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Abstract

Background: In the genetic analysis of binary traits with one observation per animal, animal threshold models
frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or
sire-dam models. However, these models are not appropriate in cases where individual records exist on parents.
Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic
(co)variance components within an animal threshold model framework.

Methods: In the proposed algorithm, individuals are classified as either “informative” or “non-informative” with
respect to genetic (co)variance components. The “non-informative” individuals are characterized by their Mendelian
sampling deviations (deviance from the mid-parent mean) being completely confounded with a single residual on
the underlying liability scale. For threshold models, residual variance on the underlying scale is not identifiable.
Hence, variance of fully confounded Mendelian sampling deviations cannot be identified either, but can be
inferred from the between-family variation. In the new algorithm, breeding values are sampled as in a standard
animal model using the full relationship matrix, but genetic (co)variance components are inferred from the
sampled breeding values and relationships between “informative” individuals (usually parents) only. The latter is
analogous to a sire-dam model (in cases with no individual records on the parents).

Results: When applied to simulated data sets, the standard animal threshold model failed to produce useful results
since samples of genetic variance always drifted towards infinity, while the new algorithm produced proper
parameter estimates essentially identical to the results from a sire-dam model (given the fact that no individual
records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties
for genetic parameters (similar to the sire-dam model).

Conclusions: The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems
typically occurring in animal threshold model analysis of binary traits with one observation per animal.
Furthermore, the method considerably speeds up mixing properties of the Gibbs sampler with respect to genetic
parameters, which would be an advantage of any linear or non-linear animal model.

Background
Animal models are the most widely used for the genetic
evaluation of Gaussian traits. An animal model can
account for non-random mating and complex data
structures including phenotypes of both parents and off-
spring, which is likely to cause bias in sire- or sire-dam
models. Furthermore, in practical selection, animal mod-
els are necessary for optimal selection among individuals

with their own phenotypic information, and the animal
model is thus the most relevant from an animal breed-
ing perspective [1]. However, animal threshold models
applied to cross-sectional binary data (one observation
per individual) have been shown to give a biased estima-
tion of genetic parameters, particularly in the presence
of numerous fixed effect classes [2-4], and genetic var-
iance has been shown to “blow up” to unreasonably
high values when using Markov chain Monte Carlo
methods (e.g., the Gibbs sampler). Treating contempor-
ary groups and other relevant effects as “random” or
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increasing the number of observations per subclass may
to some extent overcome these problems, but is not
optimal and cannot be considered as an universal solu-
tion [3]. Instead, binary data are often modeled through
sire or sire-dam threshold models, but, as stated above,
this is not appropriate for all data structures, as parents
with individual records may cause bias in estimating
genetic parameters. Another widely used option is to
use linear models, even though this is statistically inap-
propriate for binary data. Still, predicted breeding values
from linear and threshold models have shown good
agreement in a number of studies [e.g., [5-7]]. The bias
typically associated with animal threshold models should
not be confused with general extreme-category problems
(when all observations within a fixed category belong to
one of the binary classes), as the latter may cause bias
for threshold models in general.
The aim of this study was to develop an algorithm to

estimate genetic (co)variance components using Baye-
sian inference via Gibbs sampling that solves the estima-
tion problems commonly seen in cross-sectional animal
threshold models. The proposed method is also applic-
able in other types of statistical models, and is generally
expected to improve Markov chain mixing properties of
the genetic parameters.

