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Abstract

Artificial selection has proven to be effective at altering the performance of animal production systems.
Nevertheless, selection based on assessment of the genetic superiority of candidates is suboptimal as a result of
errors in the prediction of genetic merit. Conventional breeding programs may extend phenotypic measurements
on selection candidates to include correlated indicator traits, or delay selection decisions well beyond puberty so
that phenotypic performance can be observed on progeny or other relatives. Extending the generation interval to
increase the accuracy of selection reduces annual rates of gain compared to accurate selection and use of parents
of the next generation at the immediate time they reach breeding age. Genomic prediction aims at reducing
prediction errors at breeding age by exploiting information on the transmission of chromosome fragments from
parents to selection candidates, in conjunction with knowledge on the value of every chromosome fragment. For
genomic prediction to influence beef cattle breeding programs and the rate or cost of genetic gains, training
analyses must be undertaken, and genomic prediction tools made available for breeders and other industry
stakeholders. This paper reviews the nature or kind of studies currently underway, the scope or extent of some of
those studies, and comments on the likely predictive value of genomic information for beef cattle improvement.

Background
Genetic improvement results from selection of above-
average candidates as parents of the next generation. In a
competitive market, above-average candidates would be
those that improve consumer satisfaction, influencing
immediate eating quality, purchase cost, long-term health
implications of consumption, care of the environment in
the production and processing of the beef; and welfare of
the animals. Satisfied consumers demand and pay more
for desirable beef, and under perfect competition this will
be reflected along the production chain by increased
farm-gate prices for cow-calf producers. Seedstock sup-
pliers that sell bulls to cow-calf producers would be
expected to respond by developing and implementing
breeding programs that provide successive crops of bulls
that outperform their predecessors.
Inspection of genetic trends, e.g. [1,2], shows that beef

cattle selection has resulted in animals with increased
merit for early growth and improved rib eye area and
marbling scores. There is no evidence for genetic

improvement in reproductive performance. Selection
has resulted in animals with larger mature size [1] and
greater cow maintenance requirements [2], which
increase production costs, as cow maintenance require-
ments are a major determinant of the total feed required
in the production system [3]. Beef cattle selection has
therefore failed in practice to achieve balanced improve-
ment across the spectrum of traits that contribute to
breeding goals. One reason has been our inability to
cost-effectively rank selection candidates for all the attri-
butes of interest [4]. This is the case because reliably
quantifying the merits of animals in terms of their
breeding values has been totally reliant on recording
pedigree and performance information, primarily on the
selection candidates themselves, their parents and per-
haps their offspring. This has led to improvement pro-
grams that have been phenotype driven, i.e. programs
that are focused on easy to measure traits that are
recorded at young ages, such as early growth and ultra-
sound assessment of carcass attributes, rather than
being goal driven and focused on all the attributes that
influence consumer satisfaction [5]. The fundamental
reason for this failure is that mixed model predictions of
merit using the relationship matrix and applied to young
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animals can, with sufficient historical data, reliably
predict the parent average (PA) effects, but are unable
to predict the Mendelian sampling effects without hav-
ing phenotypic observations on the individual or its des-
cendants [6]. Accordingly, with only ancestral records,
there is little information to discriminate among pater-
nal half-sibs other than based on the merit of the dams.
In that setting, it is seldom possible to identify young
selection candidates with merit superior to existing
selected sires. In the beef cattle context, this has led to
low selection accuracy for mature size, lifetime repro-
ductive performance, stayability/longevity, and disease
resistance. Other important traits such as tenderness of
beef, other aspects of eating quality, and feed efficiency,
have had no prospects for selection as there are no phe-
notypic measures that can be readily and cost-effectively
obtained on large numbers of seedstock animals.
Molecular-based information has long held promise to

improve the prediction of young animals by first using
phenotypic markers, second using microsatellite mar-
kers, and most recently using ever-increasing densities
of single nucleotide polymorphisms (SNP).
Phenotypic markers such as blood groups were found to

characterize the inheritance of certain chromosomal
regions, proving useful for selection if that region con-
tained a major gene responsible for variation in a trait of
interest [7]. Unfortunately, there are insufficient simply
inherited phenotypic attributes to characterize the entire
genome.
Highly polymorphic microsatellite markers provided

new opportunities to find major genes or quantitative trait
loci (QTL) that influence important traits [8]. These
markers that can have many alleles at each locus, can be
informative in much of the population, and are well dis-
tributed along the genome. The offspring of any heterozy-
gous parent can be segregated on the basis of marker
information, to distinguish the marker haplotype inherited
from each parent in a particular genomic region. Microsa-
tellite genotyping was and is expensive and consequently
many experiments lacked sufficient power to characterize
regions well, and therefore detected only the largest effects
[9]. Relatively few QTL were found that were useful for
beef cattle improvement [10], although many interesting
scientific discoveries arose from these endeavors.
Following the sequencing of the bovine genome,

which led to the discovery of millions of bi-allelic SNP,
and the creation of subsets of SNP that can characterize
the genome and be multiplexed for cheap and efficient
genotyping [11], molecular-based studies to predict ani-
mal merit have been based on high-density SNP geno-
types. This review documents the current status of
whole-genome prediction of breeding merit in beef cat-
tle and describes its implementation for the purposes of
selection.

