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Abstract

Background: The use of structural equation models for the analysis of recursive and simultaneous relationships
between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models
can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more
specifically, to model phenotypic recursion between three calving traits: gestation length (GL), calving difficulty
(CD) and stillbirth (SB). All recursive models considered here postulate heterogeneous recursive relationships
between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories
of GL phenotype.

Methods: Four models were compared in terms of goodness of fit and predictive ability: 1) standard mixed model
(SMM), a model with unstructured (co)variance matrices; 2) recursive mixed model 1 (RMM1), assuming that
residual correlations are due to the recursive relationships between phenotypes; 3) RMM2, assuming that
correlations between residuals and contemporary groups are due to recursive relationships between phenotypes;
and 4) RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are
due to recursive relationships between phenotypes.

Results: For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a
nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the
liabilities to CD and SB.
Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting
that RMM3 is plausible.

Conclusions: The applications examined in this study suggest the plausibility of a nonlinear recursive effect from
GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of
correlation is phenotypic recursion, performs as well as the others indicates that the phenotypic recursion may be
an important cause of the observed patterns of genetic and environmental correlations.

Background
Structural equation models (SEM) are well established
and widely used in the social sciences. In quantitative
genetics, these models were first suggested by Sewall
Wright [1] but were ignored for many years. Recently,
Gianola and Sorensen [2] suggested a model in which
recursive and simultaneous relationships between

phenotypes are considered in the context of a multi-
ple-trait Gaussian model. This stimulated application
of SEM in animal breeding and genetics (e.g., de los
Campos et al. [3,4], Varona et al. [5], López de Matur-
ana et al. [6], Wu et al. [7]). SEM can be used, for
example, to explore potential relationships between
variables of interest or to evaluate the plausibility of
different hypotheses [8]. In addition, SEM facilitate
comparisons between alternative nested path analysis
models [9].
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López de Maturana et al. [10] applied SEM to study
relationships between three calving traits (gestation
length (GL), calving difficulty (CD) and stillbirth (SB)).
SEM were found useful for detecting heterogeneous cor-
relations between residual, contemporary group, or
genetic effects affecting GL and liabilities to CD and SB.
However, a comparison between their model and nested
models with different restrictions on relationships
between variables has not been addressed yet.
The present work complements the study of López de

Maturana et al. [10] by comparing, in terms of goodness
of fit and predictive ability, a sequence of SEM with dif-
ferent restrictions on the (co)variance matrices among
model parameters.

Methods
Data
The data consisted of a sample of primiparous US Hol-
stein cows calving from 2000 to 2005 that were
recorded as part of the National Association of Animal
Breeders (Columbia, Mo) Calving Ease Program. After
editing, the data set contained GL, CD and SB records
from 90,393 cows, sired by 1,122 bulls, mated to 567
service sires, and distributed over 935 herd-calving year
combinations, as described in López de Maturana et al.
[10].
Statistical model
The general specification of the model is given in López
de Maturana et al. [10]. The model allows for recursive
effects that change according to categories of GL (261-
267 d, 268-273 d, 274-279 d, and 280-291 d). The obser-
vable phenotypes were ′ = ( )y i i i iGL CD SB, , ; for CD
and SB threshold links were used; and the measurement
models for these traits were,
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where lCDi
( lSBi

), and CDc
( SBc

) denote liabilities
and thresholds for CD (SB), respectively. For identifica-
tion purposes, the first thresholds for CD ( CD1

) and
SB ( SB1

) were set to 0 and the second threshold for
CD ( CD2

) was set to 1. A multivariate normal model
was assumed for y i i CD SBGL l l

i i

′∗ = ( ), , .
The reduced-form equation for y i

* was:

y X b Z h Z s Z mgsi k i i h i s i mgs i k i k i
*

( ) ( ) ( ) (= + + + +⎡⎣ ⎤⎦ = +− − −1 1 1 kk = 1 2 3 4, , , ). (2)

