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Abstract – Complex traits may show some degree of dominance at the gene level that
may influence the statistical power of simple models, i.e. assuming only additive effects to
detect quantitative trait loci (QTL) using the variance component method. Little has been
published on this topic even in species where relatively large family sizes can be obtained,
such as poultry, pigs, and aquacultural species. This is important, when the idea is to
select regions likely to be harbouring dominant QTL or in marker assisted selection. In
this work, we investigated the empirical power and accuracy to both detect and localise
dominant QTL with or without incorporating dominance effects explicitly in the model of
analysis. For this purpose, populations with variable family sizes and constant
population size and different values for dominance variance were simulated. The results
show that when using only additive effects there was little loss in power to detect QTL
and estimates of position, using or not using dominance, were empirically unbiased.
Further, there was little gain in accuracy of positioning the QTL with most scenarios
except when simulating an overdominant QTL.

QTL / additive effect / dominance / power / REML

1. INTRODUCTION

Quantitative trait loci (QTL) detection using mixed linear models is one of the
preferred methods for estimating the contribution of a particular chromosomal
segment to the observed variance in general pedigrees from outbred populations
[2,19]. This method infers QTL segregation using as a covariance structure the
number of alleles identical by descent (IBD) conditional on genetic markers in
many positions of the genome [19,29].

It is customary that, when using crosses between outbred populations (the F2

design), additive and dominance effects are fitted jointly in the regression
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analysis [1]. Using the variance component method, it is usually assumed that
only additive effects are of importance and therefore only IBD matrices condi-
tional on marker data are fitted in the restricted maximum likelihood (REML)
procedure (see [10,22] for traditional implementations in outbred pedigrees of
pigs and sheep). Although this is indeed correct under the assumption of no
dominance, it is not clear under the variance component framework what is
the most powerful test of linkage and by what extent variance components
can be biased if dominance is not accounted for in the model of analysis.

In light of recent results in cattle [17], where significant dominance effects
have been estimated in the DGAT1 locus, this may be of importance, for exam-
ple when the interest is to select genomic regions showing evidence of QTL at
particular chromosomes, when predicting breeding values due to the QTL in
order to select candidates in marker assisted selection programmes [8,13] or
when performing confirmation studies within commercial populations. This
may be important in cases where the original experiments from crosses between
outbred lines show evidence of non-additive gene action at the QTL [6,7].

Under the assumption of genes with infinitesimal effects, modelling domi-
nance is difficult since it is necessary to maximise the likelihood of the data, fit-
ting extra parameters, such as dominance variance and the covariance between
additive and dominance effects under inbreeding [5], and it is likely that the esti-
mates of these variance components are subjected to large sampling correlations
[23,24]. Also under the infinitesimal model it is difficult conceptually to deal
with inbreeding depression, since it is doubtful that a genetic model of an infinite
number of loci exists with directional dominance [5]. Nevertheless, at least in
theory, the use of more complex models may help to improve accuracy of esti-
mation, as well as help to exploit non-additive genetic variation within breeds
[12]. However, in practice it is not easy to disentangle variation due to common
environmental effects and dominance effects, since when using full-sib struc-
tures as in poultry or fish breeding both terms are completely confounded. Under
mixed inheritance, non-additive genetic variance can be accommodated explic-
itly by extending the mixed inheritance model of the QTL. The covariance struc-
ture of dominance effects is proportional to the probability that two relatives
share the same genotype at a locus [9]. Very little has been presented in the lit-
erature about this subject, although in practice it is an important issue for detect-
ing QTL in outbred populations [21].

In the present paper, we investigated the behaviour of the mixed linear model
when modelling dominance variance at the QTL in species where relatively
large family sizes can be obtained, such as in pigs, poultry, and aquacultural
species. Since a priori, in a given experiment where the actual genetic model
is not known, we investigated a two-step approach in which additive effects
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and genotypic effects at the QTL are first modelled for QTL detection in order to
obtain the most likely position of the QTL. Testing for dominance effects was
carried out conditionally at the most likely position of the QTL, previously
obtained from both models using the required covariance structure in the mixed
linear model. Using these methods, we calculated empirical power and accuracy
of estimating variance components, using different livestock population struc-
tures likely to be encountered in practice.

