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Abstract

Background: Estimates of variance components for binary responses in presence of extreme case problems tend
to be biased due to an under-identified likelihood. The bias persists even when a normal prior is used for the fixed
effects.

Methods: A simulation study was carried out to investigate methods for the analysis of binary responses with
extreme case problems. A linear mixed model that included a fixed effect and random effects of sire and residual
on the liability scale was used to generate binary data. Five simulation scenarios were conducted based on varying
percentages of extreme case problems, with true values of heritability equal to 0.07 and 0.17. Five replicates of
each dataset were generated and analyzed with a generalized prior (g-prior) of varying weight.

Results: Point estimates of sire variance using a normal prior were severely biased when the percentage of
extreme case problems was greater than 30%. Depending on the percentage of extreme case problems, the sire
variance was overestimated when a normal prior was used by 36 to 102% and 25 to 105% for a heritability of 0.17
and 0.07, respectively. When a g-prior was used, the bias was reduced and even eliminated, depending on the
percentage of extreme case problems and the weight assigned to the g-prior. The lowest Pearson correlations
between true and estimated fixed effects were obtained when a normal prior was used. When a 15% g-prior was
used instead of a normal prior with a heritability equal to 0.17, Pearson correlations between true and fixed effects
increased by 11, 20, 23, 27, and 60% for 5, 10, 20, 30 and 75% of extreme case problems, respectively. Conversely,
Pearson correlations between true and estimated fixed effects were similar, within datasets of varying percentages
of extreme case problems, when a 5, 10, or 15% g-prior was included. Therefore this indicates that a model with a

g-prior provides a more adequate estimation of fixed effects.

Conclusions: The results suggest that when analyzing binary data with extreme case problems, bias in the
estimation of variance components could be eliminated, or at least significantly reduced by using a g-prior.

Background

It is well known that when the binary responses (1 =
cases and 0 = controls) associated with a particular level
of an effect fall within the same category, being either
all ones or all zeros (known as extreme case problems
or ECP), the likelihood is under-identified [1] and var-
iance components tend to be biased. Sorensen et al. [2]
noted that with an increasing number of fixed effects
for a constant number of observations, a larger propor-
tion of fixed effect levels will contain ECP. The authors
further noted that no information is present in the data
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to estimate these fixed effects and the likelihood is ill-
conditioned. Moreno et al. [3] reported that marginal
maximum likelihood yielded biased inferences about the
variance component, and that the direction of the bias
depended on the amount of information associated with
either fixed or random effects. Furthermore, when the
Gibbs sampler was used to perform the marginalization,
positively biased inferences were reported when the
amount of data per fixed effect was small [3]. The
authors concluded that the bias persisted when fixed
effects were poorly estimated, despite the large amount
of information about the variance component.

Sorensen et al. [2] hypothesized that the choice of
the prior distribution for the fixed effects could be the
most critical element for dealing with ECP. Hoeschele
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and Tier [4] conducted a simulation study which indi-
cated that a portion of the bias could be alleviated by
assuming that fixed effects follow a priori a Gaussian
distribution. Likewise, Moreno et al. [3] reported a
reduction in the bias when a Gaussian probability den-
sity function was assigned to the prior distribution of
the fixed effects. However, this strategy may not always
work as Moreno et al. [3] reported that assigning a
Gaussian probability density function to the prior dis-
tribution of the fixed effects did not reduce the bias
for very sparse data structures. The objective of the
current study was to investigate the effect on infer-
ences of assigning a generalized prior (g-prior) with
varying weights to fixed effects, first proposed by Zell-
ner [5], for the analysis of binary data in the presence
of varying percentages of ECP. A simulation using a
sire model was used to test the effect of the g-prior in
the presence of ECP.

Methods

The threshold model is becoming a standard tool to
analyze of discrete data in the field of animal breeding
and genetics and extensive literature on its theoretical
basis, implementation and application has been gener-
ated in the last twenty years [2,6,7].

Let Y represent the observed binary trait taking
values of 1 for cases or O for controls, and /;j; is an
underlying continuous variable that relates to Yjjx
through the following relationship:

~ 1if lij. > 0
" oif g <0
Assuming the following mixed linear model on the lia-

bility scale:
1=xB+Zs+e e~N(0,I) 1)

where [, B and s are the vectors of liabilities, systema-
tic and random effects, respectively. I is the identity
matrix and X and Z are known incidence matrices.

