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Abstract

Background: It has been argued that multibreed animal models should include a heterogeneous covariance
structure. However, the estimation of the (co)variance components is not an easy task, because these parameters
can not be factored out from the inverse of the additive genetic covariance matrix. An alternative model, based on
the decomposition of the genetic covariance matrix by source of variability, provides a much simpler formulation.
In this study, we formalize the equivalence between this alternative model and the one derived from the
quantitative genetic theory. Further, we extend the model to include maternal effects and, in order to estimate the
(co)variance components, we describe a hierarchical Bayes implementation. Finally, we implement the model to
weaning weight data from an Angus × Hereford crossbred experiment.

Methods: Our argument is based on redefining the vectors of breeding values by breed origin such that they do
not include individuals with null contributions. Next, we define matrices that retrieve the null-row and the null-
column pattern and, by means of appropriate algebraic operations, we demonstrate the equivalence. The
extension to include maternal effects and the estimation of the (co)variance components through the hierarchical
Bayes analysis are then straightforward. A FORTRAN 90 Gibbs sampler was specifically programmed and executed
to estimate the (co)variance components of the Angus × Hereford population.

Results: In general, genetic (co)variance components showed marginal posterior densities with a high degree of
symmetry, except for the segregation components. Angus and Hereford breeds contributed with 50.26% and
41.73% of the total direct additive variance, and with 23.59% and 59.65% of the total maternal additive variance. In
turn, the contribution of the segregation variance was not significant in either case, which suggests that the allelic
frequencies in the two parental breeds were similar.

Conclusion: The multibreed maternal animal model introduced in this study simplifies the problem of estimating
(co)variance components in the framework of a hierarchical Bayes analysis. Using this approach, we obtained for
the first time estimates of the full set of genetic (co)variance components. It would be interesting to assess the
performance of the procedure with field data, especially when interbreed information is limited.

Background
Mixed linear models used to fit phenotypic records
taken on animals with diverse breed composition are
termed multibreed animal models. Theoretical [1,2] and
empirical [3,4] arguments indicate that the proper speci-
fication for the genetic covariance structure in these
models should be heterogeneous. However, even though

the theory has long been developed [1,5,6] and classical
[3,7] and Bayesian [4] inference procedures have been
presented, very recent papers on (co)variance compo-
nent estimation in crossbred populations (e.g., [8,9])
do not account for this particular dispersion structure,
possibly due to the lack of appropriate general purpose
software [10].
Estimation of (co)variance components in multibreed

populations is not an easy task [3,4,11]. Basically, the
difficulty arises because the scalar (co)variance compo-
nents can not be factored out from the inverse of the
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additive genetic covariance matrix. As a consequence,
within the framework of a hierarchical Bayes analysis
the full conditional posterior distribution of each (co)
variance component is not recognizable, and thus algo-
rithms such as Metropolis-Hastings must be used [4].
The approach based on the decomposition of the

genetic covariance matrix by source of variability [10]
supplies a much simpler formulation for (co)variance
component estimation, which is easy to assimilate with
the collection of estimation techniques available in gen-
eral purpose software. García-Cortés and Toro [10] have
empirically illustrated the validity of their proposal
through a numerical example, but they have not pre-
sented a formal derivation of the equivalence between
their model and the one formalized by Cantet and Fer-
nando [2] using the quantitative genetic arguments of
Lo et al. [1], at least when the goal is to predict breeding
values.
In this study we address the issue. Basically, we will

present a formal derivation of the equivalence through a
somewhat different formulation from the one of García-
Cortés and Toro [10]. Further, we will expand the
model to include maternal effects, and formalize a hier-
archical Bayes analysis to estimate the parameters of
interest. Finally, the multibreed analysis discussed above
is used in the analysis of weaning weight records from
an Angus × Hereford crossbred experiment.

Methods
Equivalence of multibreed animal models
For the sake of simplicity, assume a two-breed (A and
B) composite population with individuals pertaining
either to one of the two parental breeds, or to one of
several breed groups produced by crossbreeding. The
trait of interest is under the influence of a large num-
ber of unlinked loci, and the two parental breeds that
give rise to the population are in gametic phase equili-
brium. Thus, assuming additive inheritance, the geno-
typic value of individual i in any breed group can be
modeled as
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where μ is the mean genotypic value in the reference
breed group, and 
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t represent, respectively, the
additive effects of the paternal and maternal alleles that
individual i inherited at locus t (t = 1,...,n). In this con-
text, Lo et al. [1] have derived the expression for the
variance of the genotypic value as a linear function of
the additive variance in each parental population, and
an additional source of variability arising due to differ-
ences in allelic frequencies between these populations:

the segregation variance [12,13]. In the two-breed case,
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where f A
i and fB

i respectively are the expected pro-
portion of breed A and breed B genes in individual i,
 aA