2. MATERIALS AND METHODS

The outline of this paper is as follows. First, we present themixedmodel includ-
ing dominance at the QTL and show how covariances can be computed in full-sib
structures; then we performed the testing regimes used first for detecting the pres-
ence of a segregating QTL (with or without using information of dominance) and
then we made inferences about the mode of gene action at the QTL.

2.1. Genetic model

Let us assume a population of non-inbred full-sib families measured for a nor-
mally distributed trait (yi). The model used to explain the phenotype of individ-
ual i is

yi ¼ lþ ai þ di þ pi þ ei; ð1Þ

where l is the contribution of fixed effects (such as the mean); ai is the addi-
tive effect at the putative biallelic QTL of the individual, with values equal
to a for QQ, 0 for Qq and qQ, and �a for qq; di, is the dominance
effect (d) expressed as the difference between the mid-homozygote value
[9]; pi is the polygenic component, explaining unlinked genes in the rest of
the genome, and ei is the residual. In scalar notation, the first and second
moments of the vector of phenotypes are then equal to the following:

EðyiÞ ¼ l

VarðyiÞ ¼ r2
a þ r2

d þ r2
p þ r2

e

Covðyi; yjÞ ¼ Ui;jr2
a þ�i;jr2

d þ pi;jr2
p

8><
>: ; ð2Þ

where Ui,j is the IBD proportion of alleles that individuals i and j share at the
known QTL, D is a variable indicating whether individual i and j share the
same genotype at the QTL, and pi,j is the additive relationship between indi-
viduals i and j. These variables are distributed according to the following dis-
tributions (by convention, the first allele is the paternal QTL allele inherited
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from the father to individual i (qfi ) and the second allele is the maternal QTL
allele inherited to individual i (qmi )):

Ui;j

0 for qfi 6¼ qfj and q
m
i 6¼ qmj

0:5

1

for qfi ¼ qfj and q
m
i 6¼ qmj or q

m
i ¼ qmj and q

f
i 6¼ qfj

for qfi ¼ qfj and q
m
i ¼ qmj

8>><
>>: ; ð3Þ

�i;j
1 for qfi q

m
i ¼ qfj q

m
j

0 otherwise

(
: ð4Þ

To set up the mixed model equations at the animal level, we need to obtain
the inverse of the covariance structure due to polygenic effects and of additive
and dominance effects at the QTL. We first explicitly constructed the actual
matrices pertaining to each full-sib group, as detailed in the following section.
These calculations were carried out using a computer program designed specif-
ically for this purpose.

2.2. Computing covariance matrices given marker data for full-sib
structures

Since the actual genotype of the QTL is not known, we inferred the expected
IBD proportion between two full-sibs (/i,j) using the marginal distribution of
IBD proportions (0, 0.5, and 1) at the QTL conditional on marker information
[28]. For the purposes of this analysis, completely informative markers with
known ordered genotypes were assumed (see the description in [28]). First, con-
sider what is the probability that sib i inherits QTL alleles from the maternal or
paternal first homolog or the second homolog conditional on the marker haplo-
type. There are four possible QTL allelic classes conditional on flanking mark-
ers, each depending on the probability of recombination between the markers
and the QTL, and between flanking markers in the male and female parent
(see [28] for details). With random mating, the conditional probabilities of
QTL genotypes can be calculated as the product between the corresponding
probabilities of inherited gametes.

The expected IBD proportion (/i,j) is then the product of the probabilities
that both offspring receive, either the same or a different QTL allele from the
mother or the father (therefore comparisons are made between paternally and
maternally inherited alleles) multiplied each by the corresponding IBD
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proportion (0, 0.5, and 1). In matrix notation, the value of (/i,j) between any pair
of full-sibs conditional on marker data is equal to the product of the vector of
conditional genotype probabilities given marker data (vector Qi) and a matrix
that represents all the possible alternatives of IBD proportion (C) between both
full-sibs considered (Equation (5)):

/i;j ¼ Q0
iCQj; ð5Þ

where C is a 4 · 4 symmetric matrix with diagonal elements equal to 1 and
off-diagonal elements equal to 0 or 0.5. The notation used in the vector Qi

stands for conditional probability of QTL genotype, given the ordered geno-
type at the flanking markers (where 1,i and 2,i represent the flanking markers
(1 or 2)) and the allele inherited (say l) from the mother (m) or the father (f)
(note that at most there are four different possibilities depending on whether
the paternal or maternal allele (for the QTL or marker) inherited by the
sib i came from the sire (fm, ff) or the dam (mf, mm) of each parent):