To complete the Bayesian formulation, prior informa-
tion for the model parameters must be specified. For
the random effects, a multivariate normal distribution
was assumed:

p(slA, 03) ~ N(0,Acy) (2)

and a scaled inverted chi-squared density was assumed
for o2

p(auzlvu,ouz) ~ sz(vu, ouz) (3)

with v, and o set equal to 2 and the true value of the
sire variance (0.05 or 0.02), respectively.
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For the systematic effects, let B = [Brcp BN pcp)
where Becp and By ecp are the ECP and non-ECP
classes. For B gcp, the following prior was assumed:

B kcp ~ N(0,I0%)  with o2 =10°

For Brcp, a generalized or g-prior was assumed. It
consists of a special form of a natural conjugate prior
distribution for the parameters of multiple regression
models, and can be viewed as a reference informative
prior [5]. Its advantage in dealing with the ECP is that it
can restrict location parameters from taking extreme
large values due to an ill-defined likelihood function. In
its original form, a g-prior is defined as a normal distri-
bution with a zero mean and a variance proportional to
the standard errors of the least square (LS) estimators of
the model parameters. However, a more generalized g-
prior allows for a non-zero mean. The general form of a
g-prior is given by:

BecplBo, V ~ N(Bo. V)

and

vl= Uger/ECPXECP (4)

where %2 is the residual variance and was set to one,
Bo is the prior mean for the ECP classes, which could be
set equal to the average of the non ECP classes, g is the
relative weight given to the prior and ranges between 0
and 1, and Xgcpis the incidence matrix corresponding
to the ECP classes.

Following Albert and Chib [8] and Sorensen et al. [2],
all conditional posterior distributions are in closed form,
normal for B and s, truncated normal for I and scaled
inverted Chi square for ?4?. Specifically, for Brcp, the
conditional distribution is:

p(Becr!Bw ecp: & Bo os 1)

~N (ﬂECf:§ﬂ°f a7 (1 +3)X§3CPXECP]_1) ®)

where EECP is the estimate of the effects of the ECP
classes based on data and assuming that the X%CPXECP is
full rank. The vector By is, as indicated before, the mean
of the normal prior for the ECP classes. Although it
could be set to any reasonable value, including zero, in
our case it was set equal to the average of the solutions
for the non-ECP classes. Note that when g = 0, the con-
ditional distribution in (5) reduces to that obtained
when a flat prior is used.

Simulation
A simulation using a sire model was carried out to
investigate methods of analyzing binary data with ECP.
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Four over-lapping generations were simulated. The base
population included 50 unrelated sires and subsequent
generations consisted of 150 sires each. Thus, a total of
500 sires were generated. For animals in a given genera-
tion, their sires were selected at random from the pool
of sires from all previous generations. The dataset con-
sisted of 5000 daughter records from the 500 sires with
an average of around ten records per sire. Classes of the
fixed effects were randomly assigned to each record.

A linear mixed model which included a fixed effect
and random effects of sire and residual was used to gen-
erate the binary responses. The fixed effect has 200
classes and was drawn from a uniform distribution with
on average 25 observations per class. In order to obtain
a desired percentage of ECP in the data, the bounds of
the uniform distributions were adjusted. For example,
by decreasing the lower bound of the uniform distribu-
tion (on the negative side of the real line), more liabil-
ities will have negative values and thus their associate
binary responses will be equal to zero which, in turn,
will lead to more ECP classes. However, within a given
percentage of ECP, only the seed for the random num-
ber generator was changed, not the bounds of the uni-
form distribution. The resulting incidence rate ranged
from 9 to 34%, depending on the different simulation
scenarios. Transmitting ability of individuals from the
base population was sampled from a normal distribu-
tion, N(0,Io?2), where I was the identity matrix and

=0.05 or 0.02. The remaining sire effects were
sampled from a normal distribution with a mean equal
to one half of the grandsire’s transmitting ability and a
variance equal to (3 ) o;2. The residual term was sampled
from a normal distribution, N(0, Io?), where I was the
identity matrix and o2 = 1.0, resulting in a heritability
of 0.17 or 0.07.

For each daughter record, the liability was calculated
as the sum of all effects included in the model. Binary
responses were assigned so that if the liability was
greater than zero, then y; = 1, otherwise y; = 0. For each
one of the two values used for the sire variance, five
datasets with a varying percentage of ECP were simu-
lated: 5% (5E), 10% (10E), 20% (20E), 30% (30E), and
75% (75E). Five replicates were simulated for each level
of ECP.