2 and  aB
2 are the additive variances of each breed,

and  aS
2 is the segregation variance. The last term in

(2) stands for the covariance between genotypic values
for the parents of the individual, and can be developed
further by expanding to the previous generation. Under
this formulation, Lo et al. [1] have shown how to com-
pute efficiently both the genetic covariance matrix using
the tabular method [14], and its inverse using the algo-
rithms of Henderson [15] and Quaas [16]. Later, Cantet
and Fernando [2] have demonstrated how to use the
theory to predict breeding values by BLUP within the
framework of a genetic evaluation.
Alternatively, García-Cortés and Toro [10] have

decomposed the genetic covariance matrix into several
independent sources of variability. In the two-breed
situation it is verifiable that

G A A A= + +A aA B aB S aS  2 2 2 , (3)

where AX, X = {A, B, S}, are partial numerator relation-
ship matrices in accordance with the source of variability
[10]. These matrices have order q × q (where q is the
number of individuals) to ensure conformability for addi-
tion. However, if an individual does not contribute to the
source of variability (for example, purebred A individuals
does not contribute to B and S sources of variation) the
corresponding row and column are null vectors, and thus
the matrix is singular. This formulation of the genetic
covariance matrix is consistent with a conventional ani-
mal model with several random effects, i.e., the breeding
values by breed origin , aX, X = {A, B, S}. It should be
clear that under this alternative model the breeding
values of non-contributing individuals to a particular
source of variability are defined to be fixed and equal to
zero, and are termed null by breed origin.
The alternative formulation presented by García-

Cortés and Toro [10] alleviate difficulties inherent to
(co)variance components estimation within multibreed
animal models, specially through estimation techniques
based in known full conditional distributions (i.e., Gibbs
Sampler), within the framework of a hierarchical Bayes
analysis. Furthermore, the referred model is equivalent
to the model presented by Cantet and Fernando [2]
in terms of the covariance structure, because both
formulations are identical (see the definition given by
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Henderson [17]). Yet, the equivalence in terms of breed-
ing value prediction is not straightforward, because the
coefficient matrix derived form the mixed model equa-
tions is singular, and equations corresponding to non-
contributing individuals have to be discarded in order to
solve the system and to obtain equivalent results [10].
Our proposal is to redefine the aX vectors such that they

only include the qX breeding values non-null by breed ori-
gin. This entails defining appropriate incidence matrices
ZX for each source and rewriting the model equation as

y Xb Z a Z a Z a e= + + + +∗ ∗ ∗
A A B B S S , (4)

where ZX of order n × qX are related to the qX non-
null breeding values by breed origin aX

∗ , X = {A, B, S}.
Note that this formulation does not include breeding
values constrained to zero, so that Cov a AX X aX

∗ ∗( ) =  2 ,
where the non-singular matrix AX

∗ contains the non-
null rows and columns of AX. Define then the matrix
MX of order q × qX, such that

Z ZMX X= , (5)

where Z is the incidence matrix for the random effects
in [10] and [2]. It is then verifiable that the product M AX X

∗

retrieves the null-row pattern with respect to matrix AX.
In turn, a subsequent post-multiplication by MX

T , retrieves
the null-column pattern, so that

M A M AX X X
T

X
∗ = . (6)

Using (6) and (5) in (4)
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This result shows that model (4) is equivalent to the
model presented by Cantet and Fernando [2] in accor-
dance to the definition given by Henderson [17]. More-
over, note that the BLUP of each non-null breeding
value by breed of origin can be written according to [18]
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Now, both expressions (6) and (8) can be used to
show that the addition of the BLUP a aX

*
X( ) = ∧ * ,

weighted by the corresponding MX matrices to ensure
conformability, equals
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where a
∧ = BLUP(a) from the multibreed animal

model presented by Cantet and Fernando [2]. Finally,
note that even though we have assumed a two-breed
composite population in our presentation, the argument
readily generalizes to a multibreed population composed
of p breeds.

Hierarchical Bayes analysis for a maternal multibreed
animal model
Consider now a maternally influenced trait, and assume
therefore the covariance structure described by Willham
[19]. Additionally, consider the theory of Lo et al. [1]
extended to correlated traits as presented by Cantet and
Fernando [2]. We will use subscripts “o“ and “m“ to dif-
ferentiate between direct and maternal effects, respec-
tively. Then, using the approach presented in the
previous section, we define the model

y Xb Z a Z e e= + +( ) + +∑ oX oX mX mX p p o
* *Z a

X
, (10)

where y (n × 1) is a data vector, and X (n × p) repre-
sents, without loss of generality, the full-rank incidence
matrix of the fixed effects vector b (p × 1). Furthermore,
aoX
* and amX