C ¼

1:0 0:5 0:5 0:0

0:5 1:0 0:0 0:5

0:5 0:0 1:0 0:5
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2
66664
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77775 ð6Þ
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The value of (di,j) between two full-sibs can be obtained similarly, as the
probability that both share the same genotype at the QTL [9]. Without using
marker data, this value is equal to 1/4 for full-sib individuals. Using marker data,
the expectation conditional on marker data can be calculated as the product of
the vector Qi transposed and the vector Qj:

di;j ¼ Q0
iQj: ð8Þ
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2.3. Hypothesis testing of nested models

2.3.1. First stage: detecting QTL

The first question to be addressed when mapping a QTL is to test whether
there is evidence of segregation of QTL in the linkage group under analysis.
This is irrespective of whether there is an additive or a dominant QTL segregat-
ing. According to Table I, it is possible to compute two different tests for detect-
ing QTL:

1. ADDITIVE: This test is calculated along the linkage group under analysis
as minus twice the difference between the log-likelihood of a reduced
model (only fitting the polygenic effects) and the log-likelihood of a model
fitting additive effects at the QTL in addition to polygenic effects (Tab. I;
�2(LI � LII)). This is done adjusting the covariance structure due to
additive effects at the QTL at every centiMorgan of the linkage group. This
test assumes that an additive genetic model is the true underlying mode of
gene action of the QTL.

2. GENOTYPIC: This test is calculated along the linkage group under anal-
ysis as minus twice the difference between the log-likelihood of a reduced
model (only fitting the polygenic effects) and the log-likelihood of a model
fitting additive and dominance effects at the QTL in addition to polygenic
effects (Tab. I; �2(LI � LIII)). This is done by simultaneously adjusting
the covariance structure due to additive and dominance effects at the QTL
at every centiMorgan of the linkage group. This test assumes that an additive
plus dominance genetic model is the true underlying mode of gene action of
the QTL.

In both cases, the test statistic is computed along the linkage group and the
highest value of the likelihood ratio (LR) test provides the most likely position
of the QTL. Note that the location may differ between tests that were used to
detect the QTL (ADDITIVE and GENOTYPIC) but on average both tests
should give very similar locations if they are unbiased (see Sect. 4 below).

2.3.2. Second stage: inferences about the mode of gene action at the QTL

It is important to test the actual mode of gene action given the data indepen-
dently of whether an additive or dominant model is assumed for detecting a
QTL. Testing significance of dominance variance can be accomplished within
the framework of the ADDITIVE test by fitting dominance effects at the most
likely position as obtained from this test (say at position k in the linkage group).
At this position, we include in the model the dominance effect with a covariance
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Table I. Hypothesis testing framework under dominance. In every alternative, the test statistic is computed as twice the difference
between the log-likelihood of the null model (L0) and (L1).

Test Full model Hypothesis tested (L1) Null hypothesis (L0)

Polygenic (P) MI = Y = Xb + Zp + e LI ¼ lðY jr2e ; r2pÞ
Additive (A) MII = Y = Xb + Zp + Za + e LII ¼ lðY jr2e ; r2p; r2aÞ LI
Genotypic (A + D) MIII = Y = Xb + Zp + Za + Zd + e LIII ¼ lðY jr2e ; r2p; r2a; r2dÞ LI
Dominance (at position k) MIV = Y = Xbk + Zpk + Zak + Zdk + ek LIV ¼ lðY jr2e;k; r2p;k; r2a;k; r2d;kÞ LII

M
apping

random
Q
T
L
relaxing

additive
effects

591



proportional to di,j in addition to the additive effects. The LR test is equal to
minus twice the difference between log-likelihoods of these two models at posi-
tion k (Tab. I; �2(LII � LIV)).

Using the GENOTYPIC test, testing for dominance variance at the QTL
position detected can be carried out, computing the LR as minus twice the dif-
ference between the log-likelihood of the model in which no dominance effects
were fitted (only additive effects of the QTL) and that of the model fitting dom-
inance and additive effects, simultaneously (Tab. I; �2(LII � LIII)).