Four methods to account for ECP, using a standard
threshold model, were investigated: normal prior (NP),
5% g-prior (5G), 10% g-prior (10G), and 15% g-prior
(15G). All datasets were analyzed using the four meth-
ods to account for ECP; i.e., the 5% ECP data were ana-
lyzed using the NP, 5%, 10%, and 15% g-prior, which
are denoted as 5E-NP, 5E-5G, 5E-10G, and 5E-15G,
respectively. The remaining ECP datasets are similarly
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denoted with the percentage of ECP listed first and then
the percentage of g-prior used in the analyses.

Convergence

Convergence diagnostics were based on the method of
Raftery and Lewis [9], as implemented in the CODA
software [10]. The required burn-in period was always
less than 1 300 iterations for all parameters in the ana-
lyses. Thus, a total chain length of 75 000 iterations of
the Gibbs sampler was run with a conservative burn-in
of 25 000 iterations. The remaining 50 000 iterations
were retained without thinning for post-Gibbs analysis.
Furthermore, point estimates of the mean and standard
deviation, and the high posterior density 95% [HPD
(95%)] interval were obtained from the CODA software
[10] for all parameters.

Results

Summaries of the posterior mean, standard deviation
and HPD (95%) interval averaged over five replicates,
are presented in Table 1 (when true sire variance was
equal to 0.05) and Table 2 (when true sire variance was
equal to 0.02). Using NP, point estimates of sire variance
for 5E, 10E, and 20E, were greater than the true values
but did not seem to be biased as the true value (0.05 or
0.02) was within the HPD (95%) interval. For 30E and
75E, the sire variance was grossly over-estimated and
biased as the true value was outside or barely within the

Table 1 Posterior means (standard deviation) and the
high posterior density 95% intervals of sire variance
(true value = 0.05) for data with varying percentages of
extreme case problems (ECP) (1,2)

ECP NP? 5G 10G 15G

5% 0.068 (0.018) 0.064 (0.017) 0.054 (0.015) 0.048 (0.014)
10%  0.072 (0.021) 0.068 (0.018) 0.057 (0.016) 0.050 (0.015)
20% 0082 (0026) 0077 (0.022) 0063 (0.020)  0.055 (0.018)
30% 0094 (0033) 0081 (0.026) 0066 (0.023)  0.058 (0.021)
75% 9 (0.039) 0087 (0.037) 0071 (0.032)  0.069 (0.028)
High posterior 95% interval

NP 5G 10G 15G

HL HU HL HU HL HU HL HU
5% 0038 0.103 0033 0098 0026 0085 0021 0077
10% 0036 0116 0034 0105 0026 009 0021 0.081
20% 0041 0132 0036 0122 0026 0103 0021 0.093
30% 0046 0158 0033 0133 0024 0111 0019 0099
75% 0056 0210 0045 0168 0036 0157 0029 0122

'"The values reported are the average of five replicates

2The true value of sire variance used in the simulation was 0.05
3NP = normal prior; 5G = 5% generalized prior; 10G =
and 15G = 15% generalized prior

“HL = lower bound of the high posterior density 95% interval; and HU =
upper bound of the high posterior 95% interval

10% generalized prior;
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Table 2 Posterior means (standard deviation) and the
high posterior density 95% intervals of sire variance
(true value = 0.02) for data with varying percentages of
extreme case problems (ECP) 1,2
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Table 3 Pearson correlations between true (TR) and
estimated effects for varying percentages of extreme
case problems (ECP) for binary data with heritability of
0.17. (1)

