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Abstract

Background: Genomic predictions can be applied early in life without impacting selection candidates. This is
especially useful for meat quality traits in sheep. Carcass and novel meat quality traits were predicted in a
multi-breed sheep population that included Merino, Border Leicester, Polled Dorset and White Suffolk sheep and
their crosses.

Methods: Prediction of breeding values by best linear unbiased prediction (BLUP) based on pedigree information
was compared to prediction based on genomic BLUP (GBLUP) and a Bayesian prediction method (BayesR).
Cross-validation of predictions across sire families was used to evaluate the accuracy of predictions based on the
correlation of predicted and observed values and the regression of observed on predicted values was used to
evaluate bias of methods. Accuracies and regression coefficients were calculated using either phenotypes or
adjusted phenotypes as observed variables.

Results and conclusions: Genomic methods increased the accuracy of predicted breeding values to on average
0.2 across traits (range 0.07 to 0.31), compared to an average accuracy of 0.09 for pedigree-based BLUP. However,
for some traits with smaller reference population size, there was no increase in accuracy or it was small. No clear
differences in accuracy were observed between GBLUP and BayesR. The regression of phenotypes on breeding values
was close to 1 for all methods, indicating little bias, except for GBLUP and adjusted phenotypes (regression = 0.78).
Accuracies calculated with adjusted (for fixed effects) phenotypes were less variable than accuracies based on
unadjusted phenotypes, indicating that fixed effects influence the latter. Increasing the reference population size
increased accuracy, indicating that adding more records will be beneficial. For the Merino, Polled Dorset and White
Suffolk breeds, accuracies were greater than for the Border Leicester breed due to the smaller sample size and limited
across-breed prediction. BayesR detected only a few large marker effects but one region on chromosome 6 was
associated with large effects for several traits. Cross-validation produced very similar variability of accuracy and
regression coefficients for BLUP, GBLUP and BayesR, showing that this variability is not a property of genomic methods
alone. Our results show that genomic selection for novel difficult-to-measure traits is a feasible strategy to achieve
increased genetic gain.
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Background
Sheep meat production is increasing and replacing wool
production as the primary product of the Australian
sheep industry [1]. Improving growth traits through se-
lection for increased live and a carcass weight is an im-
portant driver of profitability. Providing consistently
high-quality meat is also essential to maintain high con-
sumer acceptance and depends on several carcass quality
criteria, such as intra-muscular fat, shear force and
Omega-3 content [1,2]. Genomic selection [3] is applied
in an ever growing number of livestock species, e.g.
[4-8], and could increase economic returns from lamb
production [9]. Genomic selection can be applied at a
number of well-known entry points of breeding schemes
to increase genetic progress. Genomic estimated breed-
ing values (GEBV) can be obtained for selection candi-
dates at a young age before phenotypic information is
available and be used to increase accuracy of selection
and shorten generation intervals. This is useful for traits
measured later in life, such as adult greasy fleece weight
and reproduction and in cases when phenotypic evalu-
ation involves invasive or destructive approaches such
as for carcass composition and meat quality, which are
traditionally measured on the relatives of selection
candidates.
Estimating GEBV for selection candidates requires a

reference population with both marker genotypes and
phenotypes. Because selection candidates often lack
phenotypic records, the predictive performance of GEBV
can be assessed either with a set of validation individuals
that have highly accurate EBV, e.g. sires with many pro-
geny [4,10], or by cross-validation, e.g. [6,11-13]. Both
validation methods require that the validation popula-
tion and the potential selection candidates have a similar
genetic make-up, such that the accuracies obtained for
the selection candidates will reflect those calculated
using validation individuals. In particular, the validation
and selection individuals should have similar relation-
ships to the reference population [14-16].
For difficult-to-measure and novel traits, individuals