In the above, k denotes the category of GL; μi = Xib
+Zi(h)h+Zi(s)s+Zi(mgs)mgs; Xib is the contribution to the
linear predictor of systematic effects, including sex of

calf (2 levels), age at first calving (4 levels), and year-sea-
son (12 levels); Zi(h)h, Zi(s)s and Zi(mgs)mgs represent the
contributions of herd-year (935 levels), sire (567 levels
with progeny), and maternal grandsire effects (1,122
levels with progeny), respectively; and Λk is a 3 × 3
matrix defining recursive effects of the following form:
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where, lCD¬GL(k), lSB¬GL(k) and lSB¬GL(k) describe
rates of change of the liabilities to CD and SB with
respect to GL, and of the liability to SB with respect to
the liability to CD, respectively. As noted before, recur-
sive coefficients were allowed to vary across categories

of GL, k = {1, if yGLi
≤ 267 d; 2, if 267 d < yGLi

≤ 273

d; 3, if 273 d < yGLi
≤ 279 d; 4, otherwise}, to account

for non-linearity of the relationship between GL and the
two calving traits. Model residuals, εi, were assumed to
be independent and identically distributed (IID) across

animals, that is,
i

IID
N~ ,0 R 0( ) , where R0 is a 3 × 3

residual (co)variance matrix, with its last diagonal entry
(i.e., the residual variance of the liability to SB) restricted
to 1 for identification purposes.
Prior distribution
The prior distribution was factorized as follows:
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where, θk = (Λk, b, h, s, mgs, G0, H0, R0, τ); G0 and
H0 are (co)variance matrices of genetic, herd and resi-
dual effects, respectively; lk is a vector containing the
non-null recursive effects; and τ is the vector with the
thresholds.
(Co)variance components
The reduced model (2) implies that the (co)variance
matrices due to genetic, permanent environmental
effects and model residuals are,
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, where, for exam-

ple, sGL

2 is the between-sire variance for GL, s sGL CD
is

the (co)variance between sire effects of GL and CD,

hGL

2 and eGL

2 are the herd-year and residual variances

for GL, and h hGL CD
and e eGL CD

are the herd-year and

residual covariances between GL and CD, respectively.
Additive direct and maternal genetic (co)variances were
calculated according to Willham [11]:
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Where d
2 , m

2 , s
2 , mgs

2 are the variances of addi-
tive direct genetic effects, additive maternal genetic
effects, sire, and maternal grandsire effects, respectively;
sdm and ssmgs are the covariances between additive
direct and maternal genetic effects and between sire and
maternal grandsire effects, respectively. The genetic (co)
variances were computed following [12]:
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Without imposing further restrictions, the model
described in (2) considering the recursive relationship is
under-identified. Identification can be attained by
imposing restrictions on dispersion, location parameters
or on the matrix of recursive effects. For computational
convenience and due to the difficulty to assure identifi-
cation through the location parameters, only restrictions
on dispersion or recursive parameters were considered.
A sequence of models was obtained by changing the
prior specifications for p(l), p(G0), p(H0), and p(R0)
Recursive mixed model 1 (RMM1)
This model assumes that the correlation between resi-
duals in the reduced models, Λ-1

kεi, is solely a conse-
quence of the phenotypic recursion. R0 is assumed to be
diagonal, i.e., p(R0)is the product of two independent
scaled inverted Chi-square distributions (for GL and

CD, because eSB

2 was set to 1 to ensure identification),

and p(G0) and p(H0) are assumed to be distributed a
priori as inverted Wishart distributions. The number of
unknowns in the dispersion parameters and the matrix

of recursive effects is 41: 6 in G s0
, Gmgs0

and H0, 9 in

G s mgs0 0
, 2 in R0, and 3 in each Λk.

