL were in
phase (each haplotypic phase carries QTL alleles having the same sign ef-
fects, either positive or negative), a phenomena described as “ghost QTL”
by Lander and Botstein [23], whereas the one-QTL model was very poor
at detecting QTL when two QTL in repulsion phase were segregating (alle-
les of opposite sign effects are carried by a haplotypic phase). In two-QTL
detection, impacts are not straightforward: with QTL in phase, a higher
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maximum likelihood is expected under the null hypothesis, implying higher
thresholds. We simulated cases 1, 2 and 5 with QTL alleles in phase, and
cases 3, 4 and 6 with QTL alleles in repulsion.

2.4. Comparison of the methods

The three techniques for 2 QTL detections were successively applied to
each simulated design. In each of the 24 combinations of effects (six cases)
and QTL positions (four distances), 100 simulations were computed, and the
maximum LRT of each technique, their positions and maximum likelihood es-
timates (MLE) under the null and alternative hypothesis were recorded. The
smallest estimated position was arbitrarily attributed to QTL1. Finally, the
computing time required to get the MLE with each technique under the two
QTL model was stored. From these records, the statistical methods were com-
pared for the following:

– computing time, averaged for each method over the 24 × 100 analysis of
simulated designs;

– power of each method for the test of one QTL vs. two QTL, computed over
the 100 simulations as the percentage of maximum LRT greater than an
empirical threshold;

– accuracy of the position estimates, from average estimates of QTL1 and
QTL2 positions, over the 100 simulations: Mean Squared Errors (MSE)
were computed as the mean of the squared differences between the esti-
mates in each simulation and the true value. This formally combines bias
and estimation variance in one criterium;

– accuracy of the QTL effect estimates for ST2 and MV2, calculated over
the 100 simulations using MSE for individual QTL effects arl. Since DA2
analysis estimates parameters for linear combinations of traits, no direct
estimation of QTL effects on each trait was available.

2.5. Empirical threshold computation

Test statistic distributions under the null hypotheses were not available: in
addition to the usual source of deviation from asymptotic conditions in single
QTL tests, a grid search was applied in this study, involving an increased num-
ber of correlated tests compared to one dimension single QTL tests. To derive
an asymptotic distribution of the test statistic under the null hypothesis would
be too time consuming, thus 200 simulations were conducted under the null
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hypothesis “there is one QTL in the linkage group” to get empirical 5% thresh-
olds. For each combination of effects and QTL positions in two-QTL models
(Tab. II), a particular set of position and effects from a single QTL had to be
chosen. From the single QTL model analysis applied to each simulation under
a two-QTL model, estimates for QTL position and effects were averaged (over
the 100 simulations performed to calculate power). Given these estimates, a
single QTL was simulated and various two-QTL tests were applied to obtain
the corresponding thresholds. This proposition differed from [17], where a dif-
ferent threshold was empirically computed for each simulation. This approach
was chosen because of the excessive computing times for the likelihood maxi-
mizations in models of mixture of full- and half-sib families. Some simulations
with one QTL demonstrated a good approximation of the type I error, even if
it tended to be slightly lower than 5%. In practice, the simulations would be
conducted using position and effects estimated with a one-QTL analysis on the
data set considered, which may be quite conservative.

3. RESULTS

3.1. Computing time

For multiple QTL tests, the single trait analysis lasted for 129.10 seconds
(s), the discriminant analysis for 71.44 s and the multivariate likelihood for
345.36 s, on average. Compared to single QTL tests, computing times with
univariate likelihoods were thus increased at least 30 times, due to both a larger
number of individual tests in the grid search (21 likelihood maximisations vs.
221 with 100 cM and 5 cM-steps) and a higher number of estimated param-
eters. For the multivariate likelihood only, the number of parameters also de-
pended on the number of traits. In two-trait models, the computing cost was 5
times greater with MV2 than with DA2, so multivariate two-QTL likelihoods
can be computationally exhausting for systematic genome scans.

3.2. Thresholds

Estimates of the effects and position obtained under the single QTL hypoth-
esis (Tab. III) confirmed risks of “ghost” QTL detections when QTL segregate
with coupling phases [11,30]: position estimations were close to the mean be-
tween the simulated QTL positions, and effect estimates were greater than the
individual effect of each QTL on the trait. On the contrary, when QTL alle-
les were in repulsion, average position estimates were close to the middle of
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Table III. Average parameter estimates under one pleiotropic QTL model, simulations
with two traits l determined by two linked QTLr, alr = QTLr effect on trait l.

