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Abstract – S100 proteins are calcium-binding proteins, which exist only in vertebrates
and which constitute a large protein family. The origin and evolution of the S100 family
in vertebrate lineages remain a challenge. Here, we examined the synteny conservation of
mammalian S100A genes by analysing the sequence of available vertebrate S100 genes in
databases. Five S100A gene members, unknown previously, were identified by chromo-
some mapping analysis. Mammalian S100A genes are duplicated and clustered on a single
chromosome while two S100A gene clusters are found on separate chromosomes in teleost
fish, suggesting that S100A genes existed in fish before the fish-specific genome duplication
took place. During speciation, tandem gene duplication events within the cluster of S100A
genes of a given chromosome have probably led to the multiple members of the S100A
gene family. These duplicated genes have been retained in the genome either by
neofunctionalisation and/or subfunctionalisation or have evolved into non-coding
sequences. However in vertebrate genomes, other S100 genes are also present
i.e. S100P, S100B, S100G and S100Z, which exist as single copy genes distributed on
different chromosomes, suggesting that they could have evolved from an ancestor
different to that of the S100A genes.

chromosome mapping / S100 / genome duplication / synteny / vertebrate

1. INTRODUCTION

S100 proteins constitute the largest gene family within the EF-hand protein
super-family. In 1965, Moore isolated from bovine brain the first protein mem-
bers of the S100 family: S100A1 and S100B [17]. In the following years, many
other members of the S100 family were identified based on sequence homology
and similar structural properties. For example, the human S100 family includes
20 members, which share 22% to 57% sequence identity [13]. S100 proteins are
small acidic proteins (9–14 kDa) and contain two distinct EF-hand motifs. The
C-terminal EF-hand contains a classical Ca2+-binding motif, common to all
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EF-hand proteins while the N-terminal EF-hand differs from the classical
EF-hand motif and constitutes a special characteristic of the S100 proteins.

S100 proteins exhibit a unique pattern of tissue/cell type specific expression
and exert their intracellular effects by interacting with different target proteins
that modulate their activity [5,23,31]. Two well-known pairs are S100A11-
annexin A1 and S100A10-annexin A2 [9,20,24,25,27] and recently, interaction
between S100A11 and annexin A6 has also been reported [3]. Until now, over
90 potential target proteins have been identified [23]. Many studies have
observed an altered expression of various S100 proteins in a large number of
diseases including cancer, depression, Down syndrome, Alzheimer disease
and cystic fibrosis [1,13,14,26,28,29]. Therefore, S100 proteins could constitute
important diagnostic markers as well as therapeutic targets of many diseases.

All known S100 genes are found only in vertebrates and no S100-like
sequences have ever been detected in invertebrates such as insects, nematodes
and protozoa based on the analysis of available genome sequence information.
This suggests that the genes encoding S100 proteins belong to a ‘‘young’’ gene
family i.e. that originated during vertebrate evolution. Interestingly, because of
the short phylogenetic history and the conservation of the S100A gene cluster
in man and mouse [21], their origin in the vertebrate lineages remains a chal-
lenge. Moreover, in non-mammalian systems such as fish species, information
on the S100 gene family evolution and genomic organisation is very scarce
and only a few S100 gene members have been identified [7]. In this work,
we analysed S100 gene sequences of various vertebrates including mammals
and fish from available databases using both comparative genomics and phylo-
genetic methods, and we present a model of the molecular evolution of the
S100 genes, which contributes to a better understanding of the mechanisms of
evolution and biological functions of the S100 gene family.

2. MATERIALS AND METHODS

2.1. Sequences and positions on the chromosomes or assembly scaffolds

Asearch in theGenBank andEnsembl databases (v39) provided 118 sequences
of the S100 gene family from seven mammals whose genomes have been
sequenced. In addition, using human S100 gene sequences as query sequences,
orthologous sequences were found for three teleost fish, Danio rerio, Takifugu
rubripes (Japanese pufferfish), Tetraodon nigroviridis (freshwater pufferfish).
The complete list of the S100 mammalian and fish sequences compiled in this
study together with gene names and accession numbers are given in Table I.
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Table I. Vertebrate S100 genes available from NCBI and Ensembl databases.