Breeding objective
The breeding objective comprises a list of traits that
influence the breeding goal, along with their relative
emphasis [12]. An ideal breeding objective would
include all the traits that will in the future influence the
breeding goal. A profit-based goal would motivate the
list to include all attributes that will influence income or
costs. For beef cattle, these clearly include: traits that
influence productivity such as reproductive performance,
growth rate and survival; traits that influence cost of
production such as feed intake; and traits that influence
product quality such as tenderness and taste. In recent
times, the list of traits has been expanding to include
attributes that have been externalities. These include
traits that impact the long-term contribution of beef
consumption on human healthfulness, such as factors
that influence anemia, cancer, obesity, diabetes and
heart disease; traits that influence the environment in its
broadest context, comprising air quality, water quality,
soil degradation, visual farm/feedlot appearance and
competition with wildlife throughout the production,
finishing and processing system; and welfare factors,
both of the animals in terms of exhibiting natural beha-
viors and being free of disease, suffering, and mortality,
and of the labor in terms of worker safety. In this con-
text, the design of a beef cattle improvement program
should holistically consider traits that influence produc-
tion efficiency such as individual animal measures of
inputs and outputs, traits that influence the quality of
the eating experience, traits that influence animal health,
and traits that influence the human healthfulness of the
consumed beef.
The tools available to the animal breeder to improve

consumer satisfaction from beef include: the choice of
breed, the choice of mating plan to exploit complemen-
tarities and heterosis, and selection for within-breed
improvement [12]. The main tools for selection for
within-breed improvement are the estimated breeding
values (EBV) and corresponding indexes that arise from
national cattle evaluations (NCE), which are available in
many countries and empowers genetic improvement
within the seedstock sector [4]. In the absence of geno-
type-environment interactions that can occur when
seedstock animals are managed in different and typically
superior environments compared to those of commer-
cial animals [13], those gains are passed on to the com-
mercial cow-calf sector by the sale of improved bulls (or
semen) to be used as sires.
The current focus of the use of genetic markers for

genomic prediction is to improve within-breed selection,
by increasing the accuracy of existing EBV by the time the
selection candidate reaches puberty, or by providing new
EBV for attributes that influence the breeding goal but
have not been available from conventional performance
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recording. Other genomic analyses that will not be consid-
ered in this review include correct assignment of parents,
identification of genetic diseases, detection of signatures of
selection, prediction of breed composition of crossbred
animals and identification of QTL.

Estimated breeding values from national cattle
evaluations in the United States
National cattle evaluations (NCE) in beef cattle began with
measures of weight traits, and now include birth, weaning
and yearling weights, and to a lesser extent mature
weights. Rather than reporting EBV, US breed associations
typically report Expected Progeny Differences (EPD), that
are one-half the EBV. A summary of the traits for which
EPD are typically reported is in Table 1 for the 16 most
prominent US beef cattle breeds. Calving ease has been
added to most national evaluation systems and, like

weaning weight, includes EPD that reflect direct and
maternal contributions [14]. Carcass traits have typically
been problematic to collect in seedstock herds, so most
carcass information tends to come from ultrasound mea-
sures of rib-eye area (REA), intramuscular fat (IMF) and
fat depth [4]. Not all breed associations provide carcass
EPD. Eating quality is principally limited to tenderness,
but this is difficult to measure in most processing plants.
In the US, carcass marbling has been used as a surrogate
for tenderness/eating quality. More recently, QTL in the
region of the calpain and calpastatin genes have been
exploited for marker-assisted selection, using SNP that
vary among breeds, most notably between Bos indicus and
Bos taurus breeds. Reproductive measures have been diffi-
cult to evaluate since most breed associations have not
used inventory recording systems until relatively recently,
so it is impossible to determine if a female not represented

Table 1 Traits reported in national cattle evaluation for the 16 most prominent beef cattle breeds in the US

Biotype British Continental Indicus (and cross)