2.4. Simulations

We investigated different alternatives using the simulation of two generation
outbred pedigrees structured as independent full-sib families with variable sizes
(fn; including parents and progeny). The scenarios simulated used typical values
of fn equal to 10, 20, 50, or 100, as observed in many livestock and aquacultural
species. The total population size was constant (n = 500), thus the number of
full-sib families is then equal to n/( fn). The analysis comprised a single linkage
group of 50 cM with fully informative markers every 10 cM (six in total), with a
QTL placed at position 25 cM. Phenotypes were simulated for parents and
progeny with a broad sense heritability (including QTL and polygenic variance)
equal to 0.4 and a constant additive genetic variance r2

a ¼ 150
� �

due to a
biallelic QTL. Allele frequencies at the QTL in the base population in
Hardy-Weinberg equilibrium were equal to 0.5 and alleles of markers and
QTL were uncorrelated (i.e. no linkage disequilibrium (LD) was assumed in
the base population). Dominance variance due to the QTL was simulated using
different ratios of the dominance (d) and additive (a) effects (Tab. II). For each
case the residual genetic variance, due to variation under infinitesimal model
assumptions (polygenic effects), was varied, such that it explained the remainder
of the total genetic variance. The environmental variance was kept constant in all
scenarios r2

e ¼ 600
� �

.
We calculated the significance thresholds for the different tests performed for

detecting QTL (ADDITIVE and GENOTYPIC) for the null hypothesis of no
segregating QTL (scenario 0; Tab. II). In this case, all the genetic variance was
assumed to be due to polygenic effects, such that the heritability of the trait was
equal to 0.40.

The unknown significance thresholds required for testing dominance variance
were obtained under two different scenarios. In the first case, we simulated an
additive segregating QTL that explained 25% of the total variance, giving a high
probability of the design for detecting an additive QTL. The second case did not
assume that a QTL is segregating; i.e. only polygenic effects were simulated.
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The heritability (including QTL and polygenic variance) was equal to 0.4. This
second alternative reflects well a situation, where there is no prior knowledge of
whether a QTL is segregating in the population. This may be of importance
when empirical significance thresholds can be obtained while analysing real
populations, by permuting genotypes and phenotypes within families due to
the large family sizes especially in aquaculture [4]. In all these cases, 1000 rep-
licates were simulated under the null hypothesis and each replicate comprised
50 full-sib families of size 10 (eight sibs and two parents), giving a population
size equal to 500 individuals.

The variance components were estimated using REML with ASREML [11],
using the defined matrices as explained in Section 2.2.

3. RESULTS

3.1. Distribution of the test statistics under the null hypotheses

3.1.1. Test statistics used to detect QTL

The empirical distribution under the null hypothesis of no QTL for the differ-
ent tests implemented is presented in Figure 1. Empirically, the ADDITIVE test
is distributed as a v2 distribution of between 1 and 2 degrees of freedom (DF);
this is seen here irrespective of the family sizes evaluated in this paper. From this
result, it is clear that there is very good agreement between the empirical distri-
bution obtained here and the distribution of the LR under the null hypothesis, as
obtained previously by others [27].

For the GENOTYPIC test (including additive and dominance effects at the
QTL in the model), there is no previous empirical evidence in the literature

Table II. Parametric settings for the different scenarios used in the simulations, where
a is the additive effect at the QTL, d is the dominance value at the QTL, p are the
polygenic effects, and e are the environmental effects.

SCENARIO Genetic value
of the QTL

d/a r2a r2d r2p r2e

a d

0 17.32 0.00 0.00 0.00 0.00 400.00 600.00
I 17.32 0.00 0.00 150.00 0.00 250.00 600.00
II 17.32 12.25 0.71 150.00 37.50 212.50 600.00
III 17.32 17.32 1.00 150.00 75.00 175.00 600.00
IV 17.32 24.49 1.41 150.00 150.00 100.00 600.00
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regarding the distribution of this test under the null hypothesis. However, it
would be expected to be distributed between 1=2v2ð2Þ and 1=2v2ð3Þ distributions,
since, here, testing r2

a and r2
d is carried out in many positions along the linkage

 0

 0.2

 0.4

 0.6

 0.8

 1

 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Test statistic (LR)

a

FAMILY SIZE
10
50

100
χ2

(1) 
χ2

(2) 
95%

 0

 0.2

 0.4

 0.6

 0.8

 1

 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Test statistic (LR)