* are random vectors with entries corre-
sponding to the qX direct and maternal non-null breed-
ing values by breed origin X, X = {A, B, S}. Note,
respectively, and ep (d × 1) is a random vector account-
ing for maternal permanent environmental effects.
Accordingly, ZoX, ZmX and Zp are the corresponding
incidence matrices. Finally, eo (n × 1) represents the
white-noise error vector. To simplify the notation, let
ZX = [ZoX | ZmX] and a a aX oX mX

*T *T *T= ⎡⎣ ⎤⎦ .
Next, consider a hierarchical Bayes construction for

model (10) as presented by Cardoso and Tempelman [4]
following Sorensen and Gianola [20]. The objective is to
make inferences about parameters of interest, typically
the (co)variance components. At the first stage of the
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analysis, it is necessary to specify the full conditional
sampling density of the data vector. Assume therein a
multivariate normal process

y b a e

Xb Z a Z e I

| , , , X p e

X X
X
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Then, the prior distributions for vectors b, aX
∗ , X =

{A, B, S}, and ep are specified. Firstly, a multivariate
normal process will be assumed for the vector of fixed
effects b. This assumption avoids the occurrence of
improper posterior distributions, while reflecting a prior
state of uncertainty for the fixed effects [21]. According
to Cantet et al. [22], we set

b K 0 K| ∼ N , ,( ) (12)

where K = Diag{ki}, with ki ≥ 1 × 107 for i = 1,...,p.
Secondly, multivariate normal distributions will also

be specified for the non-null breeding values by breed
origin aX

∗ , according to quantitative genetic theory
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the partial numerator relationship matrices defined by
García-Cortés and Toro [10], but without null rows and
columns. Finally, a multivariate normal process will be
assumed for the vector of maternal permanent environ-
mental effects. Thus
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In the next level of the hierarchy, a priori distributions
are to be assigned to the dispersion parameters, i.e., the
scalars  eo
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S}. At this point, conjugate scaled inverted-gamma den-
sities are assumed: Inverted Chi-squared for the scalars
and Inverted Wishart for the matrices. Then
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In (15), G0X
* are (2 × 2) matrices containing the a

priori values for the genetic (co)variance components
for each source of variability. Moreover, Sep

2 and Seo
2

represent prior values for the maternal permanent envir-
onmental variance and the white-noise error variance,

respectively. All these values should be interpreted as
statements about the expectation of the prior distribu-
tions, and are defined by the analyst. In turn, υX, ep
and eo represent the parameters for the degrees of
freedom of the corresponding distributions, and are
interpreted as a degree of belief in those a priori values
[20]. They are also defined by the analyst.
Now, assuming that b, aX

∗ |G0X, G0X, X = {A, B, S},
ep| ep

2 ,  ep
2 and  eo

2 are all a priori independent, the
joint posterior distribution will be proportional to the
product of the likelihood function times each of the
prior densities, as follows
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Explicitly, and after grouping together common factors
[20], we obtain
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Starting with expression (17), it is possible to identify
the kernel of the full conditional posterior density of
any parameter of interest by keeping the remaining
ones fixed. In fact, it is verifiable that all full condi-
tional posterior densities are analytically recognizable
and thus can be sampled using standard procedures as
those described by Wang et al. [23] or Jensen et al.
[24]. Detailed expressions for the full conditional pos-
terior densities are derived and displayed in the
appendix.
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Analysis of experimental data
In this section we describe the implementation of the
hierarchical Bayes analysis to a data set from an
Angus × Hereford crossbred experiment. Data belongs
to the AgResearch Crown Research Institute, New Zeal-
and, and consists of 3749 weaning weight records and
the corresponding genealogy (Table 1). Records were
collected between 1973 and 1990 on both purebred and
crossbred individuals, including progeny from inter-se
matings, backcrosses, and rotational crosses (Table 2).
A detailed description of the mating design and other
relevant features from the experiment can be found in
Morris et al. [25].
Our goal was to estimate (co)variance components

inherent to this experimental population, thus we fitted
the model presented in the previous section. The model
included the non-null direct and maternal breeding
values by breed origin, and fixed effects for sex, age of
dam, and day of birth (fitted as a covariate), following
the description given by Morris et al. [25]. To account
for differences in the mean phenotypes between the
breed groups, fixed effects of direct and maternal breed
and heterosis were also included using the parameteriza-
tion given by Hill [26,27].
(Co)variance components were estimated through a

single-site, systematic scan Gibbs sampling algorithm,
like the one suggested by García-Cortés and Toro [10].
The computation strategy in the current research was
also based on setting-up the mixed model equations for

an animal model with several random effects. However,
instead of discarding equations corresponding to non-
contributing individuals, these were never set up: the
system was simply collapsed by changing the appropri-
ate coordinates, i.e., by removing null rows and null col-
umns. Note that this strategy has the advantage of
reducing the number of necessary contributions, but it
requires that all the animals with null contributions to
any source of variability be identified.
Specifically, a FORTRAN 90 program was written,

inspired on the class notes from Misztal [28]. The code
is based on programs from the BLUPF90 package [29]
and specific F77 routines from our research group [R.J.
C. Cantet and A.N. Birchmeier, personal communica-
tion]. The program has a modular structure with two
main internal subroutines. The first one generates the
contributions to the random effects and computes the