with highly accurate EBV often do not exist. Thus, in
such cases, cross-validation is applied. In the cross-
validation approach, the reference population is divided
into a number of subsets and each subset is predicted
using a reference population that excludes this particular
subset. The method used to divide the data has been
shown to affect prediction accuracy, e.g. [6,17,18].
Choosing fully random subsets is the simplest imple-
mentation but this ignores data structures, for example
presence of sire half-sib groups. Several studies have
divided subsets randomly with constraints on data struc-
ture, such as age [17], family [18], and relatedness [6].
Another consideration is the size of the subsets used for
cross-validation. The larger the subset, the smaller the
sampling variance of the correlation between predicted
and observed variables is expected to be [11,19]. How-
ever, larger subsets decrease the size of the reference
population, resulting in a trade-off between the size of
subsets and the accuracy achieved.
The utility of applying genomic prediction must be

evaluated against what would be achieved with non-
genomic approaches, such as best linear unbiased pre-
diction (BLUP) using pedigree [20]. Cross-validation
studies have compared accuracies of EBV using trad-
itional pedigree methods and accuracies of GEBV [6,18]
but these comparisons have not been made for multi-
breed livestock data. Another point to consider is the
phenotype used to estimate accuracies in cross-validation
studies. Most studies correlate with phenotypes but
the accuracies resulting from these comparisons may be
affected by fixed effects that are often included in the
prediction models.
The aim of this study was to predict GEBV for several

carcass and novel meat quality traits in a multi-breed
sheep population. A previous study in the same popula-
tion investigated how much of the accuracy of GEBV
could be attributed to population structure [21]. Here,
an across sire family cross-validation scheme was used
to estimate accuracies of GEBV in several sheep breeds
and their crosses. GEBV were obtained with three met-
hods: BLUP, genomic BLUP (GBLUP) and BayesR. In
addition, accuracies were calculated based on pheno-
types or adjusted phenotypes and with or without adding
a polygenic effect.

Methods
Datasets from the Cooperative Research Centre for
Sheep Industry Innovation (CRC, genetically connected
flocks in 8 locations) [22] and SheepGENOMICS (SG,
one flock) [23] were combined to increase the size of the
reference population. Different strategies were used to
sample the rams and determine the number of progeny
per ram in CRC and SG. Rams used for breeding in the
CRC flocks were sampled from the general Australian
sheep population to maximise connectedness and sire
progeny groups contained approximately 40 animals. In
contrast, the SG project was initially set up as a linkage
study with 20 sires and large progeny groups. Depending
on the traits examined, the combination of these data-
sets resulted in various sizes of reference populations
(animals with both phenotypes and genotypes) for gen-
omic analyses, ranging from 3107 to 8075 animals
(Table 1). The breed content of the reference population
for hot carcass weight is shown in Figure 1 and is repre-
sentative of other traits because hot carcass weight was
used as a covariate in most analyses. Both reference
populations had a significant proportion of Merino indi-
viduals and only this breed had a substantial proportion



Table 1 Summary statistics and heritabilities (h2) for the
phenotypic traits analysed for the two data sets (CRC and SG)

CRC SG Total

Trait, units Mean SD N Mean SD N N h2

EMD, mm 29.9 3.8 5117 24.7 3.4 2119 7236 0.25

FAT, mm 4.0 2.3 4973 2.7 8.5 2100 7073 0.40

HCWT, kg 22.7 3.6 5170 18.3 2.7 2127 7297 0.59

DRESS, % 45.4 3.6 4974 43.7 3.0 2111 7085 0.34

LMY, % 58.0 3.1 5964 36.6 1.9 2111 8075 0.32

IMF, % 4.2 1.0 4644 3.4 1.5 683 5327 0.49

IRON, mg/kg 20.1 3.7 4618 - - - 4618 0.29

DPA, mg/100g 48.3 15.9 3109 - - - 3109 0.24

EPA, mg/100g 23.6 9.3 3107 - - - 3107 0.26

Heritability (h2) estimated in this dataset, CRC is Sheep CRC dataset, SG is
SheepGenomics dataset.
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of purebred animals. Most other individuals were cross-
breds of meat breed sires and Merino or Merino/Border
Leicester dams.
The following traits were analysed and phenotypic in-