b

FAMILY SIZE
10
50

100
χ2

(2)
χ2

(3)
95%

Figure 1. Distribution of the test statistic under the null hypothesis of no QTL.
(a) Distribution of the test statistic under the null hypothesis of no QTL, obtained using
theADDITIVE test. (b) Distribution of the test statistic under the null hypothesis of no
QTL, obtained using theGENOTYPIC test. The total number of individuals is equal to
500. The horizontal line is the 95% of the cumulative distribution.
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group [29]. The simulation results show that the significance thresholds tend to
be more conservative, with a distribution very similar to a v2ð2Þ distribution
(Fig. 1). Again the family size has little effect on the significance thresholds.
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Figure 2. Distribution of the test statistic used for detecting dominance variance
under the null hypothesis of no dominance. (a) Obtained at the best location from the
ADDITIVE test. (b) Obtained as the best location from the GENOTYPIC test. The
design was equal to 50 families of eight sibs plus the two parents each (n = 500).
The horizontal line is the 95% of the cumulative distribution.
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The distribution of the test statistic used to detect dominance variance condi-
tional on the best location obtained when using the ADDITIVE test is
unknown. As explained in Section 2.4 we performed two scenarios, with or
without simulating additive effects at the QTL, to obtain significance thresholds
under the null hypothesis of no dominance. As is seen in Figure 2, there is very
little difference between the significance thresholds and the shape of the distri-
butions of this test obtained with these two alternative scenarios. Also, note that
the significance threshold tends to be more conservative than the one expected
at a single position from a mixture distribution of 0 with a probability of 1/2 and
a one degree of freedom (v2ð1Þ) with a probability of 1/2 (for a = 0.05; 2.71
[2,3]).

When using the GENOTYPIC test, the test of dominance variance was con-
structed as twice the difference between the log-likelihood of the GENOTYPIC
model and the log-likelihood of the model in which only additive effects were
fitted. This gave an empirical distribution very similar to a distribution from a
mixture distribution of 0 with a probability of 1/2 and a one degree of freedom
(v2ð1Þ) with a probability of 1/2 (with a significance threshold similar to 2.71 for
a = 0.05; Fig. 2).

3.2. First stage: empirical power of QTL detection

The power estimates (a = 0.05) over 100 replicates are presented in Table III.
In this case, power was computed as the proportions of the 100 replicates with a
LR greater than the average of the empirical significance thresholds for all the
family sizes considered in the previous section. This was done due to the fact

Table III. Power to detect QTL (first stage) using the ADDITIVE and GENOTYPIC
model. In each case, 100 replicates were simulated according to the different scenarios
simulated.

Model for QTL detection Family size SCENARIO

I II III IV

ADDITIVE 10 0.42 0.59 0.80 0.89
20 0.80 0.92 0.97 0.98
50 0.96 0.93 0.96 0.98

100 0.98 0.93 0.94 0.98

GENOTYPIC 10 0.40 0.56 0.83 0.91
20 0.79 0.92 0.98 1.00
50 0.94 0.95 0.98 0.99

100 0.97 0.93 0.94 0.98
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that very little difference between the significance thresholds were obtained for
the different family sizes simulated.

3.2.1. Power of the additive model

The ADDITIVE test was used to detect the QTL, irrespective of whether the
true model involved dominance or not. The power calculations are presented in
Table III for the different family sizes simulated. We found two main trends in
terms of power to detect the QTL in these scenarios; power increased asymptot-
ically when increasing the family size and secondly, power increased when a
dominant QTL was simulated. This suggests that most of the information about
linkage between markers and QTL can be captured in the random model through
fitting only the additive relationships conditional on marker data.

3.2.2. Power of the genotypic model

The power of the GENOTYPIC test tends to be very similar to the test that
only includes additive effects in the model. In fact, absolute differences in power
to detect the QTL were only at the most extreme case about 3% and this holds
for all degrees of dominance simulated in the present examples (such as when
including overdominance, see Tab. III). Although not shown, there was a slight
increase in the mean test statistic of this test when compared to the additive test
alone (about 10%), however, this increase in test statistic was counterbalanced
by the fact that this test had a higher significance threshold compared to the
one obtained for the ADDITIVE test (see Fig. 1). Furthermore, the correlation
between both the ADDITIVE and GENOTYPIC test statistics was very high
and consistent with the ratio between them (ranged from 0.90 to 0.97).