Table 1 Characteristics of the pedigree and data file of
the Angus × Hereford crossbred experiment

ANGUS × HEREFORD

PEDIGREE file Individuals Bulls Cows

4668 292 1698

DATA file N Mean, kg SD, kg

WW records 3749 153.56 29.94

Sires Dams Total

Parents 216 1647 1863

(with WW record) 145 923 1068

% 67.13 56.04 57.33

Mean number of calves by parent 16.05 2.28

% of parents with:

1 calf 3.70 42.93

2 calves 4.17 21.86

3 calves 2.31 15.66

>3 calves 89.81 19.55

WW = weaning weight; N = number of records; SD = standard deviation

Description of the data set used in the multibreed analysis, including several
useful features for evaluating data quality for the estimation of (co)variance
components within maternal animal models

Table 2 Mating types, genotypes and breed compositions
represented in the Angus × Hereford data set

Mating type Genotypes N f A
i f A

S fA
D

Parental ANGUS 711 1.00 1.00 1.00

Parental HEREFORD 431 0.00 0.00 0.00

Inter-se F1(H × A) 393 0.50 0.00 1.00

Inter-se F1(A × H) 301 0.50 1.00 0.00

Inter-se F2(HA × HA) 235 0.50 0.50 0.50

Inter-se F2(AH × AH) 183 0.50 0.50 0.50

Inter-se F3(F2 × F2) 254 0.50 0.50 0.50

Inter-se F4(F3 × F3) 104 0.50 0.50 0.50

Back-cross B1(A × HA) 78 0.75 1.00 0.50

Back-cross B1(A × AH) 72 0.75 1.00 0.50

Back-cross B1(H × HA) 77 0.25 0.00 0.50

Back-cross B1(H × AH) 67 0.25 0.00 0.50

Back-cross B1(AH × A) 180 0.75 0.50 1.00

Back-cross B1(HAxH) 132 0.25 0.50 0.00

Rotational R3[A × B1(H × HA)] 77 0.63 1.00 0.25

Rotational R3[A × B1(H × AH)] 51 0.63 1.00 0.25

Rotational R3[H × B1(A × HA)] 96 0.38 0.00 0.75

Rotational R3[H × B1(AH × A)] 51 0.38 0.00 0.75

Rotational R4(A × R3) 67 0.69 1.00 0.38

Rotational R4(H × R3) 68 0.31 0.00 0.63

Advanced F3 × F1(HA) 19 0.50 0.50 0.50

Advanced F3 × F1(AH) 27 0.50 0.50 0.50

Advanced F3 × F4 30 0.50 0.50 0.50

Advanced A × R4 21 0.66 1.00 0.31

Advanced H × R4 24 0.34 0.00 0.69

TOTAL 3749

f A
i , f A

S , f A
D : individual, sire and dam expected proportion of Angus genes

(breed composition)

Mating types and genotypes are described in Morris et al. [25]; breed
compositions are key features within the multibreed analysis: they are used
both for computing the inverses of the partial numerator relationship matrices
and as regressor variables for fitting the mean effects of breed groups
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entries in the partial numerator relationship matrices
according to a slightly modified version of the inbreed-
ing algorithm of Meuwissen and Luo [30]. The second
subroutine is used for sampling successively the vector
of unknowns without setting-up the mixed model equa-
tions, thus accelerating considerably the performance by
iteration. The code is available under request from the
first author.
The implementation of the Gibbs sampling was

undertaken in two stages. In the first stage, an explora-
tory analysis was done by seeking some reasonable
values for the scale parameters of the prior distributions
of the (co)variance components. First, a maternal animal
model was fitted [19,31], and (co)variance components
were estimated using the ASReml [32] package. Scale
parameters for maternal permanent environmental and
error variances densities were then set according to the
REML estimates. Second, estimates of the genetic (co)
variance components were arbitrarily distributed among
the three sources of variability. Once prior values were
chosen, the program was executed and several chains in
between one and two million iterations were calculated,
depending on the sign of the direct-maternal genetic
covariances, the degrees of belief assigned to the para-
meters, and the number of samples discarded as burn-
in. Posterior summaries and convergence diagnostics
were reasonably consistent among all chains so that
results are not shown. Finally, mean posterior mode
values, taken among all the chains, were used to set the
scale parameters of the prior distributions of the (co)
variance components in the definitive analysis.
Based on these preliminary analyses, a large chain of

3,500,000 iterations was obtained in the second stage,
following the suggestion of Geyer [33]. The first 100,000

samples were discarded as burn-in, and the remaining
3,400,000 were used to study convergence through all
single-chain diagnostics supplied by the BOA [34] pack-
age, executed under the R [35] environment. Posterior
means, modes, medians and standard deviations for all
(co)variance components, as well as 95% high posterior
density intervals (HPD), were computed using the pro-
gram POSTGIBBSF90, from the BLUPF90 [29] package.