Position estimates Effect estimates
al1 al2 + + + – + + + –
QTL1/QTL2 31/81 58.0 57.1 0.634 –0.025
(cM) 31/57 43.9 45.5 0.767 –0.003

31/43 38.3 48.4 0.793 –0.010
29/34 28.5 51.3 0.827 –0.010

Table IV. Thresholds for two-QTL vs. one-QTL tests.

Case 1 2 3 - 4 - 6 5 1 2 3 - 4 - 6 5
QTL1/QTL2 31/81 cM 31/57 cM
ST2 72.0 63.6 57.6 67.8 69.8 67.5 63.7 67.1
MV2 111.3 109.0 99.1 109.5 110.4 112.7 99.3 111.8
DA2 91.7 123.4 103.6 98.5 102.1 133.3 111.7 109.3
QTL1/QTL2 31/43 cM 29/34 cM
ST2 65.3 65.9 60.4 63.7 75.8 70.1 57.9 71.4
MV2 110.2 111.2 100.6 107.5 110.8 117.8 99.9 110.0
DA2 114.8 164.0 99.5 121.6 108.9 150.8 107.1 118.8

ST2: single trait method; MV2: multivariate method; DA2: discriminant analysis.

the linkage group and effect estimates were close to zero, so that very few
QTL would be detected under the one-QTL model. Thus, to save computa-
tional time, one threshold common for cases 3, 4 and 6 was estimated, with the
average effect equal to −0.01 for any distance simulated between the QTL.

When QTL alleles were in coupling phase (cases 1, 2 and 5), thresholds
(Tab. IV) seemed to increase as QTL got closer to each other, in relation with
increased simulated effects. On the contrary, when QTL alleles were in re-
pulsion (case 3), thresholds were relatively independent of the QTL positions,
due to similar simulated small effects. In these cases, thresholds were gener-
ally lower than in allele coupling cases. Differences related to the QTL genetic
correlation and the residual correlation between the traits: as the effects were
higher, and the correlations in the opposite direction, the thresholds increased
(from case 1 to case 4 to case 2), especially for discriminant analyses. In fact,
these are situations where single QTL detection are known to be more power-
ful. An accurate estimation of the QTL effects under the null hypothesis (one-
QTL model) may thus be required to estimate pertinent empirical thresholds.
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Table V. Power (%) of multiple QTL detections.

a11 a21 + 0 + + + 0 + + + – + – + 0 + + + 0 + + + – + –
a12 a22 + 0 + + – 0 – – + – – + + 0 + + – 0 – – + – – +
QTL1/QTL2 31/81 cM 31/57 cM
ST2 42 65 90 91 55 78 6 10 30 23 7 27
MV2 50 100 86 100 84 90 8 33 48 97 11 59
DA2 62 99 20 100 84 37 11 47 5 28 26 4
QTL1/QTL2 31/43 cM 29/34 cM
ST2 7 6 9 6 12 13 1 2 6 7 2 4
MV2 3 17 15 39 18 16 3 8 9 5 7 4
DA2 9 4 8 5 25 9 21 19 4 5 26 4

alr = QTLr effect on trait l, a = 0.5; ST2: single trait method; MV2: multivariate method; DA2:
discriminant analysis.

3.3. Power

When comparing multiple trait strategies, two situations (Tab. V) arose:
when the QTL alleles were in coupling phase, generally DA2 had greater
power compared to MV2, but when QTL alleles were in repulsion, MV2 was
often more powerful, and surprisingly DA2 barely reached the 5% of type I er-
ror. Actually, in the discriminant technique the haplotypic effects were nearly
null in the groups of the parental haplotypes: QTL effects cancelled each other.
However, compared to the groups of the recombinant haplotypes, these groups
represent most of the progeny, thus most of the information content for the dis-
crimination. In repulsion designs, the power of the discriminant analysis might
thus have been lowered by construction. To confirm this hypothesis, new de-
signs in repulsion phase were simulated with unbalanced effects, and DA2
showed at least equivalent power compared to MV2: as an example, when
a1l = 0.5 and a2l = −0.25 for each trait l, 34% of detection was obtained with
DA2, compared to 21% with MV2.