Recursive mixed model 2 (RMM2)
This model results from adding to RMM1 the restric-
tion that H0 is also diagonal. This restriction implies
that the correlations between residuals and between
contemporary groups in the reduced model are exclu-
sively due to recursive relationships. Thus, the number
of parameters entering in [5] in RMM2 (38) is smaller
than those entering in [5] in model RMM1 (number of
parameters equal to 41). RMM2 is obtained by assigning
an inverted Wishart distribution to G0 and independent
scaled-inverted Chi-square distributions to the unknown
diagonal elements of H0 and R0. Note that, as in

RMM1, eSB

2 is set to 1 to ensure identification.

Recursive mixed model 3 (RMM3)
This model assumes that the only cause of correlations
between any of the random effects in the reduced model

is the phenotypic recursion. That is, G s0
, Gmgs0

,

G s mgs0 0
, H0 and R0 are diagonal, and the priors for the

unknown diagonal components are independent scaled-
inverted Chi-square distributions. The number of
unknowns in dispersion parameters and in the matrix of
recursive effects is now 26.
Standard mixed model (SMM)
This model is defined by setting and Λk = I, and by
treating G0, H0, and R0 as unstructured (co)variance
matrices. As prior distributions, inverted Wishart distri-
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butions are assumed to G0 and H0 and a conditional

inverted Wishart distribution to R0 (p(R0| eSB

2 | = 1))

(see [13] for details). The sum of unknowns in the (co)
variance matrices is 32 (6 in H0, 5 in R0 and 21 in G0);
there are no recursive parameters in this model.
Implementation
With the a priori assumptions described above, the
fully conditional distributions of all unknowns in all
models have closed forms, and draws from the poster-
ior distribution can be obtained via Gibbs sampling.
The SirBayes software [7] was used to implement the
models. The length of the chain and the burn-in per-
iod were assessed by visual examination of trace plots
of posterior samples of selected parameters; additional
diagnostic checks were employed. After a preliminary
analysis, it was decided to run 5 independent chains,
each consisting of 10,000 iterations. In each chain, the
first 1,000 iterations were discarded as burn-in, and
one of every 10 successive samples was retained. Thus,
4,500 samples were used to infer the posterior distri-
butions of unknown parameters. Features of the mar-
ginal posterior distributions of interest, the
convergence analysis, and estimates of Monte Carlo
error, were obtained using the BOA software http://
www.public-health.uiowa.edu/boa.
Model comparison
The performance of the SMM and the three RMM con-
sidered was investigated in terms of both goodness of fit
and predictive ability, under the consideration that a
model that fits current data very well may fail to provide
accurate predictions of future (independent) observa-
tions [14].
The mean squared error of a calving trait phenotype,

MSE y E yn i i
i

n
= − ( )( )

=
∑1 2

1
, and Pearson’s correla-

tion between fitted and observed data,

COR Cor E(= ( )y y, )
’
, were evaluated at the poster-

ior means of the unknowns ( ˆ ), to assess goodness of

fit.
Predictive ability was assessed with MSE and Pearson’s

correlation, using a 3-fold cross-validation (CV) proce-
dure. The full data set was randomly partitioned into
three disjoint subsets, each with approximately one-
third of the records. The CV procedure used two of the
three subsets for model fitting and prediction (i.e., the
training set), and predictive ability was evaluated in the
remaining subset (i.e., the testing set). MSE and Pear-
son’s correlation were computed as before, but in this
case by concatenating results from the three cross-vali-
dation sets.

The predicted or fitted values for CD and SB were
computed as:
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Above, F(·) is the cumulative distribution function of
a standard normal variate; τc is the assumed (or esti-
mated) value of the appropriate threshold for CD and
SB, and l̂c i

is the posterior mean of the liability to CD
or SB for individual i.