Breed2 AAA AHA RAA ASH AIC AGA AMA ASA BAA NAL SAL ABB ACA BBU IBB SGA

Trait1

BWT × × × × × × × × × × × × × × × ×

WWT × × × × × × × × × × × × × × × ×

Milk × × × × × × × × × × × × × × × ×

YWT × × × × × × × × × × × × × × × ×

YHT ×

MWT ×

MHT ×

CCW × × × × × × × × × × × × ×

MRB × × × × × × × × × × × × × × ×

REA × × × × × × × × × × × × × × × ×

FAT × × × × × × × × × × × × ×

RUMP ×

YLD × × × × × × × ×

WBSF × ×

CED × × × × × × × × × ×

CEM × × × × × × × × ×

SC × × × × × × × ×

HPG ×

STAY × × ×

GL ×

DOC × × ×

RADG ×

ME ×

DTF ×

Trait1: BWT = birth weight, WWT = weaning weight direct, Milk = weaning weight maternal, YWT = yearling weight, YHT = yearling height, MWT = mature
weight, MHT = mature height, CCW = carcass weight, MRB = marbling/intramuscular fat, REA = rib eye area, FAT = fat depth (usually over rib), RUMP = fat depth
over rump, YLD = retail beef yield/percent retail cuts/yield grade, WBSF = Warner-Bratzler shear force (tenderness), CED = calving ease direct, CEM = calving ease
maternal, SC = scrotal circumference, HPG = heifer pregnancy rate, STAY = stayability, GL = gestation length, DOC = docility, RADG = residual average daily gain,
ME = maintenance energy requirements, DTF = days to finish.

Breed2:British: AAA = American Angus Association, AHA = American Hereford Association, RAA = Red Angus Association of America, ASH = American Shorthorn
Association; Continental: AIC = American International Charolais Association, AGA = American Gelbvieh Association, ASA = American Simmental Association,
BAA = Braunvieh Association of America, AMA = American Maine Anjou Association, NAL = North American Limousin Foundation, SAL = American Salers
Association; Indicus: ABB = American Brahman Breeders Association, ACA = American Chianina Association (includes Chiangus), BBU = Beefmaster Breeders
United, IBB = International Brangus Breeders Association, SGA = Santa Gertrudis Association.
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as a dam actually calved or not [5]. Reproductive EPD
have therefore been limited to scrotal circumference, and
more recently, heifer pregnancy. There are no routine
measures of input traits on a significant scale, as feed
intake is problematic to measure, especially in grazing cir-
cumstances. Maintenance energy requirements have been
predicted from knowledge on mature weight, condition
score and milk production potential [3].

Genomic prediction
The concept of using high-density SNP genotypes to
predict genetic merit was popularized by the landmark
publication of Meuwissen et al. [15]. Their approach
involved the computation of EBV for individual chromo-
some fragments, characterized by SNP genotypes or
haplotypes. Estimated breeding values of selection candi-
dates are subsequently obtained by summing up the
values of all inherited chromosome fragments. This esti-
mate is referred to as a molecular breeding value
(MBV). A variety of methods has been proposed to
derive EBV of chromosome fragments [16], and these
can be broadly categorized into methods that fit all
SNP, and methods that use mixture models that assume
that not all but a fraction of the SNP have effects on the
trait. All methods can be reparameterized in terms of
equations that fit animal genetic effects rather than SNP
effects and obtain the MBV directly, using the inverse of
a genomic-based rather than a pedigree-based relation-
ship matrix in the mixed model equations [17]. The
concept of genomic prediction using a genotype-based
relationship matrix predates [15] by several years [18].
In practice, so-called genomic training populations that
are used to derive prediction equations, may be of
inadequate size for reliable prediction of all but the lar-
gest chromosome fragments [19], leading to predictions
that account for just a fraction of the additive genetic
variance [20]. In this circumstance, blending the MBV
and the conventional PA will improve accuracy [21].
Given the genotypes, blending can be achieved in the
same analysis as the genomic training, using an inverse
relationship matrix constructed from pedigree informa-
tion on non-genotyped individuals and genomic infor-
mation on genotyped animals [22,23]. In the absence of
the genotypes, the blending can be achieved using MBV
as a correlated trait [24]. That approach requires knowl-
edge of the covariance components relating the MBV to
the trait, typically represented in publications as the
genetic correlation [25,26].
Whereas microsatellite marker studies have typically

failed to identify QTL and subsequently SNP that could
apply equally well across a range of breeds, there was
hope that the reduced cost and the increased density of
multiplexed SNP panels would lead to discoveries that
could be exploited across breeds. The reduced cost per

genotype for panels of 50,000 or more multiplexed SNP
compared to microsatellite markers allows for more ani-
mals to be used in analyses, increasing power. In both
conventional QTL studies and in genomic prediction,
detection of effects relies on an association between the
segregating marker genotype and the segregating causal
polymorphism. The strength of this association reflects
the extent of linkage disequilibrium (LD), which can be
represented by the squared correlation between geno-
types at two loci. Microsatellite studies exploited linkage
relationships to create LD between the flanking sparse
markers and a QTL within families, even when the mar-
ker was in linkage equilibrium with the QTL from a
population perspective. Genomic prediction does not
require family structures but takes advantage of the
higher density of SNP markers and the fact that physi-
cally close loci tend to have higher LD than distant loci.
Provided the genome is saturated with SNP markers,
any QTL should be near some genotyped SNP and
hopefully at least one will be in sufficient LD with the
QTL.
Research studies of genomic prediction in livestock

populations began with the release by Illumina of a
high-density bovine panel of some 54,001 SNP markers
[27]. In any particular breed, a proportion of these SNP
will not be segregating, so the genotypes will be
described in this paper as coming from a 50k panel.