formation for these traits is provided in Table 1. Carcass
eye muscle depth (EMD, mm), carcass fat depth at site C
(FAT, mm, depth of fat at maximum EMD), hot carcass
weight (HCWT, kg), dressing percentage (DRESS, %),
calculated as the ratio of HCWT to pre-slaughter weight,
intra-muscular fat (IMF, %), iron content of wet muscle
tissue (IRON, mg/kg ), and the concentration of omega
3 fatty acid compounds eicosapentaenoic acid (EPA, mg/
100g) and docosapentaenoic acid (DPA, mg/100g). Lean
meat yield (LMY, %) was estimated on the CRC animals
by a combination of other carcass traits and validated by
computed tomography (CT) scanning [24]. On the SG
animals, LMY was computed as the ratio of HCWT and
actual lean meat after bone-out [23]. To account for
these differences in methodology, LMY was standardised
TXL 3%

BL 13%

OTHER 5%PD 17%

WS 7%

RES 1%

SUF 5%

MER 49%

a) Sheep CRC

Figure 1 Proportions of different breeds in the two datasets. Texel:TXL
lines: RES, Suffolk: SUF, East Friesian: FRIES and Merino: MER.
(mean = 0, standard deviation (SD) = 1) within the CRC
and SG datasets before the datasets were merged.
All animals were genotyped using the Illumina 50K

ovine SNP chip, containing 54 977 single nucleotide
polymorphisms (SNP) (Illumina Inc., San Diego, USA).
After applying the following quality control measures,
48 599 SNP were retained: SNP were removed if the call
rate was less than 95%, if the Illumina Gentrain score
was less than 0.6, if the minor allele frequency was less
than 0.01, if the SNP was not in Hardy-Weinberg equi-
librium (a P-value cut-off of 1×10–15), if the genome lo-
cation was unknown or if the SNP showed complete
linkage disequilibrium (r2 > 0.99) with another SNP on
the chip. Data for a genotyped animal were removed if
the genotype call rate was less than 0.9 for that animal
or if the animal’s mean heterozygosity was higher than
0.5, indicating sample contamination. The genotype
database was built over a number of years, missing geno-
types were initially imputed using fastPHASE [25] and
more recently, missing genotypes were imputed using
Beagle [26], after this program became available.
Three analysis methods were used. Non-genomic

breeding values were predicted after estimating variance
components using pedigree information and restricted
maximum likelihood (REML), using the following
single-trait model [27]:

y¼1μþXbþZ1aþZ1Qqþe ð1Þ

where y is a vector of phenotypic records, X, and Z1 are
design matrices relating the fixed and random effects to
the phenotype, Q is a matrix containing breed propor-
tions for each animal, derived from pedigree informa-
tion, μ is the mean, b is a vector of fixed effects, a is a
vector of random additive polygenic effects, q is a vector
of random breed effects, fitted as partial regressions, and
TXL 1%

BL 8%

FRIES 2%

PD 6%

WS 6%
RES 22%

SUF 1%

MER 53%

b) SheepGENOMICS

, Border Leicester: BL, Polled Dorset: PD, White Suffolk: WS, research
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e is the vector of residuals. The following distributions
were assumed: a ~ N (0,σa

2A), q ~ N (0,σq
2I), and e ~ N

(0,σe
2I), where A is the numerator relationship matrix, σa

2

is the additive variance, σq
2 is the variance of breed

effects, and σe
2 is the residual variance. The base model

included the following fixed effects: sex, birth type, rea-
ring type, contemporary group (birth year × site ×
slaughter group), and age at trait recording. Age of the
dam was fitted only for CRC data. HCWT was included
as a fixed covariate for all traits except for DRESS and
LMY. The size of the relevant pedigree was 16 985 indi-
viduals. The phenotypes (y) were restricted to genotyped
animals to make a fair comparison to the genomic pre-
diction methods.
Genomic breeding values were calculated using GBLUP,

for which variance components were also estimated
with REML analysis [27], using the model:

y¼1μþXbþZ1aþZ2gþZ1Qqþe ð2Þ
where Z2 is a design matrix, g is a vector of random
additive genomic effects distributed as N (0,σg