Results and Discussion
Small Monte Carlo errors (~10-2-10-4) were obtained for
all the parameters that were estimated in each model;
this suggests that convergence was achieved, and that a
sufficient number of Gibbs samples was used.
Structural coefficients
Posterior means (standard deviations) of structural coef-
ficients obtained from the analyses of the recursive
models (RMM1, RMM2 and RMM3) are shown in
Table 1. Similar estimates were found in the three mod-
els. For gestations within 261-267 d, an extra day of
gestation did not increase CD. Calving problems did
increase for the remaining groups of GL, because the
rates of changes were positive, and the HPD95% (Highest
Posterior Density at 95% of probability) region did not
include 0. Different rates of change of the liability to SB
for different categories of GL were found as a conse-
quence of direct (lSB¬GL) and indirect recursive effects
(lCD¬GL × lSB¬CD): the liability to SB was expected to
decrease in the two first categories (261-273 d), not to
change in the third category (274-279 d) and to increase
in the fourth category (280-291 d). Positive estimates
(similar across categories of GL) were found for the
effect of the liability to CD on the liability to SB, indi-
cating that cows that are more likely to suffer calving
difficulty are more likely to have stillborn calves. More
details regarding the recursive relationships between GL,
CD and SB can be found in López de Maturana et al.
[10].
Genetic parameters
Additional file 1, Table S1 shows the posterior means
(standard deviations) of direct and maternal heritabilities
of GL and liabilities to CD and SB for each model. Pos-
terior distributions of direct and maternal heritabilities
for the three calving traits were similar across categories
of GL and between models (RMM1, RMM2 and
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RMM3) and were also similar to their counterparts from
the SMM. The posterior mean of direct heritability of
GL was higher than that for maternal heritability (0.39
vs. 0.08-0.07); corresponding estimates for CD (0.08-
0.10 vs. 0.07-0.08) and SB (0.05-0.08 vs. 0.08-0.11) were
smaller than those for direct heritability and similar
between them. Heritability estimates were within the
range of values reported in previous studies [15-17];
estimates for CD and SB were higher than those used in
routine genetic evaluations of CD and SB in US Hol-
steins, except for the direct heritability of CD [18,19].
Features of the posterior distributions of genetic cor-

relations in the four categories of GL from the SMM
and RMM models are shown in Additional file 1, Tables
S2, S3, S4 and S5. In general, estimates of genetic corre-
lations obtained from the SMM were within the ranges
of values obtained for each category of GL from the
RMM analyses. All of the recursive models evaluated in
this study detected a heterogeneous correlation between
direct and maternal effects of GL and between direct
and maternal liabilities to CD and SB, as expected. Simi-
lar estimates were found in the analyses of RMM1 and
RMM2. Regarding the correlation between direct effects
of GL and CD, positive posterior means were obtained
from both SMM and RMM by category of GL. For all
categories of GL, RMM3 gave lower estimates than the
other models, due to restrictions placed on G0. Simi-
larly, positive estimates (although slightly lower) were

found between maternal effects of GL and CD. Slightly
stronger correlations between direct effects of GL and
SB were found using RMM3, compared with those
using RMM1 or RMM2, for all categories of GL. Rela-
tively high, positive, and similar estimates were obtained
for the genetic correlation between direct effects for CD
and SB in each of the four categories of GL, with lower
estimates from RMM3. A similar pattern, although with
slightly lower estimates, was found for the genetic corre-
lation between the maternal effects of CD and SB.
Similar posterior means of the genetic correlation

between direct and maternal effects for the same trait
were found in SMM and RMM, and across categories of
GL: moderately negative for GL and SB, and close to 0
for CD.
The 90% highest posterior density intervals for genetic

correlations between direct and maternal effects for dif-
ferent traits obtained with RMM included 0 or had an
almost null posterior mean, and were similar to their
counterparts from the SMM. This suggests that effects
of genes controlling direct effects for one calving trait
are not associated with those controlling maternal
effects for another calving trait, and vice versa.
The estimates of previously genetic correlations were

within the range of values reported in the literature
[15-17].
Additional file 1, Table S6 shows the posterior means

of correlations between contemporary groups and

Table 1 Posterior mean (standard deviation) of structural coefficients for calving traits from the recursive mixed
models