Power was higher using a multiple trait method than the single trait method
even in cases 1 and 3 where only one of the correlated traits was influenced by
the QTL. When the QTL affected both traits, higher power was achieved by
multiple trait detections if the QTL generated a genetic correlation opposite to
the residual correlation: higher power for case 2 than for case 5 (QTL alleles
in coupling phase) and for case 4 than for case 6 (QTL alleles in repulsion).
Moreover, both single and multiple trait detections were more powerful when
the QTL alleles were in repulsion, related to lower threshold values.

Finally, power was very dependent on the distance and number of genetic
markers separating the QTL. When QTL were 50 cM apart, two QTL were
distinguished in more than 60% of the simulations, but only in more than 25%
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when they were 26 cM apart, and from 10 to 40% when they were 12 cM apart.
When they were 5 cM apart power reached the type I error of the tests.

3.4. Parameter estimates

Positions. Generally, biases of position estimates (not shown) were slightly
higher using DA2 than MV2, but MSE (Tab. VI) were lower with DA2 in cases
when the power of detection was high, which corresponds to lower estimation
variances. Accuracy improvement using multiple trait strategies compared to
ST2 was not systematic. Actually, very high accuracies were reached with ST2
in general, which is common when QTL effects are high enough.

Biases and MSE were higher for QTL2 than QTL1, especially when the
QTL got closer, reaching more than 20 cM when the QTL were 5 cM apart, but
few simulations were performed with the interval between the QTL centered
on the linkage group (data not shown), showing equal bias on the two position
estimates.

QTL effects. A higher accuracy was achieved with MV2 (Tab. VII) compared
to ST2, except when QTL alleles were in repulsion (estimation variances were
higher). No systematic improvement was observed when only one trait de-
pended on the QTL, but in most favorable cases, MV2 reduced MSE from 50
to 85%. MSE were smaller when the QTL were 50 cM apart than when they
got closer but no trend could describe the improvement obtained with MV2
compared to ST2 with closer QTL. Looking further, when the QTL got close
to each other the MSE increased mostly because of increased biases. They
could reach more than half of the simulated values, particularly for QTL2.

4. DISCUSSION

We studied the detections of two linked QTL in a mixture of half and full sib
families using two multiple trait methodologies. Taking advantage of the corre-
lation between the traits, improvements compared to the single trait detections
for power of detection and accuracy of parameter estimates, were obtained in
accordance with tendencies previously described for analysis of inbred QTL
detection designs [17,21]. Previous studies on outbred populations [26] gener-
ally proposed to test the hypothesis H1 “one pleiotropic QTL” vs. H2 “two non
pleiotropic linked QTL”. The test we envisaged in this paper is more general,
due to the properties of the discriminant analysis. It should be considered as a
first step in a genome scan, to identify pleiotropic regions, which would have to
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be further examined with more specific models – using multivariate functions
for example or different linear transformations.

A first key to test the two-QTL hypothesis vs. the one-QTL hypothesis was
the threshold estimations. The technique of Monte Carlo simulations under the
null hypothesis was chosen, implying a hypothesis on the position and QTL
effects to be simulated. Threshold calculations showed great robustness to the
position assumptions, but undesired sensitivity to the QTL effect values input.
Knott and Haley [17] observed similar trends and proposed alternatively non
parametric bootstraps [24] to distinguish two linked QTL. The computational
cost might be too high to be applied to mixtures of full and half sib family
detections, but it could be envisaged in other designs.

A second key was related to the genetic information. Detections were pow-
erful and parameter estimations accurate with at least two genetic markers or
26 cM between the QTL similarly to [17, 20, 31]. On the contrary, systematic
biases were observed on both QTL location and effect estimates when the QTL
got closer, due to limited information on recombinations given the population
size and marker density. These biases should be related to the minimum and
optimal map density of 20 cM in QTL designs described in [23]. Thus, efficient
two-QTL detections depend not only on informative and dense genetic maps
but also on a large number of recombinant progeny. In this paper, an approx-
imate calculation of the probability of the joint transmission of the couples
of haplotypes was chosen. It is exact only when the transmission probabili-
ties are independent of each other, which occurs either when an informative
marker separates the positions or when they are more than 50 cM apart. In
practice, significant results in intervals where markers are not informative for
all the families should be confirmed by additional genotyping. Similarly, the
joint analysis of positions closer than 20 cM with no informative marker in
between should be avoided, or results at least carefully questionned.