2G), σg
2 is

the genomic variance, G is the genomic relationship
matrix [28]. SNP with allele frequencies less than 0.005
were removed from the calculation of G to improve nu-
merical stability. Phenotypes, rather than de-regressed
estimated breeding values, were used to ensure inde-
pendence of reference and validation sets. If all pheno-
types were used to calculate breeding values, then the
accuracy of predicting an animal without a phenotype
would be overestimated, because phenotypes of vali-
dation animals contributed to the reference pedigree
breeding values.
A Bayesian genomic prediction method using a mix-

ture of four normal distributions with increasing vari-
ance for marker effects (BayesR) [29] was implemented
in two steps. First, phenotypes were fitted using model 1
but without a polygenic effect (y = 1μ +Xb + Z1Qq + e).
The resulting adjusted phenotypes (y*) or residuals were
then analysed using BayesR in model:

y�¼1μþZ1aþWmþe ð3Þ
where W is a design matrix relating adjusted phenotypes
to random marker effects (m). BayesR is described in
more detail in [29]. Briefly, marker variances can come
from distributions with variances σ1

2= 0, σ2
2= 0.0001σg

2,
σ3
2= 0.001σg

2, or σ4
2= 0.01σg

2, and starting values for σg
2

were from GBLUP analysis. The prior for the proportion
of markers in each distribution was drawn from a
Dirichlet distribution. Priors for other parameters were
chosen as in Erbe et al. [29]. Ten parallel chains of 50
000 iterations (20 000 burn-in) were run for each subset.
Posterior means of marker effects of BayesR resulting

from post burn-in chains were averaged across chains
and replicates and then standardised by dividing them
by the standard deviation of the adjusted phenotypes
(SD). SNP with effects greater than 0.005 SD were (arbi-
trarily) chosen and potential candidate genes were
searched for on http://www.livestockgenomics.csiro.au/
cgi-bin/gbrowse/oarv2.0/ using a 1 Mb interval with 0.5
Mb on each side of the SNP. The probability of the ef-
fect of a SNP being in the largest distribution (σ4

2) was
also investigated.
Performance of genomic prediction was evaluated

using cross-validation. It is unlikely that potential selec-
tion candidates in the Australian sheep population have
full or half-sibs in the reference population. Thus, entire
sire families in the CRC dataset were randomly chosen
and combined into subsets of approximately 500 indivi-
duals (CRC subsets). Thus, genomic predictions were
evaluated across sire families and larger reference popu-
lations had more subsets. The SG dataset was not
divided into subsets but was added to each reference
population. The performance of predictions was not
evaluated for the SG data, because this population is not
expected to be representative of the general sheep popu-
lation. Genomic predictions were calculated for each
CRC subset, with the reference set consisting of all other
CRC subsets and the SG dataset. Accuracy was evalu-
ated in each validation subset as the Pearson correlation
of genomic predicted breeding values ( ĝ ) or genomic
plus polygenic predicted breeding values (ĝ + â) with ei-
ther phenotypes (y) or adjusted phenotypes (y*). Accur-

acies were divided by
ffiffiffiffiffi

h2
p

from model 1 to adjust for
the upper limit of accuracy of a phenotype/residual. The
bias of breeding values (both ĝ and ĝ + â) was calculated
as the regression of phenotypes or adjusted phenotypes
on predicted breeding values. Accuracy and bias were
calculated for the whole validation subset and for each
subdivision of each subset by the sire breeds Merino
(MER, effective population size, Ne ~ 850), Border
Leicester (BL, Ne ~ 250), Polled Dorset (PD, Ne ~ 300),
and White Suffolk (WS, Ne ~ 300) [30].
Genetic relatedness of validation animals with the