Methods
In a standard threshold (probit) model, the observed
binary records (Yij) are assumed fully determined by an
underlying liability (lit), such that:
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i.e., the threshold value is set to zero. In matrix nota-
tion the threshold animal model can be written as:

 = + +X Za e

where: l = vector of all lij, b = vector of “fixed”
effects, a = vector of random additive genetic effects of
all individuals, e = vector of random residuals, and X
and Z are the appropriate incidence matrices.
Var a A( ) =  a

2 and Var e In( ) =  e
2 , where A is the

additive genetic relationship matrix of all individuals, In
is an identity matrix with dimension equal to number of
records, and  a

2 and  e
2 are the additive genetic and

residual variances, respectively. As usual for probit
threshold models,  e

2 is restricted to be 1.
In the following, the vector a will be split in two sub-

vectors: a a ap np= ′ ′⎡⎣ ⎤⎦
′ , where ap includes breeding

values of all parents (informative), while anp includes
breeding values of non-parents (non-informative). The
breeding values of non-parent animals can also be

written as: anp = ½Zpap + m, where Zp is an incidence
matrix assigning parents to each individual and
m 0 I~ ,N a

1
2

2( ) (in the absence of inbreeding) is a
vector of Mendelian sampling deviations. The prior den-
sity of breeding values can be expressed as:
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where Asd is the additive relationship matrix for sires
and dams. As Mendelian sampling deviations of non-
parents are independent of the mid-parent means, they
can only be inferred from the phenotype(s) on the ani-
mal itself. For cross-sectional binary data, both the cor-
responding residual and the Mendelian sampling
deviation are inferred from a single liability only, and
are thus not identifiable (on the likelihood level) and
completely confounded. Hence, these two parameters
can be combined as in a reduced animal model:

e m e X Z ap p* ,= + = − −  1
2

where e 0 I* ~ , *N e
2( ) . Furthermore as e and e* are

not identifiable on the likelihood level, the correspond-
ing variances (and thus also the variances of m and anp)
cannot be identified either. In threshold models, it is
common to restrict  e

2 to be 1, and similar restrictions
may also be imposed on the variance of m, which can
be restricted to 1

2
2 a (half the current sample of the

genetic variance).
In the new algorithm, breeding values of all indivi-

duals (conditional on covariance components and liabil-
ities) are sampled as in a standard animal model.
However, the method differs from the standard animal
model with respect to sampling of genetic covariance
components. In a standard model, genetic variance is
sampled conditional on all breeding values (both ap and
anp). Assuming an univariate model, the fully condi-
tional density of the genetic variance is:
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which is in the form of a scale inverted chi-square dis-
tribution with q (dimension of A) degrees of freedom
and scale parameter (a’A-1a), where a a ap np= ′ ′⎡⎣ ⎤⎦

′ .
However, as stated above, the breeding values included
in anp are not informative with respect to additive
genetic variance. In the new algorithm, sampling of
genetic (co)variance components is therefore solely
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based on parental breeding values (ap), i.e., between-
family variation, and the fully conditional density of
genetic variance is thus:
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which is in the form of a scale inverted chi-square dis-
tribution with r (number of parents) degrees of freedom

and scale parameter Ma A Masd
1( )′( )− , where Ma = ap

is a vector of parent breeding values (which has identifi-
able variance), M is the appropriate (r × q) design
matrix (identifying “informative” individuals), and Asd is
the additive relationship matrix for the individuals
included in ap (parents). Note also that the fully condi-
tional density of the new algorithm is proportional to
the fully conditional density of additive genetic (sire-
dam) variance under a sire-dam model:
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where  sd a
2 1

4
2= and u is a vector of additive

genetic sire and dam effects (transmitting abilities).
Although shown in a univariate setting, the proposed

algorithm can easily be extended to a multivariate
model.

Simulation study
A total of 10 replicate data sets were generated. Each
data set consisted of 2000 individuals with one binary
observation each. Animals with data were the offspring
of 100 sires and 200 dams, i.e., each sire was mated with
two dams and each dam was mated with one sire (typi-
cal design for aquaculture breeding schemes), and full-
sib families consisted of 10 offspring. For simplicity,
sires and dams were assumed unrelated. Underlying
liabilities were sampled following standard assumptions
(i.e., residual variance was set to 1 and the threshold
value set to zero), assuming a heritability of 0.20 (i.e.,
additive genetic variance was  a

