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Abstract – Comparing predicted breeding values (BV) among animals in different management
units (e.g. flocks, herds) is challenging if units have different genetic means. Unbiased estimates
of differences in BV may be obtained by assigning base animals to genetic groups according to
their unit of origin, but units must be connected to estimate group effects. If many small groups
exist, error of BV prediction may be increased. Alternatively, genetic groups can be excluded
from the statistical model, which may bias BV predictions. If adequate genetic connections ex-
ist among units, bias is reduced. Several measures of connectedness have been proposed, but
their relationships to potential bias in BV predictions are not well defined. This study compares
alternative strategies to connect small units and assesses the ability of different connectedness
statistics to quantify potential bias in BV prediction. Connections established using common
sires across units were most effective in reducing bias. The coefficient of determination of the
mean difference in predicted BV was a perfect indicator of potential bias remaining when com-
paring individuals in separate units. However, this measure is difficult to calculate; correlated
measures such as prediction errors of differences in unit means and correlations among predic-
tion errors are suggested as practical alternatives.

connectedness / genetic evaluation / bias / genetic groups / breeding value

1. INTRODUCTION

Best linear unbiased prediction (BLUP) can be used to partition records
of animal performance into genetic and environmental components [11]. En-
vironmental influences including effects of management unit (flock or herd)

∗ Corresponding author: Larry.Kuehn@ARS.USDA.GOV

Article published by EDP Sciences and available at http://www.edpsciences.org/gse or http://dx.doi.org/10.1051/gse:2007001

http://www.edpsciences.org/gse
http://dx.doi.org/10.1051/gse:2007001


226 L.A. Kuehn et al.

are accounted for by fitting them as fixed effects, potentially allowing genetic
merit of animals born in different management units to be equitably compared.
However, additive genetic differences among management units will also be
attributed to environmental differences unless there are sufficient genetic con-
nections among the units. Connectedness, in a statistical sense, relates to the
estimability of contrasts involving model fixed effects [37]; a data set is con-
nected if all contrasts among fixed effects are estimable. However, connected-
ness is not required in order to predict random breeding values [4], and discon-
nected subsets of records do not lead to biased predictions of breeding values
so long as breeding values of base animals (i.e., the animals present at the start
of performance recording) are randomly and identically distributed across the
entire population [41]. This assumption is violated, however, if selection or ge-
netic drift occurs before pedigree and performance recording begin and cause
genetic means of the units to differ.

The likelihood of observing differences in genetic means among units de-
pends on the extent of gene flow. Sheep and beef cattle populations consist of
many subpopulations, partially isolated by geographical distance and sources
of purchased seedstock. Analyses of genetic differences among herds and
flocks have suggested that genetic variance among units may be as large as
that within units [3,24]. Similar results were reported in dairy cattle herds [39]
before widespread use of artificial insemination (AI). Gene flow via AI can cre-
ate extensive genetic connections among units, but AI is currently not widely
used in sheep; fewer than 2% of ewes in the USA are bred using AI [28]. At
the very least, there is greater risk of bias when comparisons are made across
flocks and herds when connectedness is poor.

In order to manage bias when comparing animals across units, either the
source of the bias must be incorporated into the genetic evaluation model or
tools to quantify the risk of comparing animals across units must be estab-
lished and used. Biases arising from differences in unit genetic means can be
eliminated by predicting breeding values using models that include genetic
groups [31]. These models estimate mean breeding values for base animals
from each management unit, which accounts for mean differences among units.
Genetic connections among units are still required, however, in order to simul-
taneously estimate genetic group and environmental unit effects with accept-
able accuracy [15, 40].

Several statistics have been developed to assess the quality of across-unit
connections [6, 17, 20]. An ideal statistic would provide insights into the po-
tential risk of incorrect selection decisions associated with biased breeding
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value predictions. Connectedness statistics could also be used to design breed-
ing programs which would effectively link management units.

The objectives of this article are to: (1) review the incorporation of genetic
groups into breeding value prediction models and discuss some of the problems
with their implementation; (2) examine the importance of connectedness and
weigh the merits of various statistics to quantify connectedness; and, (3) sug-
gest methods that could be used to increase connectedness and, thereby, reduce
bias when comparing animals from poorly connected subunits. The last objec-
tive is addressed using small sire-model examples, with particular reference to
sheep breeding programs.

2. REVIEW

2.1. Genetic groups model

Genetic groups were initially used in sire evaluation to account for differ-
ences in mean breeding values of bulls owned by different AI bull studs when
relationships among bulls owned by the different studs were not available [16].
Pollak and Quaas [30] added genetic groups of base animals to the mixed
model equations for sire models [32] and calculated sire effects as a weighted
sum of genetic group effects plus the animals’ genetic deviations from this
expectation. This method of grouping base animals was extended to animal
models by Robinson [33] and Westell et al. [44].