Beef cattle training populations
Training involves statistical analyses that exploit indivi-
duals with both high-density genotypes and recorded
performance [28]. The amount of data required for
training depends upon a number of factors, including
the heritability of the trait [29]. One approach to train-
ing is to use sires whose genetic merit can be assessed
more reliably using progeny performance than would be
the case using only measurements on the individual sire
itself [9]. This may be more problematic in beef cattle
than dairy cattle, as the recorded population of even the
largest beef cattle breed is much smaller than that of
the Holstein breed. Further, artificial insemination (AI)
is much less used in beef cattle seedstock herds than in
dairy herds, collectively resulting in fewer highly reliable
sires available for use in training.
Industry populations have advantages for genomic

prediction. In the case of elite or widely used industry
animals, the individuals included in the training data
will be relevant to the commercial population. For AI
sires, DNA is readily accessible despite the disparate
ownership or physical location of the animals. The prin-
cipal source of performance information comes as EPD
from NCE and is well represented for growth traits,
moderately well for ultrasound traits, poorly for beha-
vior, reproduction and longevity traits, and typically
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with no information on many other traits such as dis-
ease resistance or eating quality. Since most recorded
animals are purebred, training on crossbred data is sel-
dom an option using NCE data and is limited to those
few breed associations that collect crossbred data.
A US repository of DNA from over 3,000 Angus bulls

born since 1948 was assembled by the University of
Missouri [30]. These bulls are represented in American
Angus Association pedigrees and have generally been
widely used. Accordingly, these bulls have EPD and
accuracies for production traits: calving ease (direct);
birth weight; weaning weight; yearling weight; yearling
height; scrotal circumference; maternal traits: maternal
calving ease; milk; mature weight; mature height; carcass
traits: carcass weight; marbling; rib eye area; fat depth;
along with some newly released trait EPD: docility; and
heifer pregnancy. The accuracies of EPD on old bulls
are limited for some traits. Igenity, a genomic testing
service owned by the animal health company Merial,
has used the results from the analysis of this Angus
population, along with other resource populations, to
market a reduced panel comprised of a subset of infor-
mative SNP referred to as a 50k-derived product. It is
marketed in the US in conjunction with the American
Angus Association and costs $65 [31].
The US Meat Animal Research Center (US-MARC) at

Clay Center Nebraska has worked with some breed asso-
ciations to develop a repository of some 2,026 influential or
upcoming bulls in 16 of the most prominent beef breeds in
the US with EPD from NCE and includes: Angus, Beefmas-
ter, Brahman, Brangus, Braunvieh, Charolais, Chiangus,
Gelbvieh, Hereford, Limousin, Maine-Anjou, Red Angus,
Salers, Santa Gertrudis, Shorthorn, and Simmental. Initial
plans for the use of this repository were to provide geno-
mic predictions of these bulls from training analyses based
on a US-MARC crossbred population [32] and to carry out
multi-breed training. These SNP genotypes have now been
made available to the respective breed associations.
The alternative to training on widely-used sires is to

train using phenotypes collected specifically for genomic
analyses. This could be achieved using non seedstock
field data, but in many cases the mating designs and con-
temporary group classifications are not entirely adequate
for the purpose. Most field data comprise offspring from
natural mating, so sires tend to be nested within rather
than cross-classified by contemporary groups. In the case
of carcass traits, animals tend to have their ownership
transferred several times between weaning and harvest,
making it difficult to ensure harvest cohorts were mana-
ged together throughout their entire lifetime. For repro-
ductive traits, it is difficult to obtain sizeable cohorts of
animals for comparison, particularly for phenotypic mea-
surements obtained after first calving, as birth cohorts
get subdivided according to sex of calf, age of dam, and

whether or not yearlings became pregnant. These pro-
blems can be overcome by sourcing animals from large
herds and by designing the study prior to the birth of the
study animals, which may be several years prior to the
collection of phenotypes.
The US carcass merit project (CMP) was one such