Results
Relevant features regarding the implementation of the
multibreed analysis to the Angus × Hereford data set
are described below. The final analysis took about five
days of execution on a personal computer with a Pen-
tium® 4 (CPU 3.6 GHz, 3.11 GB of RAM) processor, at
a rate of 0.11 second per cycle. The numerical values
used to initialize the scale parameters and the degrees of
belief for the prior distributions of all (co)variance com-
ponents are displayed in Table 3. Overall, auto-correla-
tions among samples of the same parameter were very
large for all (co)variance components, especially for
those associated with the segregation terms. However,
by using an appropriate thinning the auto-correlations
decreased to reasonable values without affecting poster-
ior summaries and, as a consequence, convergence was
analyzed for the full length chain of 3,400,000 iterations.
It is worth emphasizing that the sample sequences of all
the (co)variance components succeeded in passing all
single-chain convergence tests supplied by the BOA [34]
package.
Table 3 displays the marginal posterior summaries for

the eleven scalar (co)variance components of the fitted
model. Additionally, Figure 1 displays the corresponding
density shapes that were estimated using a non-

Table 3 Parameters a priori and posterior summaries for the marginal density of each (co)variance component

HPD95

CVC1 e
( )0 S(0) Mean SD Median Mode Lower Upper

 eo
2 100 170 187.34 10.21 187.35 187.09 167.17 207.22

 ep
2 100 80 95.53 9.91 95.24 98.75 76.47 115.17

 a Ao
2 20 85 120.74 20.43 119.54 115.82 82.22 161.46

 a a Ao m
20 -25 -27.00 13.26 -26.11 -23.89 -53.70 -2.15

 a Am

2 20 35 37.63 11.35 35.94 32.35 18.25 60.38

 a Ho
2 20 76 100.24 20.12 98.86 98.42 62.38 140.33

 a a Ho m
20 -50 -56.31 19.64 -55.12 -56.55 -95.65 -19.13

 a Hm

2 20 70 95.18 24.61 92.96 88.29 50.29 144.21

 a So
2 5 10 9.62 6.24 8.10 3.68 1.28 21.96

 a a So m
5 8 9.55 7.01 7.82 3.20 0.36 24.18

 a Sm

2 5 9 13.37 12.55 9.48 3.65 1.03 37.93

1(Co)variance components:  eo
2 = error variance;  ep

2 = maternal permanent environmental variance;  a Xo
2 = direct additive variance by genetic origin;  a Xm

2 =

maternal additive variance by genetic origin,  a a Xo m
= direct-maternal genetic covariance by genetic origin; X = {Angus, Hereford, segregation}; e

( )0 = a priori

degrees of belief; S(0) = a priori scale parameter; SD = standard deviation; HPD95 = 95% high posterior density interval.
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parametric technique based on a Gaussian kernel [36].
In general, genetic (co)variance components showed
marginal posterior densities with high degree of symme-
try, except for those components associated with the
segregation between breeds. In particular, while the
mean values of direct and maternal segregation var-
iances were respectively  a So

2 = 9.62 kg2 and  a Sm

2 =
13.37 kg2, the modes for both direct and maternal segre-
gation variances were about 3 Kg2.
Besides, there were differences in the posterior sum-

maries of the genetic (co)variance components accord-
ing to the source of variability. First, there was a small
scale deviation in the means of the direct additive var-
iances between Angus and Hereford breeds:  a Ao

2 =
120.74 kg2 vs.  a Ho

2 = 100.24 kg2, respectively, both
breeds having similar standard deviations. By contrast,
the means of the maternal additive variances showed
quite a large difference towards Hereford ( a Am

2 = 37.63
kg2 vs.  a Hm

2 = 95.18 kg2), displaying higher dispersion
than their direct counterparts. Finally, posterior means
for the direct-maternal genetic covariances were nega-
tive in both breeds, being the magnitude of the para-
meter in Angus about half the value obtained for
Hereford ( a a Ao m

= -27.00 kg vs.  a a Ho m
= -56.31 kg).