The general linear mixed model including genetic groups [31] is:

y = Xb + ZQg + Zu + e, (1)

where y is a vector of phenotypes, b is a vector of fixed effects, g is a vector
of fixed base animal genetic group effects (due to unit of origin), u is a vec-
tor of random genetic effects expressed as a deviation from the expectation of
each animal’s genetic group, and e is a vector of residuals. Incidence matrices
X and Z relate phenotypes to specific combinations of fixed and random ge-
netic effects, respectively, and Q specifies the expected proportion of genes in
each animal arising from the various genetic groups. In Q, base animals have
a 1 in the column corresponding to the group in which they originated and 0
otherwise; descendants of base animals have coefficients which sum to 1.0 and
describe the fractional contribution of each genetic group to their ancestry. The
assumed distribution of random effects in this model is:

y
u
e

 ∼ N



Xb + ZQg

0
0

 ,

ZAZ′σ2

a + Iσ
2
e ZAσ2

a Iσ2
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e 0 Iσ2
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where A is the numerator relationship matrix, σ2
a is the additive genetic vari-

ance, and σ2
e is the residual variance. Estimates of g and predictions of u are

obtained as solutions to the resulting mixed model equations:[
Q′Z′MZQ Q′Z′MZ
Z′MZQ Z′MZ + λA−1

] [
g
u

]
=

[
Q′Z′My
Z′My

]
, (3)

with:
M = I − X(X′X)−X′

to adjust for (or absorb) fixed effects included in b and where λ is the variance
ratio σ2

e/σ
2
a. Predicted breeding values (ûG) are functions of estimated genetic

group effects and random predictions of breeding value deviations so ûG =

Qĝ + û. Estimability of group differences depends on whether genetic groups
are connected across levels of other fixed factors such as management unit,
year or season.

Many genetic evaluations utilize the simpler linear mixed model:

y = Xb + Zur + e,

where y, b, e, X, and Z are as previously defined and the random breeding
values, ur, are no longer expressed as deviations from genetic group means.
The distribution of random effects for this model is:

y
ur

e
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 .

This model assumes that base animals are randomly sampled from a common
population. The mixed model equations used to predict breeding values in this
reduced model are:

(Z′MZ + λA−1)ur = Z′My, (4)

and do not account for fixed genetic differences in unit means.
The error variance of genetic predictions in models that include or exclude

genetic groups is of particular importance. In a model without groups, the pre-
diction error variance (PEV) of predicted breeding values is a function of the
inverse of the coefficient matrix:

Cuu = (Z′MZ + λA−1)−1σ2
e . (5)

In a model with groups, breeding values are a function of both fixed genetic
groups and random genetic deviations, and the PEV of breeding values is:

Var(ûG − uG) = Var(Qĝ + û −Qg − u). (6)
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If 
C11 C12

C′12 C22

 (7)

is a generalized inverse of the partitioned coefficient matrix in (3), then
from [12] the PEV in (6) is:

(QC11Q
′ + C′12Q′ +QC12 + C22)σ2

e . (8)

The accuracy of estimation of fixed group effects can have a large impact on
the accuracy of genetic evaluation. If the PEV of random breeding values as
a deviation from group means (C22 σ

2
e) is of similar magnitude to the PEV

of breeding values in a model excluding genetic groups (5), the PEV of the
breeding values in a groups model is increased by (QC11Q′+C′12Q′+QC12)σ2

e
where C11 σ

2
e is the error variance of fixed group effects. Unlike the situation

for random genetic deviations in which PEV must be less than the additive
variance, the error variance of fixed genetic group effects may approach σ2

e
when the number of observations per group is small or connections are poor.
Accuracy of evaluation under this model thus strongly depends on the number
of animals in each group and the connectedness among groups.

2.2. Comparison of models with and without genetic groups

In order to compare alternative models, Kennedy [15] derived the expecta-
tion of bias in sire evaluation when a model without genetic groups was used
but group differences exist. The mean square error (MSE) from the model
without genetic groups equals the sum of the squared bias and the PEV of
the breeding values and could be compared to the MSE from a groups model
(which is equal to the PEV since there is no bias) to determine which model
is preferred for a given data set. When there were only two genetic groups,
the model without genetic groups had lower MSE as long as the true genetic
difference between groups was less than the standard error of the difference in
group solutions from the groups model. These results cannot be extrapolated
to data sets with more than two genetic groups, but this comparison can be
used as a criterion for whether or not to include groups in genetic evaluation
models.

The bias from fitting a model without genetic groups when fixed genetic
group effects exist was derived by Foulley et al. [6] for an animal model [44].
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Using expectations in (2) and the vector of breeding values (ûr) from (4):

E(ûr) = E[(Z′MZ + λA−1)−1Z′My)]

= (Z′MZ + λA−1)−1Z′M[E(y)]

= (Z′MZ + λA−1)−1Z′M(Xb + ZQg)

= (Z′MZ + λA−1)−1Z′MZQg.