3.3. Second stage: power of detecting dominance conditional
on location

Testing dominance at the best position as obtained from the ADDITIVE
model assumes that the most likely position obtained from the additive test is
unbiased (which happens to be the case (see Sect. 3.4.1)). This test has the advan-
tage in that there is no need to fit the covariance structure due to dominance at
every position tested. For this reason, it requires only once to construct the
dominance relationship matrix conditional on marker information. Therefore, this
strategy should be computationally more efficient. The first trend observed was
that power to detect dominance variance is relatively low even in cases where
overdominance was simulated (Tab. IV). In these scenarios, dominance variance
accounted for as much as 15% of the total variance (Tab. II). Secondly,
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the optimum family size in terms of power was around 50 individuals per family,
which is very similar to the optimum observed for the tests of linkage (Tab. IV).
In this case, power almost reached an asymptotic value when increasing the
family size in excess of 50 individuals per family (Tab. IV). Finally, similar power
was obtained whether or not the QTL was detected including or not including
dominance in the first stage on QTL detection (Tab. IV).

3.4. Estimates of QTL parameters

3.4.1. Position

Estimates of position obtained from both methods (ADDITIVE and GENO-
TYPIC) are presented in Table V. In general, estimates of position obtained
from both methods were empirically unbiased. We note, however, that correla-
tions between position estimates were only moderate-high (ranging from 0.70 to
0.80) for complete dominance and smaller for overdominance (0.50–0.60). This
is because in some replicates, the maximum LR was obtained at opposite posi-
tions in the chromosome.

3.4.2. Variance components and bias due to model misspecification

Using the model that only incorporates the additive component gave biased
estimates of variance components, if the true model incorporates dominance.

Table IV. Power of detecting dominance in the second stage, according to the
conditional model (first estimating the most likely position of the QTL using the
ADDITIVE and GENOTYPIC model and then fitting dominance effects at the most
likely position detected). In each case, 100 replicates were simulated according to the
different scenarios simulated.

Model for QTL detection Family size SCENARIO

II III IV

ADDITIVE 10 0.12 0.30 0.53
20 0.17 0.35 0.81
50 0.30 0.48 0.82

100 0.29 0.51 0.77

GENOTYPIC 10 0.17 0.37 0.52
20 0.15 0.36 0.77
50 0.26 0.49 0.79

100 0.27 0.54 0.78
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Table V. Position estimates according to the different testing procedures performed to detect the QTL at the first stage.

Family size SCENARIO

I II III IV

ADDITIVE GENOTYPIC ADDITIVE GENOTYPIC ADDITIVE GENOTYPIC ADDITIVE GENOTYPIC

10 25.8 (10.5) 26.6 (10.9) 25.6 (10.8) 24.6 (10.7) 25.8 (6.7) 24.1 (6.5) 25.5 (6.6) 24.7 (5.6)
20 25.0 (7.0) 24.9 (6.7) 25.4 (6.3) 25.0 (5.7) 25.2 (5.6) 24.9 (5.8) 25.0 (3.9) 24.9 (3.0)
50 24.5 (5.9) 24.1 (6.0) 25.5 (5.0) 25.8 (4.8) 25.4 (3.9) 25.8 (4.5) 25.2 (3.5) 24.9 (2.3)
100 25.1 (4.7) 25.1 (4.8) 24.6 (6.0) 25.3 (5.6) 25.1 (6.5) 25.1 (5.3) 24.8 (4.2) 25.2 (2.7)

M
apping

random
Q
T
L
relaxing

additive
effects

599



This bias, due to model misspecification, was measured using the mean bias
(MB) which was calculated as:

MB ¼
P100

i¼1 ĥi � hi
� �
100

; ð9Þ

where hi is the simulated value of the heritability due to the QTL
and^denotes the estimate from each replicate simulated.

Not including dominance in the model gave upwardly biased estimates of the
heritability of the QTL and the actual bias is clearly a function of the magnitude
of the dominance variance explained by the QTL (Fig. 3). Due to the fact that
the power of the variance component method is related to the magnitude of the
variance component considered [14,25], this may explain why, under domi-
nance, the power of the simple additive test is very similar to the test that
includes dominance in the model. When explicitly including dominance effects
in the model, estimates of the additive and dominance variance of the QTL tend
to show only a slight (up/downward) bias, considering the complexity of the
model fitted. Furthermore, standard deviations of variance components over rep-
licates were relatively similar for the models fitting or not fitting dominance
when detecting QTL in the first stage (results not shown).
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Figure 3. Empirical mean bias due to model misspecification of the heritability due
to the QTL according to different levels of dominance and family size simulated.
Roman numerals I, II, III, and IV correspond to r2

d equal to 0, 37.5, 75, and 150,
respectively.
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4. DISCUSSION