reference population was calculated for each subset as
the mean of the squared relationships between validation
and reference animals and mean of the top 10 relation-
ships. Other studies have concluded that these measures
are more predictive of accuracy than mean relationships,
hence the latter was not reported [15,16].
Results and discussion
Use of genomic data increased the accuracies of pre-
diction, depending on the trait (mean accuracy across
traits = 0.2) and both GBLUP and BayesR led to more
accurate GEBV than pedigree-based BLUP (Figure 2).
Increases in accuracy were greater when based on

http://www.livestockgenomics.csiro.au/cgi-bin/gbrowse/oarv2.0/
http://www.livestockgenomics.csiro.au/cgi-bin/gbrowse/oarv2.0/
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Figure 2 Mean accuracy across all traits and breed groups of BLUP, GBLUP and BayesR. Accuracy was calculated as the correlation
between predicted breeding values and phenotypes or adjusted phenotypes.
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correlations with phenotypes adjusted for fixed and breed
effects than when based on correlations with unadjusted
phenotypes for pedigree-based BLUP and BayesR but not
for GBLUP. Correlations with adjusted phenotypes varied
less between breeds [see Additional file 1: Table S1], e.g.
for GBLUP for the trait DRESS. Similarly, when correla-
tions were calculated using the whole subset (i.e. without
subdividing by breed), correlations of GEBV with pheno-
types were often much higher than with adjusted pheno-
types, although this trend was more pronounced with
GBLUP than with BayesR. This confirms that estimating
accuracies with unadjusted phenotypes involves a com-
ponent related to fixed effects or breed, even when these
are fitted when computing GEBV. Both genomic meth-
ods used in this study included a polygenic effect. Adding
the estimate of the polygenic effect to the GEBV resulted
in a small increase in accuracy (about 1%, data not
-0.05
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Figure 3 Change in mean accuracy of across breeds and traits of GBL
shown). Furthermore, GBLUP was also run without a
polygenic effect and no significant difference in accuracy
was observed compared to GBLUP with a polygenic ef-
fect but without adding the estimate of the polygenic ef-
fect when computing the GEBV. In the next section, only
accuracies based on correlations of GEBV plus estimates
of polygenic effects with adjusted phenotypes are
reported because they were more balanced between
breeds and seemed less confounded with fixed effects.
The increase in accuracy with genomic methods over

BLUP was not uniform across traits (Figure 3). While
genomic methods increased the accuracy of IMF sub-
stantially, accuracies were similar and closest to those
from pedigree-based BLUP for the traits EPA and DPA.
Figure 4 illustrates the relationship between genomic

prediction accuracy and the product of reference set size
and genomic heritability (R2 = 0.47). The results show a
LMY IMF IRON EPA DPA

Trait

UP and BayesR when compared to BLUP.
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clear trend of increased accuracy with increasing size of
the reference population and suggest that further
increases in accuracy should be possible if the reference
population is increased further.
The accuracy of GEBV was lower in Border Leicester sire

breed groups than in the Merino, Polled Dorset and White
Suffolk breeds (Figure 5). This is probably because Border
Leicester sheep have the lowest mean breed proportion in
the reference set of the four validation breeds. For the Mer-
ino, Polled Dorset and White Suffolk breeds, similar gen-
omic accuracies were obtained, although the Merino
breed represented the largest proportion in the reference
population. The fact that the accuracy of GEBV for the
Merino breed was not larger could be because the Merino
population has a higher Ne (about 800) [30] than the Polled
Dorset or White Suffolk populations (Ne ~ 300), which
results in a larger number of independent chromosome
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Figure 5 Mean accuracy across all 9 traits of BLUP, GBLUP and Bayes
sired sheep.
segments to be predicted [31-33]. Thus, in the terminal
breeds, the accuracy of GEBV was similar to that in the
Merino breed, despite a smaller number of phenotypic
records in the reference set, because of lower genetic diver-
sity in those breeds. Another study [4], reported a higher
genomic prediction accuracy for wool and weight traits in
Merino than in terminal breeds using the same popula-
tions, but that is likely because the proportion of the
reference population that is Merino is larger for those
traits than for meat quality traits.
The slope of regression of either phenotypes or adjusted