2 = 0.25). The expected
incidence rate was 50% (i.e., overall mean on the liability
scale was zero).
Ideally, the effect of the new algorithm should be

investigated in datasets where estimation problems are
likely to occur, e.g., in datasets having a high number of
fixed effect classes. Since the simulated fixed structure

was rather simple (including an overall mean only),
more complex fixed structures were imposed in the sub-
sequent analysis by randomly assigning observations to
80 different fixed effect dummy classes (25 observations
per class). Hence, numerous fixed effects were estimated
in the subsequent analysis, although no real difference
existed between them. To avoid creating additional
extreme-category problems, the generated fixed effect
structure of each replicate was checked to ensure that
both binary categories were represented within each
fixed class.
The MATLAB® http://www.mathworks.com software

was used to generate and analyze data. All models
included a Gibbs sampling chain of 25,000 rounds (5000
burn-in and 20,000 sampling rounds). Sire-dam models
are widely used and considered appropriate to analyze
such data (as no parents had individual records). There-
fore, for comparison purposes the data sets were ana-
lyzed using two animal threshold models (standard and
new algorithm) and a sire-dam threshold model.
Animal model (Anim)

 = + +X Za e

with parameters as described above. Here, the vector b
had 80 subclasses. Two different Gibbs sampling
schemes were used:
AnimA: A standard Gibbs sampling scheme, using

common algorithms for all parameters (including the
genetic variance). For each round of the Gibbs sampler,

heritability was calculated as: h a

a e

2
2

2 2=
+



 
.

AnimB: Same model as AnimA, except that additive
genetic variance was sampled using the new algorithm
as described above. Heritability was calculated as in
model AnimA.
Sire-dam model (SireDam)

 = + +X Z u ep

where u is a vector of additive genetic effects
of sires and dams (transmitting abilities), Zp is an
appropriate incidence matrix for parents and the
other parameters are as described above. Here,

Var u Asd( ) = = =
+
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Results
Figure 1 shows a trace plot of heritability samples from
a standard animal model (AnimA) applied to a simu-
lated dataset (replicate 1). The plot clearly illustrates
poor mixing, and a Gibbs sampler that never “con-
verges”. Heritability samples approach unity towards the
end of the sampling period, i.e., genetic variance
approaches infinity. Figure 2 shows the corresponding
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trace plot of heritability samples obtained for the same
dataset using an identical animal model, but where the
genetic variance was sampled using the new algorithm
(AnimB). Here, mixing was much faster, and the sam-
ples were within a reasonable parameter space, given an
input heritability of 0.20. Finally, the same dataset was
analyzed using a standard sire-dam model (SireDam),
and very similar results (Figure 3) as AnimB were
obtained (after appropriate rescaling).

Averaged over the 10 replicates, posterior means of
the heritability (Table 1) for AnimB and SireDam were
both 0.25 (ranging from 0.17 to 0.37). Within each repli-
cate, the two models gave almost identical posterior
means of heritability (mean absolute difference was 3 *
10-3). Still, some replicates of both AnimB and SireDam
showed a tendency towards overestimated heritability.
However, as the same results were obtained with both
the SireDam and the AnimB models, this bias was not

Figure 1 Trace plot of sampled heritability values of the AnimA threshold model. All samples from a Gibbs sampling chain (replicate 1)
consisting of 25,000 iterations are shown; genetic variance is sampled based on the standard algorithm

Figure 2 Trace plot of sampled heritability values of the AnimB threshold model. All samples from a Gibbs sampling chain (replicate 1)
consisting of 25,000 iterations are shown; genetic variance is sampled based on the new algorithm
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related to the new algorithm, but more likely resulted
from problems with the data structure (e.g., number of
records and fixed effect structure). In contrast, the stan-
dard animal model (AnimA) resulted in severely overes-
timated heritabilities, as genetic variance drifted towards
infinity for all replicates (as exemplified in Figure 1).
The AnimA model was also analyzed with a Metropolis-
Hastings random walk algorithm to estimate genetic
variance, where breeding values were integrated out of
the likelihood. However, the latter method gave essen-
tially the same result as previously seen for AnimA with

genetic variance drifting towards infinity (results not
shown).
Although similar posterior means of heritability were

obtained using the AnimB and SireDam models, poster-
ior standard deviations of the heritability were generally
slightly higher for the SireDam model (Table 1). How-
ever, a preliminary analysis showed that this discrepancy
was largely removed if residual variance of the SireDam
model was restricted to  e sd

2 22 1= +( ) , rather than
 e

2 = 1 (results not shown).