Organism Gene/code Accession No. Organism Gene/code Accession No.

Homo sapiens S100A1 NP_006262 Pan troglodytes S100a11 ENSPTRG00000001303

S100A2 NP_005969 S100a12 ENSPTRG00000001346

S100A3 NP_002951 S100a13 ENSPTRG00000022794

S100A4 NP_002952 S100a14 ENSPTRG00000024364

S100A5 NP_002953 S100a15 ENSPTRG00000001349

S100A6 NP_055439 S100a16 ENSPTRG00000023848

S100A7 NP_002954 S100b ENSPTRG00000014026

S100A8 NP_002955 S100g ENSPTRG00000021699

S100A9 NP_002956 S100p ENSPTRG00000015887

S100A10 NP_002957 Danio rerioa z55514 ENSDARG00000055514

S100A11 NP_005611 z15543 ENSDARG00000015543

S100A12 NP_005612 z25254 ENSDARG00000025254

S100A13 NP_005970 a55589 ENSDARG00000055589

S100A14 NP_065723 z36773 ENSDARG00000036773

S100A15 NP_789793 z37425 ENSDARG00000037425

S100A16 NP_525127 z09978 ENSDARG00000009978

S100B NP_006263 z38729 ENSDARG00000038729

S100G NP_004048 z57598 ENSDARG00000057598

S100P NP_005971 Takifugu rubripesa f129020 NEWSINFRUG00000129020

S100Z NP_570128 f127285 NEWSINFRUG00000127285

Pan troglodytes S100a1 ENSPTRG00000001355 f152973 NEWSINFRUG00000152973

S100a2 ENSPTRG00000001354 f141424 NEWSINFRUG00000141424

S100a3 ENSPTRG00000001353 f137581 NEWSINFRUG00000137581

S100a4 ENSPTRG00000001348 f137599 NEWSINFRUG00000137599

S100a5 ENSPTRG00000001352 f136068 NEWSINFRUG00000136068
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Table I. Continued.

Organism Gene/code Accession No. Organism Gene/code Accession No.

S100a6 ENSPTRG00000001351 f159674 NEWSINFRUG00000159674

S100a7 ENSPTRG00000001350 f163415 NEWSINFRUG00000163415

S100a8 ENSPTRG00000001347 f159852 NEWSINFRUG00000159852

S100a9 ENSPTRG00000001345 f156133 NEWSINFRUG00000156133

S100a10 ENSPTRG00000001302 f165637 NEWSINFRUG00000165637

Monodelphis domestica S100a1 ENSMODG00000017368 Mus musculus S100b ENSMUSG00000033208

S100a3 ENSMODG00000017395 S100g ENSMUSG00000040808

S100a4 ENSMODG00000017397 S100z ENSMUSG00000021679

S100a5 ENSMODG00000017400 Tetraodon nigroviridisa t44001 GSTENG00033944001

S100a8 ENSMODG00000017403 t30001 GSTENG00025230001

S100a9 ENSMODG00000017406 t25001 GSTENG00005225001

S100a10 ENSMODG00000018919 t75001 GSTENG00032575001

S100a11 ENSMODG00000018920 t87001 GSTENG00032587001

S100a12 ENSMODG00000017410 t45001 GSTENG00033945001

S100a13 ENSMODG00000017387 t22001 GSTENG00013622001

S100a14 ENSMODG00000017390 t60001 GSTENG00038360001

S100a15 ENSMODG00000017402 t74001 GSTENG00032574001

S100a16 ENSMODG00000017391 t85001 GSTENG00032585001

S100g ENSMODG00000017180 t99001 GSTENG00011699001

S100p ENSMODG00000002897 Rattus norvegicus S100a1 ENSRNOG00000012410

S100z ENSMODG00000019747 S100a3 ENSRNOG00000012008

Mus musculus S100a1 ENSMUSG00000044080 S100a4 ENSRNOG00000011821

S100a3 ENSMUSG00000001021 S100a5 ENSRNOG00000011748

S100a4 ENSMUSG00000001020 S100a6 ENSRNOG00000011647

S100a5 ENSMUSG00000001023 S100a8 ENSRNOG00000011557

S100a6 ENSMUSG00000001025 S100a9 ENSRNOG00000011483

S100a8 ENSMUSG00000056054 S100a10 ENSRNOG00000023226
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Table I. Continued.