long-term industry-funded semi-structured undertaking
initiated in 1998 that collected carcass data, tenderness
and sensory attributes on over 8,200 progeny. Some of
the half-sib offspring of more than 70 sires across 13
breeds were DNA sampled. The sires were widely-used
AI bulls from various breeds and dams were commercial
cows [33]. The dataset has been valuable to validate early
genomic tests being commercialized in the US. Valida-
tion of tests using these data has been undertaken by the
National Beef Cattle Evaluation Consortium (NBCEC)
and the details having been published on-line by Van
Eenennaam et al. [34]. More recently, the CMP dataset
has been genotyped using high-density SNP chips by at
least two different organizations to identify genes and to
apply whole-genome prediction, which will prevent this
resource from being used for independent validation of
future tests derived from that data.
Collecting data for more novel phenotypes requires the

deliberate generation of suitable populations. Given the
current dominant market position of the Angus breed in
the US, it was an obvious candidate for any new studies
to expand the scope of traits for genomic prediction.
Two large studies have been undertaken, one at Iowa
State University to investigate fatty acid and mineral con-
tent in beef as possible targets for improving the human
healthfulness of beef, and another at Colorado State
University to investigate feedlot health. The healthfulness
study involved several cohorts representing 2,300 predo-
minately Angus cattle assessed for carcass and meat qual-
ity attributes, including tenderness and sensory
information, in addition to extensive phenotyping of
traits that might influence the human healthfulness of
beef. These healthy beef traits include mineral and fatty
acid compositions of key muscles [35]. The feedlot health
study used two annual crops of about 1,500 composite
British and Continental steers from one ranch in
Nebraska. The animals were extensively phenotyped for
feedlot health, particularly respiratory disease and
response to treatment. Sickness was assessed visually, by
temperature profiles and by lung damage scores. Data
includes temperament and immunological measures [36].
Both experiments included body weight and a number of
carcass and meat quality phenotypes. These collective
resources have been used, along with other populations,
to develop an Angus 50k product for production and
carcass traits that Pfizer Animal Genetics has marketed
in the US for $124-$139, depending upon the number of
animals tested [37], with predictions from this panel now
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incorporated in NCE undertaken for the American
Angus Association.
Research herds with deep phenotyping are also candi-

dates for studies of genomic prediction. The most com-
prehensive such resource is represented by the US-
MARC germplasm evaluation studies, the recent cohorts
being known as the Cycle VII and F1-squared popula-
tions. In addition to an across-breed training analysis
for which single-SNP effects have been published for
birth, weaning and yearling weights and their respective
gains [38], this population was used to develop a low-
density 196-SNP panel with markers believed to be
informative for weaning weight. Such reduced panels
comprised of only the most informative markers were
believed to be more cost-effective and therefore more
likely to be widely adopted by the beef industry. That
panel was used in a project coordinated by the NBCEC
to demonstrate the use of reduced panels in seedstock
herds, and the incorporation of the resulting MBV into
NCE [39].
The collection of feed intake on large numbers of ani-

mals is still problematic from a practical viewpoint, and
to date, such data has been limited to measuring rela-
tively small disparate groups of animals during finishing,
with findings focused on QTL detection rather than
genomic prediction. Other datasets of limited size have
been collected on a range of traits, including reproduc-
tive performance and tick resistance but have not yet
had any findings published from a genomic prediction
perspective.

Funding for genotyping training populations
Costs for conventional pedigree and performance record-
ing and for NCE have been met by producer funds in the
US. Public funds have been used for the development of
NCE methodology. Public funds were not immediately
available for extensive genotyping of training populations,
and neither seedstock breeders nor breed associations
had funds to adopt this technology beforehand given the
uncertain nature of its value. Fortunately, applications of
this approach in beef cattle improvement were consid-
ered as business opportunities by commercial companies
such as Merial Igenity and Pfizer Animal Genetics to
invest in the training phase, presumably with expecta-
tions of recouping returns on that investment through
future sale of genomic tests. However, this situation has
changed industry dynamics, introducing competitive
partners into the process of ranking animals, and has
increased the proprietary nature of performance informa-
tion, genotypes and analytical approaches. This is one
reason for the dearth of refereed publications on the
accuracy of genomic prediction in beef cattle, in contrast
to the dairy cattle situation.

Predictive ability of whole-genome findings
Confidence in genomic predictions can only be provided
by validation in a group of animals that are not included
in the training population. Close relationships between
animals in training and validation populations tend to
lead to better predictive ability than when the groups
are more distantly related [40]. Analysis of simulated
data suggests that methods based on mixture models
provide better predictive ability than methods that
assume all the SNP have predictive value [15], while
analysis of field data tends to demonstrate relatively lit-
tle difference between alternative methods, and some
inconsistencies appear from trait to trait as to which is
the most predictive method [41,42]. There appears to be
more variation in predictive ability according to the
choice of validation population than there is between
methods.