On the contrary, the segregation covariance between
direct and maternal genetic effects was positive within
the 95% HPD interval. Besides, the posterior mean was
 a a So m

= 9.55 kg2 and the posterior mode was 3.20 kg2.
Posterior summaries for direct heritability, maternal

heritability, and direct-maternal correlation in the refer-
ence F2 population are presented in Table 4. Heritabil-
ities were defined as the quotient between the additive
variance for each trait, computed as the weighted sum
of additive variances by source of variability, and the
phenotypic variance for the reference breed group.
Direct and maternal heritabilities means were 0.27 and
0.18, respectively, with a small shift with respect to the
mode in the latter case. In turn, mean direct-maternal
correlation was -0.33. The posterior probabilities that all

variance quotients are strictly positive were greater than
0.95 in agreement with the 95% HPD intervals.
Finally, relative contributions of each source of varia-

bility to the total direct and maternal additive variances
in individuals F2 are displayed in Table 5. The contribu-
tion from the Angus to total direct additive variance
was higher than the contribution of Hereford (50.26%
vs. 41.73%) while, conversely, Hereford origin accounts
for almost twice the maternal additive variance (23.59%
vs. 59.65%). In turn, the contribution of the segregation
variance to the total additive variance was not significant
for the direct component of the trait (< 10%), though it
was more important for the maternal component
(≈ 17%). However, when the contribution was calculated
using the posterior modes, segregation variance contrib-
uted in a non-significant fashion in both cases: 3.32%
and 5.71% for the direct and maternal components,
respectively.

Discussion
In this study we formalized the equivalence between the
multibreed animal model with heterogeneous additive
variances introduced by García-Cortés and Toro [10],
and the one derived from the quantitative genetic theory
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Figure 1 Estimated marginal posterior densities for genetic (co)variance components disaggregated by breed source of variability.

Table 4 Posterior summaries for direct heritability,
maternal heritability, and direct-maternal correlation

Mean (SD) Mode (LHPD95, UHPD95)

Trait1 DWW MWW DWW MWW

DWW 0.27 (0.03) -0.33 (0.13) 0.26 (0.20, 0.33) -0.35 (-0.57, -0.07)

MWW 0.18 (0.03) 0.24 (0.11, 0.24)
1DWW = direct weaning weight; MWW = maternal weaning weight; SD =
standard deviation; LHPD95, UHPD95 = lower and upper limits for the 95%
HPD interval

Heritabilities (diagonals) and correlations (off-diagonals) are expressed with
reference to the F2 population. Summary measures of heritabilities were
calculated using the weighted sum of additive variances by origin divided by
the phenotypic variance at each cycle; correlation summaries were computed
using the weighted sum of direct-maternal genetic covariance by origin
divided by the product of additive standard deviations at each cycle
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[1,2]. In doing so we used a different formulation not
including breeding values for the individuals with null
contributions within the additive vectors by breed ori-
gin. Next we defined appropriate matrices that retrieved
the null-row and null-column patterns from the inci-
dence matrices of breeding values and from the partial
numerator relationship matrices. Finally, on using these
matrices and by means of appropriate algebraic opera-
tions, we showed the equivalence between both models.
Even though in our derivation we assumed a two-breed
composite population, the generalization to p breeds
requires only redefining the appropriate vectors of
breeding values by breed origin.
Further, we extended the model to include maternal

effects [2,19] and, in order to estimate (co)variance com-
ponents, we described a hierarchical Bayes implementa-
tion. Generally speaking, the Bayesian approach is more
intuitive, more flexible, and its results are more informa-
tive when compared to inference methods based on
maximizing the likelihood function. The basic idea in
the Bayesian approach is to combine the knowledge a
priori about the unknown parameters, with the addi-
tional information supplied by the data [20]. In particu-
lar, within the framework of a multibreed animal model,
an advantage of the approach is the possibility to incor-
porate prior information about the (co)variance compo-
nents by source of variability [4]. In any case, if there is
complete uncertainty about these parameters a priori, a
possible action is to consider flat unbounded priors [10].
Alternatively, another option is to use conjugate
inverted-gamma distributions as priors, which are para-
meterized so that they reflect the uncertainty through
the degrees of belief chosen by the analyst, as we did in
the current application. In both situations, the analytical
expression for the full conditional posterior densities is
recognizable and, as a consequence, it is possible to
implement a Gibbs sampling algorithm as the inference
method [37].
In fact, as pointed out by García-Cortés and Toro