Discussion
Severe bias was observed for a cross-sectional standard
animal threshold model (AnimA) when applied to small
data sets with unfavorable fixed effect structures (delib-
erately chosen to create estimation problems). For all 10
replicates, the AnimA model resulted in genetic variance
drifting towards infinity (both using standard Gibbs
sampling and a random walk algorithm). However, the
problems associated with animal models were solved by
employing the new algorithm to sample additive genetic
variance (AnimB), resulting in essentially identical herit-
ability estimates as an appropriate sire-dam threshold
model (SireDam). Both AnimB and SireDam models
showed a tendency towards overestimated heritabilities
in some replicates, which may be explained by the small
and unfavorably structured datasets. Consequently,
apparent differences between the fixed effect classes
may be incorrectly accounted for by the model, resulting
in overestimated heritability. Nevertheless, this problem
was equally expressed in the AnimB and SireDam mod-
els, and thus it is not a result of the new algorithm.

Figure 3 Trace plot of sampled heritability values of the SireDam threshold model. All samples from a Gibbs sampling chain (replicate 1)
consisting of 25,000 iterations are shown; genetic variance is sampled based on the standard algorithm

Table 1 Posterior means and standard deviations of
underlying heritability for a binary trait1

Replicate AnimB SireDam

1 0.184 (0.048) 0.189 (0.052)

2 0.203 (0.049) 0.207 (0.055)

3 0.248 (0.047) 0.243 (0.056)

4 0.256 (0.051) 0.252 (0.056)

5 0.325 (0.052) 0.325 (0.060)

6 0.370 (0.051) 0.368 (0.063)

7 0.179 (0.047) 0.174 (0.052)

8 0.213 (0.048) 0.218 (0.053)

9 0.329 (0.053) 0.330 (0.061)

10 0.210 (0.050) 0.205 (0.056)

Average 0.251 0.251

Input parameter 0.200 0.200
1The two models presented are an animal threshold model using the new
algorithm for sampling of additive genetic variance (AnimB) and a standard
sire-dam threshold model (SireDam); posterior standard deviations are given
in parentheses.
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The bias typically seen in animal threshold models
(AnimA) may be explained by an interaction between
the random and fixed effects of the model, i.e., prelimin-
ary analyses revealed that all models were seemingly
appropriate for a simple fixed effect structure (overall
mean only). Hence, the problem has some similarities
with classical extreme-category problems (ECP), which
occur when all observations within a fixed class belong
to the same binary category (which was not the case
here). Typically, ECP are avoided by defining the rele-
vant effects as random. In a cross-sectional threshold
model, the animal classes are defined as random, but
the classes are always extreme (one observation per ani-
mal). Hence, our hypothesis is that, given unknown
genetic variance, classical animal models may still cause
ECP in some cases. For increasing genetic variance, the
random animal effects will increasingly resemble fixed
effects, potentially resulting in ECP at some point during
the Markov chain. The risk of this is likely to increase
with the number of fixed effect classes in the data (as
this would increase uncertainty of genetic parameters).
As observed in this study, the sampled genetic variance
in the AnimA model varies substantially until it even-
tually reaches such large values that the chain seemingly
enters an absorbing state (Figure 1). Furthermore, the
putative genetic variance has different impacts on paren-
tal and non-parental breeding values, which may explain
the better results obtained with AnimB (and SireDam).
Given high putative genetic variance, non-parental
breeding values would be increasingly confounded with
the associated (and extreme) liabilities, while parental
breeding values would be based on the liabilities of mul-
tiple offspring (normally on both sides of the threshold),
making the latter less extreme (and closer to the true
values). Hence, based on AnimB and SireDam, sampled
genetic variance is likely to quickly stabilize at appropri-
ate values.
The results indicate that the AnimB model gives