The bias in ûr is then:

E(ûr) − E(uG) = [(Z′MZ + λA−1)−1Z′MZ − I]Qg. (9)

The magnitude of this bias is a primary consideration when deciding whether
to fit a groups model. If genetic groups are not fit, connectedness among units
will reduce bias in EBV differences between animals born in different units,
even if the units originally had different genetic means. The bias in EBV dif-
ferences between animals in separate units will always be less than or equal
(when units remain disconnected) to the original difference in unit genetic
means. Fitting genetic groups eliminates bias but increases the prediction er-
ror of breeding values (8). Therefore, if the squared bias from fitting a model
without groups is lower than the increased prediction error from fitting a model
with groups, a model without genetic groups may be preferred.

If minimization of MSE is the goal, both Tong et al. [40] and Kennedy [15]
imply that connections between subunits or regions are critical to lower stan-
dard errors of group solutions or potential bias when genetic groups are not
included in the model. Both studies recommend that genetic groups not be
fit until connections have been established and suggest reciprocal semen ex-
change involving 25 to 50% of the matings in two management units for best
results in a single generation. As stated by Foulley et al. [6] relative to ge-
netic evaluation without groups, “the bias removal ability of a model cannot
be discussed irrespective of the degree of connection”.

Bias and PEV of prediction under alternative models are both sensible cri-
teria in choosing whether or not to fit genetic group effects, as long as base
animals can properly be assigned to groups. Unfortunately, specifying the ori-
gin of base animals can be difficult, especially under extensive management
with mainly natural-service matings. For instance, sheep flocks that partici-
pate in genetic evaluation programs often purchase sires from flocks that do
not participate in the program, but in insufficient numbers to allow accurate
estimation of genetic group effects for these flocks. Base animals purchased
from other flocks may likewise be mistakenly assigned to the flock in which
they first appear, and complex grouping strategies may lead to unsuspected
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confounding with other fixed effects such as birth year [31]. Given this issue,
and the fact that connectedness is relatively low in most sheep flocks, genetic
grouping by flock of origin is probably not a currently viable option in sheep
evaluation in many countries. Instead, unbiased prediction of breeding values
relies on the capacity of genetic connections among units to properly account
for effects of flock of origin.

Similar complications in defining genetic groups can be envisioned in beef
cattle evaluations; the extent would vary among breeds depending on the his-
tory of recording and the extent of AI. However, if programs for genetic evalu-
ation in commercial herds [42] and across breeds [8] using data from crossbred
animals expand, grouping issues will become more important. Current use of
genetic groups in beef cattle evaluation generally consists of grouping base
animals by time of entry into the data set to accommodate breed-wide genetic
trends (Simmental; R.L. Quaas, personal communication) or grouping base
animals according to their breed.

2.3. Connectedness

2.3.1. Comparing and using animals across subpopulations

Schemes to facilitate comparisons of animals from different management
units generally involve either: (1) direct comparisons in central testing sta-
tions; or (2) use of reference sires across management units with subsequent
statistical elimination of unit effects. In the USA, numbers of test stations have
declined, and those that remain do not have capacity or opportunity to com-
pare animals from all possible production units. Due to cost, differing environ-
mental factors among stations (with possibility of genotype by environment
interactions), and non-random selection of candidates, test stations alone can-
not provide accurate comparisons of animals with different origins [1], and
programs that promote germplasm exchange will be required.

A balance in progeny numbers among sires must be achieved when utilizing
reference sires to provide connections among units. Reference sires must have
enough progeny to permit accurate comparisons of animals across units, yet
sires born within units must have enough progeny to allow an accurate progeny
test. Large units have an advantage in that both of these goals can be more
easily achieved [14]. If lowering the PEV of young sires produced within units
is the main objective [14, 36], use of reference sires in the breeding program
may be counterproductive and will necessarily increase the PEV of the young
sires [36].
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Individual animal PEV is not a sufficient measure of risk in comparing an-
imals across units and does not reflect potential bias in models that exclude
genetic groups or increased error associated with fitting genetic groups. A
better criterion to optimize numbers of progeny for reference and unproven
sires in group breeding schemes is the PEV of comparisons between animals
(or groups of animals) from different units. When the PEV of differences be-
tween units is used to indicate connectedness, large numbers of reference sire
progeny (20 to 45% of the total number of progeny produced) were required
to accurately compare animals across units [5, 26].