Structural coefficients Modela Category of GL

261-267 d 268-273 d 274-279 d 280-291 d

lCD¬GL (l. u.
b/1 d GL) RMM1 0.005

(0.005)
0.020**
(0.003)

0.032**
(0.005)

0.040**
(0.003)

RMM2 0.006
(0.005)

0.020**
(0.003)

0.032**
(0.005)

0.040**
(0.003)

RMM3 0.005
(0.005)

0.021**
(0.003)

0.033**
(0.005)

0.041**
(0.003)

Overall effect of GL on SB
(l. u./1 d GL)c

RMM1 -0.044**
(0.006)

-0.021**
(0.004)

-0.008
(0.006)

0.024**
(0.003)

RMM2 -0.044**
(0.0062)

-0.021**
(0.0038)

-0.008
(0.0057)

0.025**
(0.0031)

RMM3 -0.044**
(0.006)

-0.021**
(0.004)

-0.008
(0.006)

0.025**
(0.003)

lSB¬CD (l. u./l. u. CD) RMM1 0.339**
(0.023)

0.331**
(0.011)

0.330**
(0.007)

0.3311**
(0.007)

RMM2 0.327**
(0.023)

0.319**
(0.010)

0.317**
(0.007)

0.318**
(0.007)

RMM3 0.330**
(0.003)

0.321**
(0.011)

0.319**
(0.007)

0.320**
(0.007)

** 99% highest posterior density region, HPD99%, does not include 0; aRMM1: recursive mixed model (RMM) assuming that the relationship between residuals is
due to the recursive relationships between the gestation length (GL) phenotype and the liabilities to calving difficulty (CD) and stillbirth (SB); RMM2: RMM
assuming that the relationships both between residuals and between herd-years are due to the recursive relationships between the phenotype of GL and the
liabilities to CD and SB; RMM3: recursive mixed model assuming that phenotypic correlations of the system are uniquely caused by the recursiveness; b l. u.:
liability units; cThe overall recursive effect of GL on liability to SB is the sum of the direct and indirect recursive effects, lSB¬GL + lCD¬GL × lSB¬CD

de Maturana et al. Genetics Selection Evolution 2010, 42:1
http://www.gsejournal.org/content/42/1/1

Page 5 of 9



between residuals. Almost null estimates of the correla-
tion between contemporary groups of GL and CD were
found in SMM and RMM for all categories of GL.
Regarding GL and SB, small positive estimates were
obtained from the analyses of SMM and RMM1. Results
from RMM1 suggest that the correlation changes across
categories of GL. Estimates from the other recursive
models (RMM2 and RMM3) also suggested that the
correlation changes across categories of GL, including a
modification of sign: slightly negative in the first two
categories of GL (-0.10 and -0.05, respectively), nil in
the third, and slightly positive in the fourth (0.06). Pos-
terior means of the correlation between herd-year effects
of CD and SB were nil in the analyses of models SMM
and RMM1; however, those from models RMM2 and
RMM3 were moderate and positive (0.54). Differences
in sign and magnitude between estimates were a conse-
quence of the different assumptions regarding the covar-
iances between herd-year effects in SMM and RMM1
versus those in RMM2 and RMM3.
The RMM detected heterogeneous correlations