Organism Gene/code Accession No. Organism Gene/code Accession No.

S100a9 ENSMUSG00000056071 S100a11 ENSRNOG00000010105

S100a10 ENSMUSG00000041959 S100a13 ENSRNOG00000012393

S100a11 ENSMUSG00000027907 S100a15 ENSRNOG00000033352

S100a13 ENSMUSG00000042312 S100a16 ENSRNOG00000012053

S100a14 ENSMUSG00000042306 S100b ENSRNOG00000001295

S100a15 ENSMUSG00000063767 S100g ENSRNOG00000004222

S100a16 ENSMUSG00000074457 S100z ENSRNOG00000017998

Bos taurus S100a1 ENSBTAG00000005163 Canis familiaris S100a1 ENSCAFG00000017540

S100a2 ENSBTAG00000000463 S100a2 ENSCAFG00000017547

S100a4 ENSBTAG00000019203 S100a3 ENSCAFG00000017548

S100a5 ENSBTAG00000000644 S100a4 ENSCAFG00000017550

S100a6 ENSBTAG00000000643 S100a5 ENSCAFG00000017552

S100a7 ENSBTAG00000008238 S100a6 ENSCAFG00000017553

S100a8 ENSBTAG00000012640 S100a8 ENSCAFG000000175571

S100a9 ENSBTAG00000006505 S100a9 ENSCAFG00000017558

S100a10 ENSBTAG00000015147 S100a13 ENSCAFG00000017542

S100a11 ENSBTAG00000015145 S100a14 ENSCAFG00000017544

S100a12 NP_777076 S100a15 ENSCAFG00000017554

S100a13 ENSBTAG00000021378 S100a16 ENSCAFG00000017545

S100a14 ENSBTAG00000024437 S100b ENSCAFG00000012228

S100a15 ENSBTAG00000014204 S100p ENSCAFG00000014333

S100a16 ENSBTAG00000004777 S100g ENSCAFG00000012583

S100g ENSBTAG00000017020

S100z ENSBTAG00000020201

aCodes of fish genes were defined by authors.
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The chromosomal localisation of these genes is based on the Ensembl v39 geno-
mic location data.

2.2. Gene prediction

In order to detect sequences that may contain unknown S100 sequences,
genomic sequences were aligned with the exons of homologous human genes
by Vector NTI software and those identified were assembled into putative
mRNA sequences. These mRNA sequences were translated into protein
sequences, which were aligned with the corresponding human proteins to test
the validity of the prediction.

2.3. Sequence alignment and construction of phylogenetic trees

Multiple alignments were performed with the Vector NTI software and
Neighbour-Joining phylogenetic trees were built using the Phylip program
(Joseph Felsenstein, Washington University). The reliability of the trees was
measured by bootstrap analysis with 1000 replicates and the trees were edited
and viewed by Treeview software.

3. RESULTS

3.1. Mammalian S100A genes are duplicated and clustered
on one chromosome

The chromosomal organisation and location of the S100A genes identified in
seven mammalian species i.e. man, chimpanzee, cow, dog, rat, mouse and opos-
sum were determined using the Ensembl database. The results revealed that in
each of these seven mammals the S100A genes are clustered on a single chro-
mosome and comprise up to 16 members (Fig. 1 and Tab. I). Although these
genes are located on a single chromosome, two subgroups (SGs) were identified:
SG1 in which S100A10 and S100A11 are always tightly linked and SG2 in
which other members (S100A1–9 and 12–16) are generally clustered together
(Fig. 1). The distance between the two SGs covers several megabases, whereas
only a few kilobases separates genes within each SG. Interestingly, the relative
positions of the genes on the chromosomes are conserved among these mamma-
lian species, which indicates a high level of conserved synteny (Fig. 1). In addi-
tion, other putative S100A gene members, previously unknown, were predicted
from available genome sequence data based on information of conserved syn-
teny and protein homology. Five genes were identified, S100A3 and S100A14
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in the cow, S100A12 in the dog and S100A2 and S100A14 in the rat (Fig. 2 and
Tab. II). Multiple protein sequence alignments with the corresponding human
S100A proteins showed a high level of homology (Fig. 2). Thus, these
sequences are not pseudogenes and corresponding expressed sequence tags
(EST) are present in the EST databases (for details see legend of Fig. 2).