Connectedness among flocks or herds allows producers to identify animals
that are potentially better than their own. However, producers are often hesitant
to purchase seedstock from other sources in order to establish connectedness,
even though several studies have documented the benefits of increasing con-
nectedness, primarily through group breeding schemes such as sire referencing
schemes. These schemes involve an agreement by breeders to mate a predeter-
mined portion of their females to a common set of selected males. Simulation
studies have shown that cooperative sire referencing schemes can improve ge-
netic gain by 30 to 35% compared to within-unit selection programs while
also improving accuracy of comparisons between units and slowing inbreed-
ing [10,23,34]. Genetic differences among units are not required for increased
gain if the number of breeding females is low in some of the member units [23]
because the likelihood of producing extreme individuals is smaller in small
(< 100 female) units. Also, selection intensity can be dramatically increased
by selecting animals across all flocks in the scheme.

Miraei Ashtiani and James [27] and Hanocq et al. [10] both showed that if
management units differ in average genetic merit, the rate of genetic change in-
creased most rapidly when the units first became connected as units with lower
mean breeding values increased use of animals from units with higher mean
breeding values. As a result, overall genetic gain in the system improved, with
higher average gains in units with low initial genetic merit. Both studies sug-
gest that average genetic gain across all units will subsequently slow over time
as units become homogenized. However, if differences between units were mi-
nor and the units were large (> 300 progeny/yr), rates of gain were relatively
unchanged by implementation of sire referencing schemes [27].

Smith and Banos [38] analytically predicted genetic responses from com-
bined selection across and within units. Their results were in agreement with
conclusions of simulation studies. If units are small, combined selection in-
creases potential for genetic gain. If units differ in initial genetic mean,
poorer units will catch up with better units after a few generations due to
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Table I. Examples of establishing whether 2-factor (management unit by sire) data
designs are connected using a pathway method (boxes). Each cell contains a count of
the number of progeny (n) of a sire i in unit j.

Connected data
Sire 1 Sire 2 Sire 3 Sire 4

Unit 1 n11 n21

Unit 2 n22

Unit 3 n23 n33 n43

Unit 4 n34

Disconnected data
Sire 1 Sire 2 Sire 3 Sire 4

Unit 1 n11 n21

Unit 2 n12 n22

Unit 3 n33 n43

Unit 4 n34 n44

homogenization. These results assume that producers adopt a common breed-
ing objective and continue to participate in the scheme once it becomes clear
which flocks or herds are superior.

2.3.2. Measuring connectedness

For fixed effects, determination of connectedness involves assessing
the estimability of linear functions of fixed effects in n-way cross-
classifications [4, 29, 43]. For two factors, this may be achieved by “tracing”
a perpendicular path between nonzero cells in a two-way table (e.g., the X′Z
matrix), as demonstrated in Table I. In the connected set, sire 3 is connected
to sire 1 because each is directly compared to sire 2. However, in the discon-
nected set, sires 1 and 2 are neither directly nor indirectly compared to sires 3
and 4.

Foulley et al. [6] were the first to develop a continuous, quantitative measure
of connectedness. The authors’ goal was to develop a measure ranging from
0 to 1 in which the two extremes represent either a completely balanced data
set or one with at least two disconnected subsets. To measure connectedness
in a vector of contrast coefficients, x, they proposed a connectedness index
(IC; [22]):

IC(x) = x′CRx/x′CFx,

where CR is a portion of the inverse coefficient matrix in some “reduced
model” (e.g., Cuu in (5)) and CF is a portion of the inverse coefficient matrix
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for the same data from some “full model” (e.g., in C22 (7)). The reduced model
would be formed by removing some set of factors (e.g., groups) from the full
model. Foulley et al. [6] hypothesized that more connected data sets are more
nearly orthogonal. If two factors are orthogonal to each other, no bias is intro-
duced by removing one of the factors from the model. If a random factor is
completely orthogonal to a fixed factor removed from a reduced model, PEV
is the same for the random effects in both the full and the reduced models,
quadratic forms based on the full and reduced inverse coefficient matrices will
be equivalent, and will equal one. This statistic does not account for the amount
of information (i.e., number of progeny records) in the analysis.

In addition to IC(x), Foulley et al. [6,7] developed a statistic (γ) to measure
connectedness for an entire design:

γ =

[ |CR|
|CF|
] 1
n

,

where n is the column rank of incidence matrices for CR and CF. This ratio
of determinants of inverse coefficient matrixes of reduced and full models was
developed using the Kullback-Leibler [19] distance between the joint density
of the maximum likelihood estimators of all the effects in the full model and
the product of the marginal densities of the effects removed from, and remain-
ing in, the reduced model. If the marginal densities were orthonormal to one
another, their product would be equal to the joint density of both sets of effects,
and the Kullback-Leibler distance would be zero. Like, γ equals 1 if effects re-
moved from the full model are orthogonal to effects remaining in the reduced
model. Foulley et al. [6, 7] suggest evaluating γ using the inverse coefficient
matrix of genetic group effects in models with and without some set of non-
genetic fixed effects (e.g., herd). This measure is undefined if some genetic
group differences are not estimable since CF cannot be calculated. The value
of γ increases as cross-classification between groups and other fixed effects
improve.