between residuals of GL and both CD and SB that were
solely due to the recursive relationship between GL and
liabilities to CD and SB residuals. Estimates from SMM
were in the interval of values from RMM. Similarly,
positive and moderate correlations between residuals of
CD and SB were found in all RMM models (0.38-0.40),
whereas the estimate from SMM was much lower (0.09).
Model comparison
Among the variety of model comparison methods, MSE
and Pearson’s correlation between observed and esti-
mated/predicted phenotypes were chosen based on their
ease of interpretation and weaker dependence on priors’
choice. Mean squared error is a measurement related to
the bias-variance trade-off of a model, either for fitting
or predictive ability, whereas Pearson’s correlation indi-
cates the accuracy of estimations/predictions. The use of
these criteria provides information on the model perfor-
mance for each analyzed trait, but they lack an overall
measure of the multivariate model performance. Bayes
Factor or DIC could be alternative model selection cri-
teria to provide such information. However, due to their
disadvantages, which will be briefly described below, we
have discarded them in favor of MSE and Pearson’s cor-
relation. Bayes Factor is based on marginal likelihood,
and therefore provides a measure of model goodness of
fit. This criterion indicates whether the data increased
or decreased the odds of model i relative to model j
[14]. However, it depends on prior input, and this
dependence does not decrease as sample size increases,
unlike parameter’s estimation based on posterior distri-
butions [20]. In addition, BF does not indicate which
hypothesis is the most probable, but it shows which

hypothesis would make the sample more probable, if the
hypothesis is true and not otherwise. Regarding DIC, it
makes a compromise between goodness of fit and
model complexity, and in some contexts, it can agree
with measures of predictive ability. However, this is not
always the case. Additionally, DIC is based on an
approximation that may not be appropriate in the class
of non-linear models considered here.
Goodness of fit
Figure 1 displays scatter plots of the expected GL ( ŷ GL )
and the posterior mean of expected liabilities to CD and
SB ( l̂CD

and l̂SB
) obtained with SMM against those

obtained with RMM. As expected, similar posterior
means of ŷ GL were obtained from SMM and RMM
(Pearson’s correlation near 1), because the model for GL
is not affected by the structure imposed in recursive
models. The correlation between the posterior means of
liability to CD from the SMM and each of the RMM
were also close to 1, with very slight differences between
them. However, a weaker association was found between
the posterior means of liabilities to SB estimated with
SMM and each of the RMM (Pearson’s correlations
around 0.69-0.70).
Figure 2 shows the plots of the posterior mean of the

expected GL and liabilities to CD and SB obtained with
one of the RMM against those of the remaining recursive
models. Again, the posterior means of the estimated phe-
notype of GL and the liabilities to CD obtained from the
different RMM were similar, with correlations of ≥ 0.99.
Estimated liabilities from RMM2 and RMM3 were also
similar, with a correlation of 0.99. Correlations between
estimates from RMM1 and RMM2 and estimates from
RMM1 and RMM3 were slightly lower (0.98).
Table 2 shows the average MSE and Pearson’s correla-

tion between fitted and observed phenotypes of GL, CD
and SB, by model. The goodness of fit measures did not
change across models, with differences at the third deci-
mal place.
The differences observed between the posterior mean

liabilities to SB from SMM and those from RMM (see
Figure 1) did not occur when the goodness of fit of
these models was evaluated in terms of MSE and Pear-
son’s correlation between predicted and observed SB
score.
Predictive ability
Table 3 presents the average MSE and Pearson’s correla-
tion between predicted and observed phenotypes of GL,
CD and SB, by model. Both RMM and SMM had simi-
lar predictive abilities of GL and CD. Regarding SB, the
model with best predictive ability was RMM1, with a
2.2% higher Pearson’s correlation than other RMM. The
differences in predictive ability among RMM were very
small.
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The negligible differences in terms of goodness of fit
and predictive ability between models might be
explained by the small differences in estimated genetic
correlations between SMM (off diagonals of G s0

,
Gmgs0

and G smgs0
) and RMM (off diagonals of Gk

* ).
The larger differences observed in correlations between
contemporary groups for GL and liability to SB and
between liabilities to CD and SB, as well as their coun-
terparts between residual effects from SMM and RMM,
were not reflected in goodness of fit and predictive

ability. Thus, a very restrictive model (RMM3, with 26
parameters) provided similar fit and predictive ability as
less parsimonious models.