Differences in the arrangement of the S100A genes were observed between
the opossum and the other species examined, i.e. SG1 (S100A10 and 11)
together with S100A1 is located at the 30 end of opossum chromosome 2 and
at the 50 end of the corresponding chromosomes in the other species (Fig. 1).
Also, in the opossum, the positions of S100A9 and S10012 are reversed compar-
atively to those in the other species. These discordances indicate that chromo-
somal rearrangements having occurred during mammalian speciation have
disrupted the syntenic gene associations.

3.2. Two clusters of S100A genes in teleost fish

A phylogenetic tree was constructed to determine accurate predictions of
orthology and paralogy relationships between fish and mammalian S100A genes
(Fig. 3a). Fish S100A proteins are divided into two SGs as defined in Figure 1.
SG1 includes S100A10 and S100A11 genes while SG2 contains all the other
S100A genes. This distribution is supported by the data on gene organisation

Figure 1. Conserved synteny and subgroup (SG) definition of the S100A gene cluster
in mammals. The S100A genes from different mammalian species are clustered on a
single chromosome and are divided into two subgroups (SG1 and SG2) based on their
relative localisation on the chromosome. The gene distribution was analysed from
data in the Ensembl database (http://www.ensembl.org). S100A1–16 genes are
indicated as two blocks of synteny by two colour boxes. Dashed boxes indicate
the predicted genes. The name of the species and chromosome numbers are shown on
the left.
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for available fish genome assembly scaffolds and human chromosome 1
(Fig. 3b) although in some cases, gene members are only temporarily positioned
on the scaffolds and their definite chromosome localisation needs to be con-
firmed. Seven zebrafish genes classified in the S100A category form two clusters
on chromosome 16 and chromosome 19, respectively. Among the nine takifugu
genes belonging to the S100A category, at least six form two clusters on
scaffold 37 and scaffold 252, respectively. Furthermore, in tetraodon, a similar
gene arrangement exists with four genes clustered on chromosome 21 and two
other genes clustered on chromosome 8. Interestingly, in each synteny group,
gene members of both SGs 1 and 2 are present. Thus overall, these results based
on phylogenetic and comparative genomic analyses show the existence of
two S100A gene clusters in fish genomes and only one in mammalian genomes.

Figure 2. Five S100A predicted genes based on conserved synteny and homology.
Predicted genes include bovine S100a3 (complete CDS) and S100a14 (partial CDS),
rat S100a2 (partial CDS) and S100a14 (partial CDS) and dog S100a12 (complete
CDS). The multiple sequence alignments with the corresponding human S100
proteins are shown in the centre to confirm the identity of predicted genes. Two EST
sequences (GenBank Accession Nos. XM_001063574 and NM_001079634) are
similar to rat and bovine S100a14, especially in the CDS regions. More information is
necessary to confirm that the two sequences correspond to gene S100a14. Two other
EST: DR104796 (canine cardiovascular system biased cDNA, a Canis familiaris
cDNA similar to that of Hs S100 calcium-binding protein A12) and DV924106
(Bos taurus cDNA clone IMAGE: 8232591 5 0, mRNA sequence) may be the relevant
bovine and rat genes, S100a3 or S100a2, respectively.
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3.3. Presence of other single copy S100 genes scattered
in vertebrate genomes

Four other S100 genes i.e. S100P, S100B, S100G and S100Z are present in the
human genome and contrarily to the S100A genes clustered on chromosome 1
they are distributed on different chromosomes. A similar distribution pattern
of the homologous genes is found in the genomes of the chimpanzee, cow,
dog, rat, mouse and opossum. The absence of gene S100P could be due to
the incomplete genome sequencing e.g. in the cow and the fish species examined
here or to loss of the corresponding sequences during speciation e.g. in the
mouse and rat (Fig. 4). Unlike the S100A genes, S100P, B, G and Z genes also
exist as single copies in the three fish genomes according to the phylogenetic
analysis.