slightly lower posterior standard deviations for the herit-
ability compared with the SireDam model. This may be
explained by differences in the definition of phenotypic
variance of liability in the two models. For an animal
threshold model, the phenotypic variance is:

 p a
2 2 1= + , and the heritability is thus h a

a

2
2

2 1
=

+




while for a sire-dam threshold model, the phenotypic
variance is:  p sd

2 22 1= + , and the heritability is

h sd

sd

2 4 2

2 2 1
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


. Hence, a proportional change in the

genetic (sire-dam) variance of the two models will have
a larger effect on the heritability in a sire-dam model.
However, we do know that the residual variance of a
sire-dam model (in the absence of inbreeding)

necessarily includes half the additive genetic variance
2 2 sd( ) , and the residual variance may thus be

restricted to:  e sd
2 22 1= + , with the corresponding

heritability being: h sd

sd

2 4 2

4 2 1
=

+




, which is analogous to

the heritability of an animal model. As expected, preli-
minary analyses showed that the latter type of restric-
tion largely removed the discrepancies between
posterior standard deviations of heritability for the Sire-
Dam and AnimB models.
The proposed algorithm is not only relevant in thresh-

old model analyses of cross-sectional binary data (one
observation per individual), it is also of particular rele-
vance in the analysis of time-until-event and sequential
binary data. In the latter type of data, repeated records
may exist for each individual, but one of the binary cate-
gories (e.g., dead) terminates the recording period. In
the presence of time-dependent or stage-specific fixed
effects, variances of individual random effects (e.g., per-
manent environment and Mendelian sampling terms)
are non-identifiable for such traits [8], which may lead
to bias in animal-, sire- or sire-dam models, either as a
result of biased estimates of additive genetic variance
components (animal model) and/or as a result of lacking
ability to account for covariance among observations on
the same individual (sire- and sire-dam models). Given
that genetic (co)variance components can be accurately
estimated, an animal model will properly account for
genetic covariance between repeated observations on the
same individual. However, in sequential binary data, an
animal model (including AnimB) will be unable to iden-
tify covariance structures explained by individual perma-
nent environmental effects.
Across traits, Mendelian sampling deviations of

non-parents are, in most cases, completely confounded
with either residuals (cross-sectional data) or permanent
environmental effects (longitudinal data). Thus, non-
parent individuals can usually be regarded as “non-infor-
mative” under sampling of additive genetic variance
without any loss of information. In preliminary analyses,
we also applied the AnimA and AnimB models to data
sets with repeated (non-sequential) binary records for
each individual, assuming the existence of permanent
environmental effects. As expected, both models gave
essentially identical results, but the AnimB model
showed better Markov chain mixing properties (results
not shown). Hence, even in cases where a standard ani-
mal model is expected to give unbiased results (e.g.,
Gaussian traits, or repeated, non-sequential binary data),
applying the new algorithm is expected to improve mix-
ing of additive genetic parameters (being similar to a
sire-dam model).
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In this study, all parents had multiple offspring with
data and were therefore considered “informative” with
respect to additive genetic (co)variance components.
However, this would not be true for parents/ancestors
having only a single descendant with data. Therefore, if
present, such individuals should be defined as “non-
informative” in sampling of additive genetic (co)variance
components.
The new algorithm to estimate genetic (co)variance

components is now implemented as an option in the
Gibbs sampling module of the DMU statistical software
package [9], where it is adapted to handle multivariate
genetic analyses including binary, ordered categorical
and Gaussian traits.