phenotypes on GEBV was close to 1 for all methods, ex-
cept when using adjusted phenotypes and GBLUP, which
resulted in a regression coefficient of 0.78 (Figure 6 and
Table S2 [see Additional file 1: Table S2]). Thus, overall,
there is little evidence for bias in the predictions. Inter-
cepts were close to 0 for all methods.
BLUP BayesR

ethod

PD WS

R in Merino, Border Leicester, Polled Dorset, and White Suffolk
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Figure 6 Mean bias across all traits and breed groups for BLUP, GBLUP and BayesR from regression of phenotypes or adjusted
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Table S3 [see Additional file 1: Table S3] contains the
mean genetic relationships of validation with reference
animals, calculated as the mean of the top 10 genomic
relationships for each individual. Small differences in re-
latedness between breed groups and between traits were
observed, ranging from 0.102 for DRESS to 0.168 for
IRON, both in the Merino breed. No clear relationships
of the mean genetic relationship with the achieved ac-
curacy were found, for several reasons. First, the sam-
pling variances of the correlations between GEBV and
phenotypes were too large due to the small size of the
validation sets [see Additional file 1: Table S4]. Secondly,
the genomic relationship matrix used here was based on
the original Yang et al. [28] implementation, which does
not adjust for breed (base) allele frequencies. While
these scaling issues are not likely to decrease predictive
performance substantially, they will numerically affect
mean relationships within a breed and may limit the
possibility of finding a relationship between magnitude
of mean relationships and within-breed accuracies. One
possible solution would be to scale allele frequencies
within breeds to their respective breed base allele fre-
quencies before calculating the relationship matrix [29].
In the cross-validation design applied here, sires were

chosen randomly and all their progeny were assigned to
subsets. This prevented the upward bias of accuracies
that would result from within-family prediction when
half sib families are randomly split between reference
and validation datasets. The accuracies obtained with
our approach are expected to better reflect what would
be achieved across a range of industry selection candi-
dates with varying degrees of relationships to the refer-
ence animals. A further complication in our study was
that the reference and validation populations were
mostly made up of crossbreds, yet potential selection
candidates in the industry are likely purebred indivi-
duals. Dividing the validation sets by sire breed groups
was used to approximate the accuracy of purebred selec-
tion candidates. Because all animals have a large Merino
component, the accuracies obtained with the Border
Leicester, Polled Dorset and White Suffolk validation
sets (sire breed groups) are not strictly equivalent to the
accuracy which would be obtained with purebred ani-
mals. However, in the absence of purebred individuals
with carcass data, this represents the best possible ap-
proximation. However, while the selection of breeding
stock takes place among purebred individuals, commer-
cial stock results from crosses between terminal and ma-
ternal sheep breeds.
Another aim of this study was to compare the variabi-

lity of cross-validated EBV accuracies across subsets
from pedigree-based BLUP and genomic methods. No
large differences were observed, aside from the increase
in accuracy using genomic data. In addition, accuracies
from pedigree-based BLUP and genomic methods had
very similar standard errors, indicating that cross-
validation accuracies are just as variable across subsets
for pedigree-based BLUP.
While BayesR did not increase the accuracy of ge-

nomic prediction compared to GBLUP, it does explicitly
estimate marker effects and the proportion of markers
in each of the four distributions. BayesR estimates of
marker effects greater than 0.05 adjusted phenotypic
trait SD are presented in Table 2. The largest estimated
effect was observed for FAT (0.0106 SD, Figure 7) but
most markers had very small effects. Thus, few large
effects were detected in our analysis (Figure 7 and [see
Additional file 1: Figure S1]). The magnitude of the esti-
mated effects suggests that BayesR can still shrink large
effects heavily, although it models four marker distribu-
tions, and this could partially explain the small number
of large effects estimated or there just may be no true
large marker effects in these traits. The SNP with the
largest effects also tended to also have the highest