4. DISCUSSION

We analysed all available information on S100 genes in seven mammalian
and three fish species and we determined their phylogenetic relationship and
genomic organisation based on abundant sequence resources in databases.

Table II. Chromosome localisation and exon information of predicted S100A genes.

Name Chromosome Exons

No. exon Start End Length (bp)

S100A12_dog

(complete CDS)

7 1 46 170 564 46 170 611 48

2 46 171 134 46 171 291 158

3 46 171 670 46 171 945 276

S100A3_cow

(complete CDS)

3 1 11 224 336 11 224 412 77

2 11 225 308 11 225 447 140

3 11 225 990 11 226 471 482

S100A14_cow

(partial CDS)

3 1 11 170 356 11 170 386 31

2 11 170 755 11 170 865 111

3 11 171 303 1 171 449 147

4 (partial) 11 171 672 1 171 785 115

S100A14_rat

(partial CDS)

2 1 182 799 278 182 799 757 30

2 182 800 085 182 800 202 118

3 182 800 617 182 800 763 147

4 – – –

S100A2_rat

(partial CDS)

2 1 – – –

2 (partial) 182 871 245 182 871 295 51

3 (partial) 182 872 218 182 872 310 93
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Until now, S100 proteins have been detected only in vertebrates, suggesting that
they first appeared during vertebrate evolution. In the mouse and man [21], it has
been previously shown that all S100A genes are present on a single chromosome
but form two SGs, which agrees with our results on their genomic organisation
and chromosomal localisation in other mammalian species i.e. the cow, dog,
chimpanzee, rat and opossum (Fig. 1). We identified five new previously
unknown S100A genes [18]. The structure of mammalian S100A genes is also
highly conserved, generally, comprising three exons separated by two introns
with the first exon untranslated [6]. The clustered localisations on a single chro-
mosome, the highly conserved synteny and the similarity in exon/intron organi-
sation suggest that gene duplication is responsible for the major expansion of
this gene family.

Figure 3. Analysis of the phylogenetic relationships and chromosome mapping of
S100A genes in mammals and fish. (a) Phylogenetic tree of S100A proteins. The
numbers on the branches represent the bootstrap values from 1000 replicates obtained
using the (N-J) method. The tree shows two major subgroups of S100A proteins as in
Figure 1. (b) Localisation of S100A genes on chromosomes or assembly scaffolds. At
least two clusters are observed in fish species but only one in man. Genes are in the
boxes and chromosome or scaffold numbers are shown at the top of each linkage
group or gene. z09878 is an S100 gene member, ictacalcin previously identified in
zebrafish [7].
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Furthermore, we analysed the organisation of S100A genes in three fish
model species: zebrafish, takifugu and tetraodon. The phylogenetic tree shows
that in these fish species the S100A genes are also subdivided into two major
SGs as observed in mammalian species. However, in contrast to the existence
of a single cluster in mammalian genomes, at least two clusters are present in
fish genomes (Fig. 3). A comparison of the genomic architecture and arrange-
ments between fish and mammalian S100A genes shows that they are remark-
ably consistent with the occurrence of the fish-specific genome duplication
(FSGD or 3R) during vertebrate evolution. More and more studies propose that,
during the evolution of vertebrates, two rounds (2R) of genome duplication
occurred first and then later in the stem lineage of ray-finned fishes, not belong-
ing to land vertebrates, a third genome duplication occurred (FSGD or 3R)
[4,10,16]. Indeed, duplicated chromosomes and duplicated S100A genes are
present in zebrafish i.e. chromosomes 16 and 19, in tetraodon i.e. chromosomes
8 and 21, and in takifugu i.e. scaffolds 37 and 252. In fact, previous studies have
reported that tetraodon chromosomes 8 and 21 and zebrafish chromosomes 16