Within-breed 50k predictions
One of the few reports on accuracy of genomic predic-
tions in beef cattle analysed deregressed EPD [43] from
NCE to quantify cross-validation results from 2,100
Angus AI bulls [44]. The data were partitioned into
three subsets, with training animals in two groups and
validation animals in the third. Subsets were created so
that no sire had sons in both the training and validation
groups. Genomic predictions were obtained from the
training data using method Bayes C [41]. Predictive abil-
ity was quantified as correlations between 50k predic-
tions and realized (deregressed) performance (Table 2).
The general conclusion is that correlations between
genomic predictions from 50k SNP and deregressed
EPD in independent datasets of related animals are
0.5-0.7. It is not possible from these correlations to
readily derive the genetic correlation between genomic
prediction and the true BV, because of heterogeneity of
variance among the deregressed EPD. This heterogeneity
does not impact the expectation of the estimated covar-
iance between genomic predictions and deregressed
EPD, but it does impact the estimated variance of the
deregressed EPD. Furthermore, the genotyped animals
represent AI sires, and these represent highly selected
individuals, so their genetic variance is not likely to be
representative of the population genetic variance. Also,
correlations between genomic prediction and EPD do
not provide expectation on the genetic correlation, due
to the varying degrees of shrinkage influencing EPD,
which vary in their information content. Accordingly,
correlations between genomic prediction and EPD or
deregressed EPD provide a guide to accuracy, but can-
not be interpreted as quantifying the proportion of
variation accounted for by the genomic prediction
applied to new animals. This would not be the case for
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correlations between genomic prediction and homoge-
neous information such as individual phenotypic
observations.
Other numerically important breeds tend to have

fewer registrations than Angus and it will be difficult to
collect comparable sized training populations of AI
sires. In contrast to the dairy industry, most bulls are
used solely in commercial herds that do not record par-
entage or individual performance and therefore do not
obtain progeny information for training or validation.
The American Hereford Association has increased the
50k genotypes provided by US-MARC to develop a
training population of 800 animals, but no results have
been published yet. The other US breeds have even
fewer animals ready for training.
Genomic prediction for beef cattle healthfulness has

shown varying levels of predictive ability, as determined
by the proportion of variation accounted for by markers
[35]. Using samples from the Longissimus dorsi, iron con-
centration of beef could be readily predicted, whereas
magnesium, manganese, phosphorus and zinc concentra-
tions appeared to be under less genetic control. For other
minerals such as calcium, copper, potassium and sodium,
concentrations could not be predicted. Prediction of the
fatty acid’s concentrations showed similar trends to that
of the minerals’ concentration. For the predominant
even-numbered saturated fatty acids C14:0, C16:0 and
C18:0, monounsaturated C18:1 and polyunsaturated
C18:2, prediction was good, while for C18:3 and conju-
gated linoleic acid (CLA) concentrations, predictions
were not conclusive. These results look promising to
develop tools capable of modifying the concentration of
saturated fatty acids, or the relative proportions of satu-
rated and unsaturated fatty acids. For these traits, the
challenge will consist in developing a market for beef
with modified fatty acid composition.
Using the same dataset as for beef healthfulness, it has

been shown that carcass and beef quality traits can be
predicted [35]. Hot carcass weight, calculated yield

grade, marbling score and fat thickness had 40-50% of
phenotypic variance explained by the 50k markers,
whereas markers accounted for less than 30% of the var-
iation for dressing percentage, loin eye area and tender-
ness assessed by Warner-Bratzler shear force. Cross
validation results were not reported.

Within-breed reduced panels
Reduced SNP panels can be produced either to be
highly informative for a particular trait or for several
traits by including the most strongly associated SNP, or
to be informative for high-density genomic prediction
after imputing the high-density panel from a reduced
set of evenly spaced SNP with high minor allele fre-
quency [45]. To date, the beef industry focus has been
on subsets of markers chosen to be informative for a
subset of traits that are believed to have the most eco-
nomic relevance and greatest market opportunity.
Mixture models such as Bayes B and Bayes C [41]

assume that some fraction of the SNP have zero effect on
the trait. The posterior frequency with which any particu-
lar SNP was fitted in an MCMC analysis reflects the
informativeness of particular SNP and can be used for
SNP selection. Subsets of 600 SNP markers created by
selecting the 20 markers on each bovine chromosome
with the highest model frequency, from Bayes C analyses
with 90% of 50k SNP assumed to have zero effect,
demonstrated relatively little loss of predictive ability
compared to 50k predictions [43]. Cheaper genotyping
can be achieved by reducing the number of markers to a
single set of 384 SNP, chosen for predictive ability across
the portfolio of traits of interest. However, reducing the
number of SNP below 600 reduces predictive ability. For
example, the correlation reported in [43] for sets of the
best 50, 100, 150 or 200 SNP chosen to predict marbling
in Angus were 0.28, 0.29, 0.39, and 0.43, well below the
0.67 achieved with 600 SNP. A single set of 384 markers
chosen from the above analysis for predictive ability
across a range of traits was validated in a new population