In this paper, different models for detectingQTL under the variance component
method were studied. It is customary to fit only additive effects to search for QTL,
irrespectively, of whether the true underlying model involves dominance. In this
investigationwe obtained similar power for detecting theQTL using or not explic-
itly using dominance effects in the model of analysis when there is a non-additive
genetic action influencing the trait under consideration. The most likely explana-
tion of this finding is related to the amount of information required for estimating
different parameters at the QTL. Recent results have shown the difficulties when
trying to estimate additive and dominance effects using information from dense
marker data using reasonable sample sizes [23]. This result may be explained lar-
gely by the high correlation between the IBD probabilities (/i,j) and genotype IBD
(di,j) between individuals. Thus, separating additive versus dominance effects
within families can be difficultwhen estimating highly correlated parameters using
the variance component method [20,23,24].

Position estimates may differ according to the models fitted to the data, but
the results obtained here suggest that shifts in position are not due to a better
fit when including dominance, i.e. unbiased estimates of position are obtained
with or without including dominance. This has also been found in models
involving dominance and inbreeding in which relatively large shifts in position
have been observed when including dominance in the analysis, even when this
effect only borders significance [21]. To investigate this finding further, we cal-
culated the correlation between the difference of position estimates from both
models (including or not including dominance when detecting the QTL) and
we used the LR to test dominance at the most likely position from the GENO-
TYPIC model, in order to see whether changes in position are associated with a
better fit of this model. A significant association should be obtained if shifts in
position estimates between both models are due to the incorporation of domi-
nance. An example of such a trend is presented in Figure 4. This figure clearly
shows that there is very little evidence suggesting that changes in position are
due to the better fit given by using dominance in the model. Note that the exam-
ple gave maximal power to detect the QTL, but the same trend was observed
when the power to detect the QTL was small (data not shown). In spite of
this finding, some increase in accuracy can still be obtained when including
dominance effects in the model of analysis, but this was only evident when there
was overdominance (see Tab. V).

So far, we completely assumed informative markers and linkage phase known.
These assumptions made it possible to use a simple and very fast deterministic
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procedure to obtain the matrices required for modelling the covariance structure
at the QTL for additive and dominance effects, given the large family sizes
simulated. This enabled us to obtain the distributions under the different null
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Figure 4. Relationship between the difference between position estimates obtained
with or without including dominance to detect the QTL and the LR test for detecting
dominance (using the GENOTYPIC test). The examples are given for complete
dominance (a) and overdominance at the QTL (b). The family size was equal to
50 individuals.
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hypothesis assumed. It would be expected that fully informative markers will not
produce bias, but give the highest possible values of power calculations given the
scenarios simulated in this paper. In practice, it would be expected that when
markers are not fully informative, information from multiple markers along the
chromosome can be used for inferring IBD probabilities using hidden Markov
models and this improves the effects of reduced marker heterozygosity.

In a literature review [16] regarding QTL analysis in plants, it is shown that
more than 50% of all the QTL surveyed gave evidence of a dominance and over-
dominance mode of gene action as the most plausible models for the dominant
QTL. These results, however, are likely due to the significance threshold
imposed to declare that a QTL is real, which will cause very large bias in the
dominance effects [16]. So the interpretation of a significant dominance, either
a complete or an overdominant model, should be considered with caution. In
practice, this can be particularly extreme in outbred populations where the fam-
ily size is relatively low, markers may not be fully informative and the propor-
tion of the parental crosses that is expected to be informative is small.

Significant quantities of genomic data are now available, with the potential for
enhancing accuracy of position estimates of QTL effects. For instance, [26]
reported a genetic variation map of the chicken genome containing 2.8 million
single-nucleotide polymorphisms (SNP) and [15] found 2507 putative SNP in
the salmon genome that could be valuable for this purpose. In order to capture
the information from historical recombinations, calculation of IBD probabilities
simultaneously require information from LD and linkage information [18] at spe-
cific targeted regions. Under these circumstances, greater accuracy of positioning
the QTL is expected, however, this is associated with the extent of LD in the
population. This is because, the values of di,j only rely on LD but not on linkage
information, which, for species with relatively small family sizes, would be a
limitation when mapping dominant QTL.
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