ECP NP? 5G 10G 15G Fixed effect
5% 0025 (0.014) 0025 (0.014) 0.022 (0.009)  0.019 (0.009) ECP TR-NP? TR-5G TR-10G TR-15G
10% 0.032 (0.015)  0.028 (0.013) 0.025 (0.011)  0.021 (0.010) 5% 0817 0.903 0.909 0.909
20% 0.036 (0.017)  0.032 (0.015) 0.026 (0.012)  0.023 (0.011) 10% 0.754 0.896 0.901 0.902
30% 0.038 (0017)  0.033 (0.016) 0.028 (0.014)  0.024 (0.011) 20% 0712 0.877 0.880 0.879
75% 0041 (0.029)  0.037 (0.018) 0.031 (0015  0.027 (0.012) 30% 0.669 0.859 0.859 0.856
High posterior 95% interval 75% 0487 0.764 0.776 0.805
NP 5G 10G 15G Sire effect
HU HL HL HU HL HU HL HU ECP TR-NP TR-5G TR-10G TR-15G
5% 0005 0068 0005 0067 0008 0056 0008 0043 5% 0.534 0.534 0.534 0.534
10% 0012 0077 0.009 0068 0010 0053 0011 0045 10% 0.519 0.520 0.520 0.520
20% 0015 0091 0010 0078 0010 0061 0011 0051 20% 0465 0465 0465 0465
30% 0018 0.103 0014 0084 0012 0064 0012 0057 30% 0426 0427 0426 0426
75% 0023 0115 0017 0089 0013 0072 0014 0064 75% 0378 0378 0379 0379

'"The values reported are the average of five replicates

2The true value of sire variance used in the simulation was 0.02
3NP = normal prior; 5G = 5% generalized prior; 10G =
and 15G = 15% generalized prior

“HL = lower bound of the high posterior density 95% interval; and HU =
upper bound of the high posterior 95% interval

10% generalized prior;

HPD (95%) interval. In general, the sire variances
decreased with an increase in the percentage of g-prior
used in the threshold analysis. When true sire variance
was equal to 0.05, for 5E, the point estimate of the sire
variance was 0.068 when NP was used; however, the
point estimate decreased to 0.048 when 15G was used.
This same trend was also observed for 10E (0.072
decreased to 0.050), 20E (0.082 decreased to 0.055), 30E
(0.094 decreased to 0.058); and 75E (0.109 decreased to
0.069). Similar results were observed when the true
value of the sire variance was 0.02 (Table 2). Analysis
15G yielded point estimates extremely similar to the
true value for the 5E (0.048) and 10E (0.050) data.
Furthermore, 15G yielded point estimates with values
most similar to the true value and estimates with the
smallest amount of bias for the 20E (0.055), 30E (0.058)
and 75E (0.069) data.

A summary of the Pearson correlations between true
and estimated fixed and random effects, averaged over
five replicates, are presented in Table 3. For a heritabil-
ity of 17%, Pearson correlations between true and esti-
mated fixed effects for 5E (0.82), 10E (0.75), 20E (0.71),
30E (0.67), and 75E (0.49) were lowest when NP was
used. The Pearson correlations between true and esti-
mated fixed effects were virtually the same for 5E-5G
(0.903), with 5E-10G (0.909) and 5E-15G (0.909). This
same trend was also observed for the 10E, 20E, 30E, and
75E data. Similar results in magnitude and trend were
observed when the heritability was equal to 7%. For the

'"The values reported are the average of five replicates
2NP = normal prior; 5G = 5% generalized prior; 10G =
and 15G = 15% generalized prior

10% generalized prior;

sire effect, Pearson correlations between true and pre-
dicted breeding values were virtually the same across g-
prior weights within a given percentage of ECP.

Discussion

The results of this study indicate that point estimates of
sire variance (Tables 1 and 2) obtained from 5E-NP,
10E-NP, and 20E-NP were slightly higher than the true
values, although without any indication of noticeable
bias. However, point estimates of sire variance obtained
from 30E-NP and 75E-NP were severely biased.
Depending on the percentage of ECP, biases ranged
from 36 to 102% when true sire variance was equal to
0.05 and from 25 to 105% when true sire variance was
equal to 0.02 when NP was used. In fact, the true value
for sire variance was outside the HPD (95%) interval for
75E-NP, and barely inside the interval for 30E-NP for
both heritability values.

When a g-prior was used, the bias was reduced and
even eliminated, depending on the percentage of ECP
and the weight assigned to the g-prior. With 5G, overes-
timation persisted for all five ECP datasets (Tables 1 and
2). Furthermore, the true value used in the simulation
was closer to the lower bound of the HPD (95%) inter-
val, especially for 30E-5G and 75E-5G, indicating that
point estimates of sire variance are less likely to be simi-
lar to the true value. Thus, point estimates of sire var-
iance are biased upward. In fact, point estimates of sire
variance using both heritability values were biased
upward by 25 to 85% when 5G was used. Conversely,
when 10G was included in the analysis, the bias was
eliminated for datasets 5E (0.054) and 10E (0.057) and