While orthogonality of data is desirable, Laloë [20] argued that a measure
of precision was more appropriate in determining whether animals could be
compared across different units and proposed the coefficient of determination
(CD) for a breeding value contrast vector (x) as a measure of precision:

CD(x) = 1 − λ(x
′Cuux)
x′Ax

=
x′(A − λCuu)x

x′Ax
(10)

where Cuu is the random effects portion of the inverse coefficient matrix for
a model without genetic groups (5). The CD of a contrast between animals
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or sets of animals in different management units would then provide a mea-
sure of their connectedness. Laloë [20] also developed two overall measures
of connectedness using the ratio of quadratic forms in (10) and relating them
to eigenvalues (µi) and eigenvectors (ci) resulting from the solutions of:

[(A − λCuu) − µiA]ci = 0.

The number of eigenvalues is equal to the number of breeding values being
predicted. The smallest eigenvalue will always be zero; other eigenvalues cor-
respond to all possible independent contrasts. The proposed statistics [20, 22]
are functions of these eigenvalues:

ρ1 =

n∑
i=1

µi
n − 1

and ρ2 =


n∏
i=2

µi

 .
Like IC and γ, these statistics range from 0 to 1 with low values indicating
low precision in comparing animals across fixed-effect classes. If more than
one eigenvalue is zero, indicating that at least one contrast is uninformative,
ρ2 will be zero. These statistics have generally been applied to models without
genetic groups [9, 22]. The authors argue that as contrasts between animals in
different units become more precise, the genetic mean difference between the
units is better estimated. The vector of contrasts used in CD(x) could be the
average of the breeding values in one unit minus the average of the breeding
values in another unit; CD will be zero if the mean difference is not estimable.

A third connectedness statistic based on the coefficient matrix was proposed
by Kennedy and Trus [17]. They contended that the MSE of prediction of dif-
ferences between candidates for selection was the most logical measure of con-
nectedness. This MSE could be calculated from both a genetic groups model
(PEV) and a model without groups if differences between genetic groups (PEV
plus squared bias) are known, as discussed earlier in this article. If genetic
group effects are negligible and therefore excluded from the model, the PEV
of a contrast (x) is:

PEV(x) = x′Cuuxσ2
e .

Unlike other proposed measures, PEV(x) is not restricted in range, but is
closely related to CD [20]. However, CD may be easier to interpret because
it is restricted to a range of 0 to 1 and scaled by the change in the additive
variance of the true breeding values (x′Ax) in the contrast due to relationships
among animals involved in the contrast.

These three sets of measures (IC or γ; CD or ρ1 and ρ2; and PEV(x))
are the primary theoretical connectedness statistics from the literature.
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Laloë et al. [22] evaluated the merits of all three approaches for a model with-
out genetic groups using analytical criteria to determine which had the most
favorable properties for evaluating connectedness. Properties of IC and γ were
evaluated when the reduced model included random genetic effects only and
the full model included fixed effects of management unit. The authors defined
connectedness between random effects by stating that a random factor is dis-
connected when at least one contrast between its levels (i.e., animal breeding
values) has a null CD. Using a small example, they show that neither PEV(x)
nor IC can exhibit complete disconnectedness. The PEV(x) approach gives
different results than the CD method because the reduced variability in true
breeding values due to relationships is not accounted for in the contrast. The
authors state that PEV(x) can be thought of as a measure to test the null hypoth-
esis that the contrast (x) is zero, while the CD measures the power in testing
whether the contrast is different than zero. The γ statistic is never null when
calculated as in this study. Both CR and CF are always positive definite because
random effects are always estimable. The authors show that under certain data
structures, γ is highest when there is a minimal amount of data and decreases
as the number of progeny per sire increases. Values of γ and IC equal one when
data are perfectly balanced. This situation may be desirable in early stages of
genetic evaluation, but it is impossible to make genetic progress and maintain
this balanced condition since every sire would have to be equally represented
in every contemporary group. The CD measures, on the other hand, account
for both the amount of information in the data and its structure. The authors
caution that designing programs to increase connectedness by increasing CD
or IC, or by lowering PEV(x), can decrease genetic progress due to lower se-
lection intensity.