Conclusions
The new Gibbs sampling algorithm (AnimB) allows
appropriate estimation of genetic (co)variance compo-
nents for animal threshold models. In contrast, a stan-
dard animal threshold model (AnimA) applied to the
same data sets resulted in samples of genetic variance
drifting towards infinity. Given that the data sets could
be appropriately analyzed (no parental phenotypes) with
a sire-dam threshold model (SireDam), the SireDam and
AnimB models yielded essentially identical results.
Furthermore, AnimB is also expected to improve Mar-
kov chain mixing properties of animal models in gen-
eral, and may therefore be advantageous in all types of
animal models using Gibbs sampling. The new algo-
rithm is now implemented as an option in the Gibbs
sampling module of the DMU software package for
multivariate genetic analysis.

Acknowledgements
The research was supported by Akvaforsk Genetics Center AS (AFGC) and
the Research Council of Norway in project no. 192331/S40.

Author details
1Nofima Marin, P.O. Box 5010, NO-1432 Ås, Norway. 2Department of Animal
and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box
5003, NO-1432 Ås, Norway. 3Geno Breeding and A. I. Association, P.O. Box
5003, NO-1432 Ås, Norway. 4Department of Genetics and Biotechnology,
Faculty of Agricultural Sciences, Aarhus University, DK-8830, Tjele, Denmark.

Authors’ contributions
JØ derived the theory, generated simulated data sets, performed the
statistical analyses and wrote the manuscript. PM implemented the
methodology in the DMU statistical software package. All authors took part
in discussions, made input to the writing and read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 February 2010 Accepted: 22 July 2010
Published: 22 July 2010

References
1. Moreno C, Sorensen D, García-Cortés LA, Varona L, Altarriba J: On biased

inferences about variance components in the binary threshold model.
Genet Sel Evol 1997, 29:145-160.

2. Hoeschele I, Tier B: Estimation of variance components of threshold
characters by marginal posterior modes and means via Gibbs sampling.
Genet Sel Evol 1995, 27:519-540.

3. Luo MF, Boettcher PJ, Schaeffer LR, Dekkers JCM: Bayesian inference for
categorical traits with an application to variance component estimation.
J Dairy Sci 2001, 84:694-704.

4. Stock K, Distl O, Hoeschele I: Influence of priors in Bayesian estimation of
genetic parameters for multivariate threshold models using Gibbs
sampling. Genet Sel Evol 2007, 39:123-137.

5. Ødegård J, Olesen I, Gjerde B, Klemetsdal G: Evaluation of statistical
models for genetic analysis of challenge-test data on ISA resistance in
Atlantic salmon (Salmo salar): Prediction of progeny survival. Aquaculture
2007, 266:70-76.

6. Ødegård J, Kettunen Præbel A, Sommer AI: Heritability of resistance to
viral nervous necrosis in Atlantic cod (Gadus morhua L.). Aquaculture
2010, 300:59-64.

7. Heringstad B, Rekaya R, Gianola D, Klemetsdal G, Weigel KA: Genetic
change for clinical mastitis in Norwegian cattle: a threshold model
analysis. J Dairy Sci 2003, 86:369-375.

8. Visscher PM, Thompson R, Yazdi H, Hill WG, Brotherstone S: Genetic
analysis of longevity data in the UK: present practice and considerations
for the future. INTERBULL Bulletin 1999, 16-22.

9. Madsen P, Jensen J: DMU: a user’s guide. A package for analysing
multivariate mixed models. University of Aarhus, Faculty of Agricultural
Sciences, Department of Animal Breeding and Genetics 2007, Version 6,
release 4.7.

doi:10.1186/1297-9686-42-29
Cite this article as: Ødegård et al.: A simple algorithm to estimate
genetic variance in an animal threshold model using Bayesian
inference. Genetics Selection Evolution 2010 42:29.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ødegård et al. Genetics Selection Evolution 2010, 42:29
http://www.gsejournal.org/content/42/1/29

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/11286423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11286423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17306197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17306197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17306197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613880?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Simulation study
	Animal model (Anim)
	Sire-dam model (SireDam)


	Results
	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