Rekaya et al. Genetics Selection Evolution 2011, 43:41
http://www.gsejournal.org/content/43/1/41

significantly reduced for datasets 20E (0.063); 30E
(0.066); and 75E (0.071). Using 15G, bias was completely
eliminated, regardless of the percentage of ECP, and
only a slight overestimation was observed for 75E-15G.
The true value for sire variance was well centered within
the HPD (95%) interval for 5E-15G, 10E-15G, 20E-15G,
30E-15G; and 75E-15G further indicating that a thresh-
old model with a 15% g-prior resulted in more accurate
estimation of sire variance for binary data with 5, 10, 20,
30, and 75% ECP.

The results of this study prove that when analyzing
binary responses in the presence of ECP, a standard
threshold model with a normal prior could lead to
biased variance components, especially when the per-
centage of ECP is greater than 30%. Depending on the
percentage of ECP in the dataset and on the weight
assigned to the g-prior, bias in variance component esti-
mation could be avoided. Although these results are
promising, the univariate sire model is not the typical
method to analyze a binary trait. Typically, binary traits
are analyzed in combination with a continuous trait(s)
using an animal model rather than a sire model. Thus,
further testing is needed to apply this methodology to a
more realistic scenario like the use of an animal model
and joint analysis of binary and continuous traits. On
the practical side, it is worth mentioning that the nor-
mal prior approach could be a viable alternative when
the ECP rate is low (below 30%) as reported in previous
studies [3,4]. Additionally, the results obtained using the
normal prior could change if different hyper-parameters
or model implementations are adopted.

When compared with NP, a substantial increase in the
Pearson correlations between true and estimated fixed
effects were observed, for all percentages of ECP data,
when 5G, 10G or 15G was used in the analysis to
account for ECP (Table 3). When a 15% g-prior was
used instead of a normal prior, Pearson correlations
between true and fixed effects increased by 11, 20, 23,
27, and 60% for 5E, 10E, 20E, 30E, and 75E, respectively.
These results suggest that a standard threshold model
with a normal prior was not adequate to estimate fixed
effects, especially when 30% or more ECP were present.
Conversely, when a g-prior was used, Pearson correla-
tions between true and estimated fixed effects were vir-
tually the same within datasets of varying percentages of
ECP. This result suggests that a standard threshold
model with a g-prior provides more adequate estimation
of fixed effects.

There were no observable differences in Pearson cor-
relations (Table 3) between true and predicted breeding
values between using NP, 5G, 10G, and 15G within
datasets of varying percentages of ECP. Unlike the cor-
relations for the fixed effects, the increase in correlations
between true and predicted breeding values when a 5%
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g-prior was used instead of no g-prior was less than 1%
for 5E, 10E, 20E, 30E, and 75E. This result suggests that
the presence of ECP in the fixed effects of binary
responses and the weight of the g-prior assigned did not
impact prediction of breeding values. However, the
effect of ECP on breeding value prediction could be
greater in situations where an animal has only one
record, which would be the case in an animal model.

In this study, the weight of the g-prior was assumed
known. A better approach is to estimate this parameter
in the model. However, we believe that in practical
situations, trying to estimate “g” could lead to the origi-
nal problem of an ill-defined likelihood, unless a some-
what strongly informative prior is used.

Conclusions

The results of this study prove that estimates of sire var-
iance using a normal prior could be severely biased
when a substantial percentage of ECP is present in bin-
ary data. Depending on the percentage of ECP present
in the data, these upward biases of estimates ranged
from 25 to 105% when a normal prior was used for the
fixed effects. However, when a generalized prior was
used, the bias was reduced and even eliminated, depend-
ing on the percentage of ECP and the weight assigned to
the generalized prior. Pearson correlations between true
and estimated fixed effects were lowest when a normal
prior was used for all percentages of ECP. Furthermore,
the correlations were similar when a generalized prior
was used for all percentages of ECP present in the bin-
ary data. The results suggest that when analyzing binary
data in the presence of ECP, bias in the estimation of
variance components can be eliminated, or at least sig-
nificantly reduced by using a generalized prior for the
fixed effects.
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5E: 5% extreme case problems; 5G: 5% generalized prior; 10E: 10% extreme
case problems; 10G: 10% generalized prior; 15G: 15% generalized prior; 20E:
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prior; HPD (95%) = high posterior density 95% interval; NP: normal prior
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