The third key for detection power was the coupling or repulsion states of the
QTL alleles. Higher powers corresponded to repulsion phases, where usually
no QTL are detected under one-QTL models. On the contrary, alleles in cou-
pling phase often result in “ghost QTL” detection under one-QTL models, giv-
ing higher thresholds, so distinction using two-QTL tests are harder to achieve.
An alternative would be to calculate thresholds from the highest likelihood ra-
tio test at the two positions given by the two-QTL model: the tests would be
less conservative, but they would also be less general at the chromosome level.
Two-QTL detections require systematic searches, performed also in chromoso-
mal regions where no QTL are mapped under one-QTL models. This might be
more powerful than stepwise model selections based on significant one-QTL
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detections [17, 31]: these may not detect linked QTL with alleles in repulsion,
whereas practically, such QTL might be particularly useful to disentangle un-
desired genetic correlations between traits.

Finally, DA2 was at least as powerful and accurate for position estimations
as MV2, except in the particular cases of QTL alleles with equal and opposite
effects. Based on these results, a general strategy efficient and easily applicable
in outbred populations was derived for multivariate QTL detections. It was
originally aimed at saving computing time for analysis of mixtures of full- and
half-sib families, but can evidently be applied to any design. When all sires
are not heterozygous for the QTL, or allele contrasts differ from one sire to
the other, Gilbert and Le Roy [7] showed that the discriminant transformation
performed within families can improve the power of detection of a pleiotropic
QTL if large sire families are available. A similar calculation could easily be
set up to account for allele heterogeneity in the two-locus transformations.

The general approach has proved to be successful in performing a QTL de-
tection for carcass composition traits on porcine chromosome 7 [8]. Consid-
ering a QTL detection design, a set of k = K traits is defined depending on
physiological functions (fat deposition) or productive items (carcass adipos-
ity). Thus, the following strategy can be applied to every chromosomal region:

(1) on k traits, discriminant analysis: likelihood maximisations under no
QTL, one-QTL and two-QTL models, p-value computations for the test 0/1
QTL (T0/1k):

– it is significant, p-value computation for the test 1/2 QTL (T1/2k),
– it is not significant, p-value computation for the test 0/2 QTL (T0/2k).

The decision is:
(a) accept one-QTL model: if T0/1k is significant, and T1/2k is not,
(b) accept the two-QTL model: if T0/1k and T1/2k are significant or T0/1k is
not significant and T0/2k is significant;

(2) if any test is significant at step 2, the trait with the smallest contribution
to the linear combination at the maximum LRT is removed from the detection,
and new searches are conducted with k = K − 1 traits:

(a) if one-QTL model was kept with k + 1 traits, T0/1k is conducted,
(b) if T0/2k + 1 was significant, T0/2k is applied,
(c) if T1/2k + 1 was significant, T1/2k is applied;

(3) if the k trait test is at least as significant as the k + 1 test, a new trait
is removed from the detection and the analyses in step 2 are conducted again,
with k − 1 traits. If the k trait test is not at least as significant as the k + 1 test,
the k + 1 trait model is finally selected.
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The estimates for QTL effects in the final set of traits should be obtained by
maximising the multivariate likelihood of the current QTL model at the most
likely location obtained in step 3. Then, some finer models, as with linked
QTL influencing different traits, might be tested with multivariate likelihoods
on limited regions.

Particular attention should be paid to the p-value calculation. Tolerant lev-
els should be used in steps 1 and 2 for preliminary selections (5% chromo-
some wide for example) to balance the over-parameterisation of the tests. For
the finest models, one should increase the rejection thresholds to be stringent
enough for the final choice. In the selection procedure between steps 1 to 3,
multivariate likelihoods can be used only for QTL effect estimations under the
one-QTL model, if simulations or permutations are chosen for p-value compu-
tations. Thus DA strategies can save days of computation in preliminary steps
of multivariate analysis at no cost concerning power and QTL location.

5. CONCLUSIONS

We propose an efficient strategy to start the fine mapping of pleiotropic chro-
mosomal regions. The power of a discriminant analysis combined with the
hugely reduced computational costs represents an original strategy and finally
offers a rapid and efficient alternative to systematically define which chromo-
somal regions to focus on. In order to describe the finest models better, the
opportunity to combine in bivariate likelihoods two linear combinations of the
traits, related to two different positions for the putative QTL and describing
potentially different trait covariances might be explored in further studies.
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