Table 2 Correlations of 50k or 600 SNP predictions with deregressed EPD for various traits using cross-validation with
three subsets of the data

Trait Training 2 and 3 Prediction 1
(50k)

Training 1 and 3 Prediction 2
(50k)

Training 1 and 2 Prediction 3
(50k)

Overall1

(50k)
Overall (600

SNP)

FAT 0.71 0.64 0.73 0.69 0.63

CED 0.65 0.47 0.65 0.59 0.61

CEM 0.58 0.56 0.62 0.53 0.55

MRB 0.72 0.73 0.64 0.70 0.67

REA 0.63 0.63 0.60 0.62 0.56

SC 0.60 0.57 0.50 0.55 0.51

WWD 0.65 0.44 0.66 0.52 0.49

YWT 0.69 0.51 0.72 0.56 0.55

Traits: backfat (FAT), calving ease direct (CED) and maternal (CEM), carcass marbling (MRB), ribeye area (REA), scrotal circumference (SC), weaning weight direct
(WWD) and yearling weight (YWT); 1correlation estimated by pooling estimated variances and covariances.
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of 275 Angus bulls [43]. The correlations from that ana-
lysis were 0.59 for marbling, 0.32 for backfat, 0.58 for rib
eye, 0.44 for carcass weight, 0.39 for heifer pregnancy
and 0.35 for yearling weight.
In the study on beef healthfulness [35], subsets of as

few as 10 markers retained more than half of the predic-
tive ability of the 50k SNP chip when used to predict
the even-numbered saturated fatty acids C14:0 and
C16:0. The genomic architecture of mineral and fatty
acid concentrations is likely to be much simpler, as the
biochemical pathways and enzymes involved in metabo-
lizing and catabolizing these compounds have been
identified and seem to be somewhat straightforward, in
contrast to traits such as growth rate, which are the col-
lective result of genes influencing bone growth, muscle
growth, fat accumulation, visceral weight among other
factors.
The development of reduced panels for any quantita-

tive trait in breeds other than Angus is currently limited
by the lack of training populations. In contrast to the
dairy industry, where reduced panels are being used for
imputation of 50k markers for genomic prediction [46],
target populations in beef cattle are diverse in terms of
species (Bos indicus and Bos taurus) and breeds.
Furthermore, many pre-pubertal selection candidates are
offspring of natural mating rather than of AI sires. Col-
lectively, these facts increase the genetic distance
between the training and target populations.

Across-breed panels
Prediction across breeds is more problematic because
different breeds may exhibit different QTL, dominance
or epistasis can occur, and allele frequencies may vary
between populations. Linkage disequilibrium (LD) is not
very consistent across breeds and therefore training in
one beef cattle breed using 50k genotypes will not be
very effective to predict a different breed [47]. Simulated
data using actual 50k genotypes from the CMP and an
Angus dataset as if they were causal genes and adding a
random environmental effect to represent a trait with
50% heritability, demonstrated that predictive ability var-
ied according to the number of simulated QTL. The
best results were achieved for the smallest number of
QTL, since in that scenario the average size of the QTL
was larger than when more QTL were simulated. The
across-breed predicted correlation from the simulation
[47] varied from a high of 0.4 for 50 QTL down to
0.2-0.3 for 500 QTL. These correlations account for up
to 18% of genetic variance for 50 genes and less than
10% of variance for 500 genes. Unpublished data
predicting the merit of Hereford bulls using training
results from Angus bulls always resulted in positive cor-
relations, but typically less than 0.10, with the best

correlation being 0.18 for birth weight and slightly less
for yearling weight. Genomic prediction in beef cattle
based only on 50k genotypes will therefore require
training individuals from every target breed, confirming
findings from simulations [48].
Recently released next generation Illumina HD or

Affymetrix Bos-1 panels, with more than a 10-fold
increase in SNP density beyond the 50k, will allow
imputation of missing SNP genotypes in animals already
genotyped for 50k panels [45,46]. It is hoped that the
10-fold increased SNP density will improve across-breed
prediction, avoiding the need for large training popula-
tions of every target breed, but this has yet to be
demonstrated in practice.
Genomic prediction across-breed using reduced panels

will be inferior to 50k based predictions. A subset of 192
SNP markers was chosen from the US-MARC associa-
tion analysis for weaning weight reported in [38] and
applied to predict merit for weaning weight and post-
weaning gain in purebred calves representing seven of
the breeds represented as crossbreds in the US-MARC
training data. The genetic correlation estimated between
the MBV and direct effects for weaning weight was
slightly negative (-0.05) in one breed, 0.0 in another,
and ranged from 0.10-0.28 in the remaining breeds [39].
These results are disappointingly low.