The conclusions of Laloë et al. [22] are helpful in evaluating connected-
ness statistics. The IC and γ statistics would necessarily indicate decreasing
connectedness as selection occurs within the system since only a sample of
individuals will be chosen as parents. Both favor balanced data, and may be
useful in early stages of genetic evaluation when the objective is to compare
genetic means of different management units by exchanging sires. The PEV(x)
and CD methods can give different results when comparing animals between
units if there are related animals in both units, but will probably lead to the
same general conclusions regarding connectedness. In fact, all of these con-
nectedness measures have been shown to be highly correlated in field data [13].
The overall connectedness measures (γ or ρ1 and ρ2) may be useful for group
leaders or scientists overseeing genetic evaluation programs, but are of little
use to individual producers who are trying to increase connectedness to other
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units in the system. Calculation of these statistics requires all elements of the
inverse coefficient matrices and thereby requires extensive computing time for
large-scale genetic evaluations.

Several alternative statistics have been proposed to decrease the computing
time required to assess connectedness. Kennedy and Trus [17] suggested us-
ing the variance of differences between estimates of the environmental effects
of management units (e.g., herds), which was highly correlated to the average
PEV of differences between animals in different herds in a small example data
set. Bunter and Macbeth [2] developed this idea further by evaluating the vari-
ance of estimated differences in genetic group effects when fitting a model that
included genetic groups. Their extension to genetic groups is sensible given
the relationship of the variance in group differences to the MSE mentioned by
Kennedy [15], but it relies on fitting a model with genetic groups, which may
be problematic given difficulties in assigning base animals to genetic groups.

Recognizing that the prediction error covariance (PEC) between two ani-
mals’ predicted breeding values would be zero if they were not connected,
Lewis et al. [24] proposed the correlation of breeding value prediction errors
(ri j) as a pairwise connectedness statistic:

ri j =
PEC(ûi, û j)√

PEV(ûi)PEV(û j)
, (11)

where ûi is the estimated breeding value of the ith animal. They suggested
averaging this statistic for all pairs of animals in different management units
to evaluate connectedness between units. Mathur et al. [25] proposed a similar
correlation statistic, the connectedness rating (CR), to measure connectedness
but replaced prediction error (co)variances of breeding values in (11) with error
(co)variances of management unit estimates (ĥi):

CRi j =
Cov(ĥi, ĥ j)√
Var(ĥi)Var(ĥ j)

· (12)

This measure was less dependent on herd size than the variance of the differ-
ence in herd effects of Kennedy and Trus [17]. Other connectedness measures
involving counts of direct links between test station groups [35] or manage-
ment units [41] have also been suggested, but the statistical properties of these
measures are strongly dependent on data structure.

It is difficult to determine which connectedness measure is most easily un-
derstood and useful to individual producers. In general, no level of sufficiency
has been determined for connectedness statistics. The MSE [15] quantifies risk,
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but cannot be calculated in practice under a non-groups model because the bias
due to potential differences in genetic means among units is unknown. Yet, it
is the risk of bias due to these differences in genetic means that must be ad-
dressed when making across-unit selection decisions. This risk is a function
of the magnitude of genetic differences among units and the capacity of the
breeding design and analytical model to account for these differences. Thus,
an optimal connectedness measure would allow producers to quantify the pro-
portion of potential bias present in comparisons of predicted breeding values
between sets of animals.

3. METHODS

In order to identify strategies to establish connectedness and reduce poten-
tial biases in breeding value predictions between animals from different flocks
(or herds), several small scenarios were developed. Each scenario involved
two fixed management units with the goal of determining the best strategy to
compare breeding values of sires originating within each group (“homebred”
sires) and minimize bias in prediction of differences in their breeding values.
Obviously, the most accurate comparison would be to progeny test homebred
sires from each flock in the same contemporary group. However, producers
may be more hesitant to exchange rams of unknown relative merit than to use
some agreed-upon linking sire(s) in both units. Therefore, either a common
reference sire or a pair of related sires was used to link flocks in a single gener-
ation. Each scenario was examined with two heritabilities (0.25, 0.5) and three
different proportions of progeny produced from linking sires (50, 33, or 20%).
The scenarios were:

(1) Reference sire model with three sires (RS3) such that each flock used one
homebred sire with a reference sire used in both flocks;

(2) Reference sire model with five sires (RS5) such that each flock used two
homebred sires (in equal proportion) with, again, a reference sire used in
both flocks;

(3) Full-sib model (FULL) with four sires where each flock used one homebred
sire and one of a pair of full-sibling sires, and with the other full-sibling sire
used exclusively in the other flock;

(4) Half-sib model (HALF) with four sires, which is the same as FULL except
that linking sires were half-sibs.

Although each scenario was compared with 50, 33, or 20% of progeny in each
flock born from the linking sires, individual linking sires in the FULL and
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HALF strategy produced progeny in only one flock and had half as many total
progeny across the two flocks as the linking reference sires in RS3 and RS5.