Figure 4. Phylogenetic tree and distribution of other S100 proteins in vertebrates.
Mammalian homologous genes were found in NCBI and Ensembl databases. Fish
genes were identified by searching the paralogue of the corresponding human S100
gene. (a) Phylogenetic tree of S100B, S100G, S100P and S100Z proteins. The
numbers on the branches represent the bootstrap values (%) from 1000 replicates
obtained using the N-J method. Eight fish genes are classified into the S100B, S100G
and S100Z subgroups. (b) Distribution of all known S100B, S100G, S100P and S100Z
genes from seven mammals and three fish species. Chromosome numbers (for
mammals) and chromosome/scaffold numbers with gene names are indicated in boxes
(SF = scaffold, Un = unknown).
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and 19 originate from a common ancestral chromosome L. Furthermore, a high
degree of conserved synteny between individual tetraodon chromosomes and
zebrafish linkage groups has been observed and suggests a 1:1 chromosome cor-
respondence in both species [8,30]. After the FSGD, interchromosomal rear-
rangement events (including chromosome fissions, fusions and translocations)
probably occurred [10], which would explain our observations that duplicated
S100A genes are asymmetrically distributed and that the gene positions in the
two clusters are a little different.

We suggest that a single ancestral S100A gene was duplicated and led to the
two gene member types defined as SG1 and SG2 during the 2R genome dupli-
cation event about 450 Myr (million years) ago. Then, fish genomes (e.g. zebra-
fish, tetraodon and takifugu) underwent FSGD (3R) and during fish speciation,
two clusters of S100A genes appeared on two chromosomes about 350 Myr
ago. In mammalian species, because of the absence of a 3R, only one cluster
of S100A genes included in SGs 1 and 2 is present on a single chromosome.
However, to adapt to diverse environmental conditions, mammals acquired multi-
ple S100A genes by tandem gene duplications within the cluster on the one chro-
mosome (Fig. 5) as, for example, the five copies of human gene S100A7

Figure 5. Model of the molecular evolution of S100A genes. The genomic
architecture of fish and mammalian S100A genes is shown. The ancestral S100A
gene was duplicated and formed two members defined as SG1 and SG2 during the 2R
genome duplication about 450 Myr ago. Then, fish genomes (e.g. zebrafish, tetraodon
and takifugu) underwent FSGD (3R), which generated two clusters of S100A genes on
two different chromosomes about 350 Myr ago. Other rearrangements also took place
during this process. Mammalian (e.g. human) S100A gene members have increased
only by gene duplications on a single chromosome since a third round genome
duplication (3R) did not occur in mammals.
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(S100A7a–S100A7e) present at the same locus [11,18]. These duplicated genes
may have been retained in the genome by neofunctionalisation and/or subfunc-
tionalisation mechanisms [12] or may lead to pseudogenes, such as S100A7d
and S100A7e [18]. However, some genes have either not been duplicated or have
been lost during speciation, for example, S100A2, A7 or A12, which are not found
in the mouse or in the rat, respectively [18].

In the case of the S100P, B, G and Z genes, the situation is different to that of
the S100A genes. In vertebrate genomes, these genes are scattered on different
chromosomes and exist as single copies in both mammalian and fish species. This
suggests that they could have evolved from an ancestral gene different to that of
the S100A genes. Differences in the mode of their interaction with target proteins
support this hypothesis. Data on the crystal structure and protein interactions
show that the structures of the S100A10/annexin A2 [19] and S100A11/annexin
A1 [20] complexes are alike. However, the S100B protein can form a complex
with a peptide derived from the C-terminal regulatory domain of p53 [22], or a
TRTK-12 peptide existing in CapZ [15], or a peptide derived from Ndr-kinase
[2] and the comparison of the structures of these complexes reveals differences
in the orientation of the three peptides and in the type of interaction patterns with
S100B protein. Moreover, the structure of the S100A10/annexin A2 or S100A10/
annexin A1 complexes is different to that of all S100B/peptide complexes. These
differences in structure indicate a large diversity of S100A and other S100 genes.
However, Marenholz has previously reported that S100B, P and Z genes are evo-
lutionarily related to gene S100A1, which might point to a common ancestor of
the S100 gene family [13]. More information, i.e. whole genome comparisons
with other fish species, is necessary to determine whether these two groups of
S100 genes have evolved from different ancestors or a common one. The analysis
presented here is based on the current information available for whole genome
sequences in public databases. Data on whole genome sequences increase daily
and contig assemblies are frequently updated. With the completion of the current
genome projects and the beginning of future genome projects of other vertebrate
model systems new information will be provided, which will help understand the
evolution and function of the S100 gene family.
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