Table 2 Information of SNP with greater than 0.5 SD effects, including all genes present with 0.5 Mb on either side

Ch Pos (bp) SNP Name Trait Effect (SD) Candidate Genes

1 142,833,353 OAR1_154240036 HCWT 0.0081 ROBO2

1 274,065,940 OAR1_296010698 DRESS 0.0058 SATB1

3 58,809,386 OAR3_62808815 HCWT 0.0095 TSC21, EIF2AK3, RPIA, IGK, PSD4, IL1RN, IL1F10, IL1F5

3 60,199,488 OAR3_64213489 DRESS 0.0052 SLC20A1, CHCHD5, POLR1B, TTL, NCK2, Augurin, cDNA FLJ78230

6 36,877,942 OAR6_41003295 FAT 0.0064 PPM1K, ABCG2, PKD2, SPP1, MEPE, IBSP, LAP3, FAM182A, DCAF16, NCAPG, LCORL

6 37,228,504 s17946 FAT 0.0106

6 37,228,504 s17946 IMF 0.0077

6 37,228,504 s17946 DRESS 0.0060

6 37,757,850 OAR6_41936490 LMY 0.0067

11 20,696,610 OAR11_21345650_X IMF 0.0058 CRYABA1, NYFIP2, TAOK1, GIT1, ANDKRD13B, SSH2, EFCAB5, NSRP1, SLC6A4, BLMH, CPD

14 2,380,675 OAR14_2924168 IMF 0.0070 Chymotrypsinogen A, BCAR1, CFDP1, CFDP2, TMEM170A, BVDV, ADAT1, KARS, CNTNAP4

14 17,972,633 s20405 IMF 0.0051 HEATR3, PAPD5, ADCY7, BRD7, NKD1, NX20, NOD2, CYLD

Full names of genes with locations are listed in Additional file 1, Table S5.
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probability of being in the largest SNP distribution (σ4
2).

In addition, the largest effects were consistently assigned
to the same SNP across the 10 parallel BayesR chains.
Potential candidate genes within a 1 Mb interval with

0.5 Mb on each side of the SNP are also presented in
Table 2. One region on chromosome 6 contained SNP
with estimated effects ranging from 0.0060 to 0.0106 SD
for FAT, IMF, DRESS and LMY. Genes in this region
included ATP-binding cassette sub-family G member 2
(ABCG2) and Polycystin-2 (PKD2), which have been
reported as having been under selection in an analysis
of a large number of sheep breeds [30]. ABCG2, a
gene involved in ATP binding, has been found to con-
tain a causative mutation that affects milk yield and
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composition in dairy cattle [34] and has also been inves-
tigated as a candidate gene for facial eczema in sheep
[35]. Another potential gene of interest is NCK2 protein.
This gene is close to SNP OAR3_64213489 (DRESS
0.0052SD) and codes for an adaptor protein that associ-
ates with tyrosine-phosphorylated growth-factor recep-
tors. ARF GTPase-activating protein (GIT1), which is
close to SNP OAR11_21345650_X (IMF, 0.0058SD),
codes for a GTPase-activating protein that is possibly
involved in vesicle trafficking, adhesions and cytoskeletal
organisation.
The main benefit of genomic selection for carcass and

novel meat quality traits is that it is not necessary to sac-
rifice valuable selection candidates for testing, and
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GEBV can be obtained early in life. Genomic predictions
can be trained within a set of industry representative
individuals and then applied in the general sheep popu-
lation. In its current form, this process is implemented
in a centralised approach in sheep, in which test animals
are housed in information nucleus flocks. However,
data for training could also be collected during slaughter
of industry stock, which could substantially increase
the number of records. One advantage of an informa-
tion nucleus is that animals are well identified and simi-
larly managed, and fixed effects are fully recorded.
Including industry records would require further invest-
ment in recording and tracking of animal production
and movement and the development of uniform stan-
dards for measurement, sampling and testing at slaugh-
ter facilities.
One application of genomic selection is the prediction