In each scenario, the number of progeny per flock varied from 0 (where all
statistics were calculated as though there were no information through progeny
records) to 100, inclusive of all possible values in between. To analytically
derive expected bias and connectedness statistics, relevant matrices for each
scenario were set up using mixed model equations under a sire model. Within
each flock, all progeny were assumed to be evaluated in a single contempo-
rary group. Bias associated with predictions of differences in average breeding
values of homebred sires was calculated as a percentage using equation (9),
adjusted for a sire model. Each of the two flocks was assumed to represent
a different genetic group; the true breeding values of homebred sires thus in-
cluded their flock’s genetic group effect. Values for flock genetic group effects
were chosen such that the bias when comparing sires across flocks was one
unit when no progeny information was available from connecting sires. The
reduction in bias with increasing progeny information could thus be expressed
as a percentage decrease in bias. Sires were not assigned breeding values since
no phenotypic information is required to derive bias in (9). Linking sires came
from a third genetic group; empirically, the magnitude of the differences be-
tween this third group and the genetic groups of the homebred sires has no
effect on bias in comparing homebred sires.

Connectedness statistics for each scenario included the CD (10) of the mean
difference in predicted breeding values of homebred sires, the connectedness
correlation (ri j) (11) of these mean differences, and the connectedness rating
(CRi j) (12) of the flock solutions. Homebred sires were unrelated, so PEV(x)
was directly proportional to CD and was therefore not calculated. Connected-
ness measures were plotted against the percentage of remaining bias, as mea-
sured by equation (9), with respect to the number of progeny per flock. All
these measures have the same range (0 to 1) and could therefore be compared
on the same scale.

4. RESULTS

As expected, the percentage of bias remaining between breeding value pre-
dictions for homebred sires decreased at a decreasing rate as the number of
progeny per group increased (Fig. 1). Across scenarios, higher heritability was
associated with less bias at a fixed number of progeny.

Allocation of more progeny to reference sires also reduced the bias of com-
parisons between homebred sires (Tab. II). Although reductions in bias were
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Figure 1. Proportionate change in the bias of the difference between average predicted
breeding values of homebred sires in different management units with changing num-
bers of progeny. Fifty percent of the progeny are from linking sires. Scenarios are
RS3 (closed square), RS5 (open square), FULL (closed triangle) and HALF (open
triangle).

markedly lower with 20% linking sire progeny, differences in bias reductions
when 50 vs. 33% of progeny were from linking sires were minor. Reducing
the number of progeny from homebred sires would, however, correspondingly
increase the PEV of predicted differences in their breeding values. The design
that maximizes the overall accuracy of comparison of homebred sires thus de-
pends on the size of genetic differences between flocks.

For a single homebred sire in each flock, use of a common reference sire
was more advantageous than use of related sires (Fig. 1). With infinite num-
bers of progeny, linkages arising from use of a single full-sibling (FULL) or
half-sibling (HALF) pair of sires will reduce bias by at most 66.7 and 57.1%,
respectively. In contrast, use of a common reference sire will result in even-
tual complete removal of bias, but only with large numbers of progeny. If the
lines from Figure 1 are extended, using the same methodology (Eq. (9)), for
scenarios when 50% of progeny are from reference sires (RS3), 540 and 252
progeny per flock are required to reduce bias by 90% at heritabilities of 0.25
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Table II. Proportion of initial bias in the comparison of EBV of homebred sires across
flocks at fixed flock sizes remaining when the proportion of progeny from linking sires
is varied (h2 = 0.25).

Linking Flock Percentage of progeny from linking sire
strategya progenyb 50 33 20

RS3 30 0.67 0.69 0.76
60 0.50 0.53 0.61
90 0.40 0.43 0.51

RS5 30 0.80 0.82 0.86
60 0.67 0.69 0.76
90 0.57 0.60 0.68

FULL 30 0.71 0.73 0.78
60 0.60 0.62 0.67
90 0.54 0.56 0.61

HALF 30 0.73 0.75 0.79
60 0.64 0.65 0.70
90 0.59 0.60 0.64

a See text for definitions.
b Total number of progeny born in each flock.

and 0.50, respectively. Scenario RS5 required exactly twice as many progeny
to reach the same level of bias reduction as RS3.