[10], only a small extra coding effort is required to
accommodate a Gibbs sampling algorithm for (co)var-
iance components estimation in the framework of a
multibreed animal model with heterogeneous variances.
Basically, it is necessary to modify slightly one of the
several routines available to compute inbreeding coeffi-
cients to appropriately assign contributions to the partial

numerator relationship matrices. With this purpose,
García-Cortés and Toro [10] used the procedure of
Quaas [38]. By contrast, we adapted the subroutine of
Meuwissen and Luo [30] as it presents two advantages
for the problem at hand: 1) it is a faster algorithm, and
2) it performs on a row by row basis [30,39]. Modifying
the Meuwissen and Luo [30] subroutine requires rede-
fining the expression for the within-family variance, and
initializing the work variable FI with the appropriate
coefficients of breed composition.
Among other important issues, implementing a Gibbs

sampler involves choosing a sampling strategy, deciding
the number of chains to be generated, and defining the
initialization values, length of the burn-in period, and
number of cycles needed to ensure a representative
sample from the marginal distribution of interest [40].
In this study we used a single-site, systematic scan sam-
pling strategy. For all other issues while implementing
the Gibbs sampler, we followed the work of Geyer [33].
Therefore, the results presented here are based on a
very long chain after discarding the first 3.4% (100,000)
samples as burn-in. The main concern was the extre-
mely high correlations observed between adjacent sam-
ples for all (co)variance components. However, it is
worthy of note that even though sub-sampling reduced
these auto-correlations to reasonable amounts, thinning
is not a mandatory practice [41], and certainly is not
needed to obtain precise posterior summaries [33].
Another concern is the computing feasibility of the

Gibbs sampler described here for large datasets. In this
regard, two major issues that affect run-time should be
distinguished: first, the number of arithmetic operations
needed to accomplish one cycle of the Gibbs sampler as
a function of the number of individuals in the pedigree
file, and second, the number of cycles necessary to
attain convergence. The most time consuming tasks
within each round of the procedure are sampling of the
location parameter vector, and computing the quadratic
forms while sampling the covariance matrices. These
steps involve arithmetic operations on the entries of
large matrices: the mixed model coefficient matrix and
the partial numerator relationship matrices, respectively.
Yet, given the sparse storage of these matrices and the
fact that arithmetic operations are performed only on
non-zero entries, it can be shown that the time per
cycle is, ultimately, linear in the number of individuals.

Table 5 Direct and maternal additive variances in F2 individuals split by source of variability

% by source Total1

F2 individuals additive variances Angus Hereford Segregation kg2

Direct: 1
2

2 1
2

2 2  a A a H a So o o
+ + 50.26% 41.73% 8.01% 120.11

Maternal: 1
2

2 1
2

2 2  a A a H a Sm m m
+ + 23.59% 59.65% 16.76% 79.78

1The total was computed using posterior means

Munilla Leguizamón and Cantet Genetics Selection Evolution 2010, 42:20
http://www.gsejournal.org/content/42/1/20

Page 8 of 12



It should also be noticed that the system size grows in a
quadratic fashion according to the number of breeds
involved [10]. However, the increase in the number of
equations will be somehow alleviated due to the exis-
tence of null equations, and this will depend on the
breed composition of the animals in the data file. Now,
ascertaining convergence is another issue. In our imple-
mentation, formal tests were inconclusive for chain
lengths below 1,000,000 cycles for some of the (co)var-
iance components. Particularly, the Raftery and Lewis
test computed using the BOA package [34], indicated
that there were strong dependencies in the sequences
and as a consequence, there was a very slow mixing of
the chain. Thus, in a larger data set, strategies to
improve the mixing will probably be needed to reduce
run-time. A review on such strategies can be found in
Gilks and Roberts [42].
The multibreed animal model introduced in the cur-

rent research was fitted to an experimental Angus ×
Hereford data set, and for the first time estimates of the
full set of genetic (co)variance components described by
Cantet and Fernando [2] in a maternal animal model
framework were obtained. As a matter of fact, Elzo and
Wakeman [11] have reported REML estimates for a
multibreed Angus × Brahman herd, but they used a
sire-maternal grandsire bivariate model. These authors
parameterized the additional variability arising due to
differences in allelic frequencies between breeds in
terms of the interbreed additive variance [7], a para-
meter equivalent to twice the segregation variance as
defined by Lo et al. [1]. The estimates of the maternal
additive interbreed variance and the interbreed additive
covariance obtained by Elzo and Wakeman [11] were in
absolute terms much greater than the estimates reported
here for the equivalent segregation parameters. How-
ever, they questioned the validity of those estimates
since the number of records they had was small and the
number of (co)variance components to be estimated was
relatively large. Elzo and Wakeman [11] also indicated
that there was very little information on the interbreed
parameters contained in their data. In fact, many of the
problems associated with small amounts of data spring
from difficulties in quantifying properly the estimation
error, especially in models with a hierarchical structure
[43]. By incorporating uncertainty through probability
densities, Bayesian methods overcome this problem
[20,43].
We now discuss other issues of the analysis. First, the