Conclusions
This paper illustrates how SEM can be used to achieve
parameterizations with different levels of complexity
that represent different genetic models. For example,
recursive relationships can be used to generate models

Figure 1 Plots and Pearson’s correlations between the posterior means of expected gestation length ( ŷ GL ) and of expected
liabilities to calving difficulty ( l̂CD

) and stillbirth ( l̂SB
) obtained with standard mixed models SMM versus those obtained with

recursive mixed models (RMM)
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Table 3 Predictive ability of standard (SMM) and
recursive mixed models from the analyses of cross-
validation subsets

Comparison criteria Modela,b

SMM RMM1 RMM2 RMM3

GL

Average mean squared error 19.559 19.559 19.558 19.558

Pearson’s correlation 0.424 0.424 0.424 0.424

CD

Average mean squared error 0.824 0.823 0.824 0.823

Pearson’s correlation 0.448 0.450 0.449 0.450

SB

Average mean squared error 0.111 0.111 0.111 0.111

Pearson’s correlation 0.150 0.172 0.170 0.170
aBoldface numbers indicate the best performance by criterion of comparison;
bRMM1: recursive mixed model (RMM) assuming that the relationship
between residuals is due to the recursive relationships between the gestation
length (GL) phenotype and the liabilities to calving difficulty (CD) and stillbirth
(SB); RMM2: RMM assuming that the relationships both between residuals and
between herd-years are due to the recursive relationships between the
phenotype of GL and the liabilities to CD and SB; RMM3: recursive mixed
model assuming that phenotypic correlations of the system are uniquely
caused by the recursiveness

Figure 2 Plots and Pearson’s correlations between the posterior means of expected gestation length ( ŷ GL ) and of expected liabilities
to calving difficulty ( l̂CD ) and stillbirth ( l̂SB ) obtained with the recursive mixed models (RMM)

Table 2 Goodness of fit criteria for standard (SMM) and
recursive (RMM) mixed models

Comparison criteria Modela,b

SMM RMM1 RMM2 RMM3

GL

Mean squared error 18.717 18.717 18.716 18.715

Pearson’s correlation 0.465 0.465 0.465 0.465

CD

Mean squared error 0.788 0.791 0.791 0.791

Pearson’s correlation 0.487 0.485 0.486 0.486

SB

Mean squared error 0.108 0.109 0.109 0.109

Pearson’s correlation 0.246 0.243 0.244 0.243
a Boldface numbers indicate the best performance in goodness of fit, by
criterion of comparison; b RMM1: recursive mixed model assuming that the
relationship between residuals is due to the recursive relationships between
the gestation length (GL) phenotype and the liabilities to calving difficulty
(CD) and stillbirth (SB); RMM2: RMM assuming that the relationships both
between residuals and between herd-years are due to the recursive
relationships between the phenotype of GL and the liabilities to CD and SB;
RMM3: recursive mixed model assuming that phenotypic correlations of the
system are uniquely caused by the recursiveness
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in which the genetic parameters are themselves subject
to genetic variation.
The applications examined in this study suggest the

plausibility of a recursive effect from GL onto CD and
SB. Also, as reported in previous studies, this relation-
ship is not linear. The fact that the most restrictive
model (RMM3), which assumes that the only cause of
correlation is phenotypic recursion, performs as well as
the others indicates that the recursion may be an impor-
tant cause of the observed genetic and environmental
correlations.

Additional file 1: Table S1 - Posterior means (standard deviations) of
direct (d) and maternal (m) heritabilities of calving traits. Table S2 -
Posterior means (standard deviations) of the genetic correlations, for
gestations within 261-267 d. Table S3 - Posterior means (standard
deviations) of the genetic correlations, for gestations within 268-273 d.
Table S4 - Posterior means (standard deviations) of the genetic
correlations, for gestations within 274-279 d. Table S5 - Posterior means
(standard deviations) of the genetic correlations, for gestations within
280-291 d. Table S6 - Posterior means (standard deviations) of
correlations between contemporary (h) groups and residual (e) effects.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1297-9686-42-1-
S1.DOC ]
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