Figure 2 shows the relationship of each of the connectedness measures to the
proportion of bias explained for scenarios RS3, FULL, and HALF. The num-
ber of progeny per flock was increased in units of 10, with 50% of progeny
from linking sires for a trait with heritability 0.25. Within a scenario, connect-
edness measures were highly correlated (greater than 95%) to the proportional
reduction in bias. However, only CD maintained this relationship with bias
across scenarios, regardless of the heritability or the proportion of progeny
from linking sires in each contemporary group. The same relationship also
held for scenario RS5 as long as the CD was based on the mean difference
between homebred sires in each flock (rather than the differences between in-
dividual homebred sires). The CD was a direct measure of the proportional
reduction in bias; one minus CD equaled the proportional amount of the dif-
ference in genetic groups that persists as bias in EBV differences. In contrast,
values of ri j and CRi j varied depending on the type of connection. In scenario
HALF, ri j and CRi j were approximately 60 and 75% less than in RS3 at an
equivalent level of bias.
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5. DISCUSSION

In advising producers on methods to link their units in ways that will min-
imize risk associated with potentially different genetic means among units,
our results clearly show that mating at least one-third of breeding females to
common linking sires results in nearly optimum levels of bias reduction; allo-
cating one-half of the flock to linking sires is probably not necessary. Results
are somewhat sobering, however, in that even with 100 progeny per unit, bias
remains at 37.5% or higher for a moderately heritable trait (0.25) with 50%
of progeny from a common reference sire. Thus small producers would likely
have to maintain the linking process across several years to be successful [18].

The scenarios FULL and HALF performed surprisingly well given the rela-
tively low relationships between linking sires (0.50 and 0.25, respectively). At
least part of this result was due to the siblings originating in the same genetic
group; this assumption essentially increased their relationship beyond that pre-
dicted from their within-flock probability of identity by descent. Linking units
through use of sibling sires is an option for very small flocks or herds, but if
the total number of progeny is greater than 20 to 30, use of common reference
sires has a distinct advantage. Also, when flocks are small, reduction in poten-
tial bias between flocks is difficult regardless of the linking strategy. Although
the results were not shown, use of multiple sets of siblings as linking sires im-
proved the quality of connections between units. This option may be practical
in some larger sheep flocks where AI and sire transport are limiting. A refer-
ence sire approach would still be preferable. Multiple reference sires offered
no advantage in bias reduction over a single reference sire (other than reducing
the risk of an infertile male). Although we considered only sire models, dam
relationships and retained female progeny would also enhance connectedness
but likely cannot substitute for direct sire linkages.

If producers wish to use multiple homebred sires (i.e., RS3 vs. RS5), the
quality of the connections established by linking sires will suffer, and less po-
tential bias in differences between means of homebred sires produced in dif-
ferent units will be explained. This somewhat unexpected result is probably
caused by lower numbers of progeny from individual sires. Only half the num-
ber of progeny per homebred sire was produced in the RS5 scenarios relative
to the RS3 scenarios. Predicted breeding values of individual homebred sires
were therefore less accurate resulting in less reduction in bias between animals
from the two genetic groups of interest (flocks). Allocating higher proportions
of females to linking sires and, if possible, increasing flock size is important
when several homebred sires are to be compared among flocks. For a constant
number of progeny per homebred sire, this relationship tends to remove effects
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of flock size on bias reduction since large flocks generally attempt to evaluate
more homebred sires. In Figure 1, the bias remaining under the RS5 scenario
(two homebred sires per flock) at a flock size of n is the same as that remaining
under the RS3 scenario (one homebred sire per flock) at a flock size of 0.5n.

When group effects are not fitted but fixed genetic differences are present,
only CD had a consistent relationship with bias reduction across all scenar-
ios tested. These results agree with the theoretical derivation of Laloë and
Phocas [21]. The one-to-one relationship of CD with bias reduction is very
desirable and relatively easy to explain to producers. Within a scenario, both
ri j and CRi j were highly correlated with level of bias and increased monoton-
ically as bias was reduced, but the values of these statistics associated with a
given level of bias differed for different linking strategies.

The CD is difficult to calculate for routine genetic evaluation due to storage
and processing time required to calculate the inverse of the coefficient matrix
and the (non-inverted) relationship matrix, so further development of connect-
edness measures should focus on measures that are highly correlated to CD.
The PEV of a contrast of mean differences can be obtained using matrix ab-
sorption [24] and has a strong relationship with CD, and is thus a potential
alternative connectedness measure. The connectedness correlation (ri j) varied
proportionally less among scenarios than CRi j and also warrants further con-
sideration to describe within-system changes in connectedness (for instance
over a period of years [18]).

Application of these results relies on producers’ willingness to connect their
flocks or herds in order to take advantage of their combined genetic resources.
If producers establish links with other units but do not take advantage of the
results, there is no value to establishing connections. Establishing connections
takes effort, lowers accuracy (increases PEV) of comparisons of homebred
sires, and potentially reduces selection intensity within individual units. How-
ever, increasing connectedness can result in several benefits to both the com-
mercial and seedstock portions of the industry. In the short term, commercial
and smaller seedstock producers can identify which flocks or herds produce
animals with the highest merit, without management practices masking the
differences. Overall, the whole industry can make more rapid change as a re-
sult. In the long term, if seedstock producers are willing to cooperate under a
common breeding objective, they can achieve higher overall gains and over-
come any losses in selection accuracy and intensity that may result from their
establishing strong connectedness.
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