results obtained in the current research suggest that the
allelic frequencies in the two parental breeds that gave
rise to the Angus × Hereford population were similar.
This is inferred from the almost trivial contribution of
the segregation variance to the total additive variance
for both the direct and the maternal component of the

trait (see [1,3]) when posterior modes are taken as point
estimates for the variances. In connection with this, it is
worth mentioning that posterior marginal distributions
of the segregation (co)variance components were
strongly asymmetric, a pattern which has also been
reported by Cardoso and Tempelman [4] when analyz-
ing post-weaning data from a Nelore × Hereford
crossbred population. In addition, posterior mean values
used as point estimates for the direct and maternal her-
itabilities, and the direct-maternal genetic correlation in
the reference population were in agreement with the
values found in the literature [44]. It is important to
emphasize, however, that under the multibreed animal
model presented here, phenotypic variance is specific to
each breed composition, so that heritabilities and corre-
lations are meaningful only to each breed group.
Moreover, breed compositions and functions thereof

are key features of the multibreed analysis: they are used
both for computing the inverses of the partial numera-
tor relationship matrices, as well as regressor variables
for fitting breed group and heterosis mean effects. In
fact, in order to fit properly the model described here,
the breed composition of each individual must be
known. However, data sets with precise information on
the breed composition of animals are lacking. Also, an
adequate data structure is needed in order to obtain
accurate estimates of the (co)variance components; for
example, only the data from the progeny of crossbred
parents provide information to estimate segregation var-
iance [11]. In this respect, the data file used here had
exceptional features. First, it contained plenty of inter-
breed information, with records collected on individuals
pertaining to several breed groups, and with many pedi-
gree relationships connecting groups to each other. In
addition, it had a suitable data structure to estimate (co)
variance components from maternal animal models
[45,46]: a high percentage of the dams had their own
records, and a high proportion of the cows had more
than one calf. It would be interesting to assess the per-
formance of the multibreed analysis described here with
field data, especially when interbreed information is
limited.

Conclusions
Theoretical and empirical considerations justify the use
of a heterogeneous genetic covariance structure when
fitting multibreed animal models. In this regard, the
approach based on the decomposition of the genetic
covariance matrix by source of variability [10] simplifies
the problem of estimating the (co)variance components
by using a Gibbs sampler. In fact, our results show that
the ensuing model is equivalent to the one described in
[2]. Furthermore, the extension to include maternal
effects and the implementation of the hierarchical Bayes
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analysis is straightforward. Additionally, we fitted wean-
ing weight data from an experimental Angus × Hereford
population, and we obtained, for the first time, estimates
of the full set of genetic (co)variance components,
including a positive estimate for the direct-maternal
segregation covariance.
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Appendix
Full conditional posterior densities
Starting from the joint posterior distribution in (17), it is possible to identify
the full conditional posterior density of any parameter of interest by keeping
the rest of them fixed. In this section we will present the analytic expression
for the full conditional densities arising from the multibreed maternal animal
model introduced in (10). Detailed derivations can be found in Sorensen
and Gianola [20], and Jensen et al. [24].
Let the location parameter vector θ be such that  T T T T T T= b a a a e, , , ,A B S p
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Now, by means of appropriate algebraic operations it can be shown [24]
that
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Here, 
∧ −= C r1 is the solution to the mixed models equations arising from

model (10), C-1 is the corresponding inverse coefficient matrix, and r the
right hand side. Unlike the mixed model equations presented by García-
Cortés and Toro [10], the system derived from (10) has a unique solution. It
should be reminded that under this formulation, it is necessary to add ki

−1

to the diagonal entry corresponding to every fixed effect, where ki reflects a
prior state of uncertainty about the location parameters.

Next, we focus on the full conditional posterior distribution of the error
variance. This distribution is proportional to
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and explicitly equals to
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An inspection of expression (A7) reveals that this is the kernel of a scaled
inverted Chi-square density with parameters eo and Seo

2 . In short
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Next, note that the full conditional posterior distribution of the genetic
covariance matrix by source of variability X (X = {A, B, S}) is proportional to
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In (A9), the symbol G0R is used to represent the genetic covariance matrices
for the other sources of variability. Under the conditional distribution of G0X,
these matrices are taken as constants. Then, according to (24), conditional
distribution (A9) can be written explicitly as
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The last expression is recognizable as the kernel of the Inverted Wishart

distribution IW qX X X X + +( )⎡
⎣⎢

⎤
⎦⎥

− −
, *S S 1 1

. A similar result can be

used to obtain the full conditional distributions of the two other genetic

covariance matrices by source of variability.
Finally, it remains to specify the full conditional posterior distribution of the
maternal permanent environmental variance. This density is proportional to
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and explicitly to
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It follows by inspection that density (A14) is in the form of a scaled inverted
Chi-square density with parameters eo and Seo

2 , so that

   e X e e ep o p p ep
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