of accurate breeding values of juveniles without pheno-
typic records. This allows for significant shortening of
generation intervals. In addition, some sheep breeders
use juvenile in-vitro fertilised embryo transfer (JIVET),
which consists of harvesting immature oocytes from 6 to
8 week old ewe lambs and implanting these into sexually
mature individuals after in vitro fertilisation [36]. The
combination of genomic selection and JIVET could be a
powerful tool to increase genetic gain for novel meat
traits. For example, lines with high omega-3 content or
superior eating quality could be developed. The increase
in genetic gain resulting from genomic selection would
need to be combined with a strategy to limit a reduction
in genetic diversity, such as using optimised contribu-
tions and mating schemes [37-40].
The accuracies of EBV obtained with genomic meth-

ods were not substantially higher than accuracies of EBV
obtained with pedigree-based BLUP. Given the large
reference population size, one could have expected a lar-
ger increase. However, in our case, many breeds contrib-
uted to the reference population and the limited
increase in accuracy could be explained by small contri-
butions obtained from across-breed prediction, which
has been found to be very low in this population [21].
Increasing marker density, either through a high-density
SNP chip or through next-generation sequencing, could
increase accuracies from across-breed prediction. Simu-
lation studies with simple genetic architectures have
shown that using sequence data can be beneficial [41].
In contrast, in a perhaps under-powered study using em-
pirical Drosophila sequence data, no increase in genomic
prediction accuracy was observed compared to the use
of lower SNP densities [42]. In dairy cattle, there is some
evidence that across-breed prediction can be increased
when using a high-density array [29]. A higher density
SNP chip could potentially be more beneficial in sheep
than in cattle, because the Ne is greater for most sheep
breeds than in dairy cattle [30]. In Holstein cattle, 80%
of the genetic variance was captured by the 50k bovine
SNP chip [43]. Using the same methodology between 30
to 55% of the genetic variance was captured by the 50k
ovine SNP chip in Merino sheep, depending on trait
(results not shown). Thus, increasing marker density
may result in substantial increases in accuracy, both
within and across sheep breeds. Currently, the imple-
mentation of high-density arrays, and potentially se-
quence data, is accomplished using a two-step approach.
First, reference populations that are genotyped at
medium density (e.g. 50 000 SNP) are imputed up to
higher density, using a sample of individuals that is gen-
otyped at the higher density. Second, the imputed refe-
rence population is used for genomic prediction.

Conclusions
Genomic predictions for meat quality traits in sheep are
potentially valuable because they can be applied early in
life and do not require potential selection candidates to
be sacrificed. In a large multi-breed sheep dataset, ge-
nomic prediction resulted in greater accuracies of EBV
than pedigree-based BLUP, but for some traits the in-
crease in accuracy was small. Accuracy increased as
reference population size increased and the accuracy
was greater for the Merino, Polled Dorset and White
Suffolk breeds than for the Border Leicester breed. The
latter result is explained in part by the lower proportion
of Border Leicester sheep in the reference population. It
also suggests that across-breed prediction is limited with
the 50k SNP chip. The methods GBLUP and BayesR
produced very similar accuracies of GEBV, with a mean
accuracy of approximately 0.2 across traits. Few markers
with large effects were discovered but one region on
chromosome 6 was associated with large effects for se-
veral traits. Validation correlations of GEBV with pheno-
types adjusted for estimates of fixed effects were less
variable than correlations with unadjusted phenotypes,
and there was little evidence of bias in the GEBV. The
general behaviour of cross-validation accuracies was very
similar for pedigree-based BLUP, GBLUP and BayesR. In
conclusion, genomic breeding values can provide a
powerful tool to increase genetic progress in sheep, es-
pecially when combined with reproductive technologies.
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