Incorporation of genomic information in US national
cattle evaluation
Both predictions from Merial Igenity and Pfizer Animal
Genetics are currently used in the American Angus
Association (AAA) NCE by including them as correlated
traits. The estimated genetic correlations for the Merial
Igenity MBV are 0.54 for carcass weight, 0.58 for REA,
0.50 for fat and 0.65 for marbling [25]. Corresponding
values have not yet been reported for the Pfizer Animal
Genetics MBV. Procedurally, breeders send DNA sam-
ples to AAA, where they are anonymously recoded and
forwarded to the relevant genomics company. The MBV
are reported back to AAA to be provided to the bree-
ders and included in NCE. In this circumstance, retrain-
ing to improve the accuracy of genomic prediction is
not an option as no party has access to both the geno-
types and EPD or phenotypic performance of the geno-
typed individuals.

Future hopes
Predictive ability is influenced by effective population
size, heritability, and the number of animals in the train-
ing data, among other factors [20,29]. Increasing the
number of genotyped animals should increase predictive
ability. Ideally, the training data should accumulate as
the seedstock producers genotype individuals for
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selection purposes. Unlike for the dairy industry, this is
not occurring yet in the beef industry, since genomics
companies are marketing predictions without the geno-
types going into the national databases administered by
the breed associations. Research populations may there-
fore be critical to the accumulation of training animals
in the near term. In Australia, industry has actively pro-
moted an information nucleus for this very purpose
[49]. The presence of such populations will inevitably
place strain on the relationship between genomics com-
panies that want to keep information of a proprietary
nature and public/industry funding efforts. Pooling
training populations across countries provides an oppor-
tunity to increase training data size, but may add com-
plications. Different countries sometimes define traits in
different ways (e.g. age-adjusted or weight-adjusted), and
have different harvest end-points (e.g. weight-constant
or fat-constant), resulting in imperfect relationships
between the traits in different countries. Further, geno-
type by environment interactions can also be important
because production conditions tend to be more diverse
in beef cattle than in dairy production. Pooling training
data across breeds provides an appealing alternative to
increase predictive power but will require the use or
imputation of new higher-density SNP panels. The use
of haplotypes [50] may also provide additional power,
although this has yet to be demonstrated in beef cattle
with field rather than simulated data. Cost-effective use
of the technology will likely result in approaches that
exploit genotype imputation, and use mixed densities of
genotyping on individual animals. This will likely
include the DNA sequencing of individual animals [51],
such as widely-used AI sires, and the imputation of
sequences. However, additional SNP information alone
may reduce predictive ability [47] unless the size of the
training populations increases. Exploiting bioinformatics,
such as from expression analyses and knowledge of the
location of genes known to influence traits in beef cattle
or other species, may help to increase predictive ability
by allowing focusing on additional SNP only in the
regions that lack sufficient LD. New analytical methods,
such as approaches that explicitly fit QTL effects [52]
rather than SNP effects (such as methods that jointly
account for LD and linkage information [53]) may also
help.
Extension of genomic predictions to the full range of

traits that influence consumer satisfaction will further
require a focus on the collection of reliable phenotypic
information across the broad spectrum of traits. Collect-
ing such information will likely rely on public funding
efforts, but even then will be limited by the availability
of meaningful phenotypes for some traits. New electro-
nic technologies that facilitate the collection of pheno-
types on large cohorts will also be invaluable.

Conclusion
Genomic prediction offers accuracies that exceed those
of pedigree-based parent average of young selection can-
didates. The highest accuracies are achieved for off-
spring of the training population. Accuracies can be
equivalent to progeny tests based on up to 10 or so off-
spring, providing a slightly higher predictive ability than
a single phenotypic observation on the individual. These
accuracies are not yet sufficiently high to warrant selec-
tion in the absence of phenotypic information, particu-
larly as these accuracies tend to erode when assessed in
validation populations that are more distant from the
training population in terms of the number of meioses
separating generations. Accuracies are expected to
improve with further research, as the training popula-
tion grows in terms of numbers of genotyped animals,
and density of SNP genotypes per animal.
Phenotyping is now the principal limitation in expand-

ing the series of traits beyond those routinely recorded
for NCE. In the meantime, applying genomic prediction
will influence traits that were easy to record in conven-
tional improvement programs, rather than addressing
the traits difficult and costly to measure.
Sharing of information among parties to the benefit of

industry is still in its infancy, as is the incorporation of
MBV into NCE. The latter activity will cause particular
challenges for small breed associations which lack the
funding or expertise to change their NCE systems.
Whereas it had been hoped that genomic prediction
would facilitate selection in small breed associations
with fewer registered animals, the current need for
within-breed training will serve only to increase the
technology gap between the breeds and facilitate faster
rates of change in those breeds that have a large market
share.
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