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Abstract

Background: Genomic prediction uses two sources of information: linkage disequilibrium between markers and
quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of
genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on
individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes
based on local genealogy information.

Methods: A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were
constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of
prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP
method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian
mixture method.

Results: About 7.5 times more covariate effects were estimated when fitting haplotypes based on local
genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased
the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian
method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting
markers.

Conclusions: Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction.
Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in
accuracy.
Background
Genomic prediction is a method that uses genome-wide
dense markers to predict additive genetic values [1]. It
was originally assumed that the key feature of this
method was that markers were in linkage disequilibrium
(LD) with the quantitative trait loci (QTL) and explained
most of the genetic variance [2]. However, the genetic
variance explained by single nucleotide polymorphism
(SNP) markers depends also on the additive genetic rela-
tionships between individuals. The accuracy of genomic
prediction increases when the markers explain more
additive genetic relationships between individuals. Previ-
ous studies e.g. [3] have reported that accuracy of gen-
omic prediction increases as the genetic relationship
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between candidates and reference animals increases.
Habier et al. [4] showed by simulation that a large part
of the accuracy of genomic prediction was due to genetic
relationships captured by markers. Recent studies in a
sheep population have demonstrated that markers on a
single chromosome could capture up to 86% of the
accuracy of genomic prediction that was achieved when
using all markers [5]. These results support the fact that
most of the accuracy of genomic prediction comes from
tracing genetic relationships between individuals. Gen-
etic gain from LD information is expected to increase if
the disequilibrium between markers and QTL is stron-
ger. An alternative to using individual markers for
prediction is to construct haplotypes based on several
markers surrounding a QTL. The probability for a QTL
to be in strong LD is higher with a haplotype of markers
than with an individual marker [2].
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A drawback of using haplotypes instead of individual
markers in genomic prediction is that many more effects
need to be predicted. When the number of covariates
increases, the amount of data available for each covariate
decreases and consequently the accuracy of the pre-
dicted covariate effects is reduced. However, several
simulation studies have shown that using haplotypes in-
stead of individual markers increases the accuracy of
genomic prediction [6-8]. To date, only a few studies
have investigated the use of haplotypes for genomic pre-
diction in real data [9,10]. Boichard et al. [9] focused on
SNP haplotypes related to QTL with large or moderate
effects in French dairy cattle. De Roos et al. [10]
used ancestral haplotypes for genomic prediction in a
Holstein population.
Several methods are available to construct marker hap-

lotypes. Some are simple, e.g. grouping SNP based on
counts of markers [7] or fixed lengths of chromosome
segments. Other methods use more complicated algo-
rithms to group SNP and cluster the resulting haplo-
types. Calus et al. [6,8] used an identity by descent (IBD)
matrix to group markers and construct haplotypes, and
then applied different IBD probability thresholds to clus-
ter similar haplotypes. In this method, the number of
haplotype effects to be estimated depended on the IBD
probability threshold and on the number of markers in-
cluded in each haplotype. A lower IBD threshold and
more markers per haplotype reduced the number of
haplotype effects to be predicted. Here, we used local
genealogies to construct haplotypes and to define haplo-
type clusters.
At each point in the genome, extant haplotypes are re-

lated in a genealogical tree that ultimately leads back to
a common ancestor. Any mutations that are currently
segregating in the population necessarily must have oc-
curred at the position of the mutation at some point in
the local genealogy, i.e. it must have happened on an
edge of a local genealogy [11]. Given perfect reconstruc-
tion of the local genealogy, haplotypes that carry alterna-
tive causative polymorphisms will be perfectly clustered
by splitting at the edge where the mutation occurred.
Thus, for a bi-allelic causative polymorphism, local ge-
nealogy haplotype clustering should yield the optimal
clusters of haplotypes. However, whether this clustering
is optimal or not, also depends strongly on the accuracy
of the reconstructed local genealogies.
Two classes of prediction models have been used to

estimate haplotype effects. One class of models assumes
that effects of all haplotypes have the same distribution,
e.g. GBLUP or random regression BLUP (RR-BLUP).
The other class of models are mixture models, like
BayesB or BayesC, which assume that a large proportion
of haplotypes have zero effect, while a small proportion
have non-zero effects. These models select the most
informative haplotypes for genomic prediction and cap-
ture LD information better than the GBLUP models [4].
The aim of this study was to investigate the accuracy

and bias of genomic prediction using haplotypes based
on local genealogy information in a Danish Holstein
cattle population, applying GBLUP, BayesB and BayesC
prediction models.

Methods
Data
A mixture of versions 1 and 2 of the Illumina Bovine
SNP50 BeadChip [12] was used to genotype 4429 Danish
Holstein bulls born between 1974 and 2006. Data for
SNP with a minor allele frequency less than 0.01, with
no valid chromosome position in the UMD3.1 assembly
[13], an average GC score less than 0.15, and SNP on
the sex chromosomes were removed from the dataset.
After editing, 43 503 markers remained across 29
autosomes.
Response variables in the genomic prediction models

were deregressed EBV [14,15]. Detailed descriptions of
deregressed EBV (DRE) for three index traits, fertility,
protein yield and mastitis, are provided in Table 1. More
information on the EBV of index traits is available from
the Danish Cattle federation [16]. Reliabilities of the
DRE r2DRE

� �
depend on the heritability (h2) of the trait

and the effective daughter contribution (EDC) of indi-
viduals and was calculated as r2DRE ¼ EDC= EDCþ kð Þ,
where k = (4 − h2)/h2.

Genomic prediction
Marker and haplotype-based predictions were performed
and their results were compared. Haplotype-based pre-
dictions used genealogically related haplotypes that were
clustered together. Genealogical relationships between
haplotypes were estimated based on local genealogies.

Local genealogy haplotype clustering
Marker data were phased and imputed with Beagle 3.3
[17]. First, Beagle constructed haplotypes with default par-
ameter values for scale = 4.0 and shift = 0.2. Then, condi-
tional on the inferred haplotypes, all missing genotypes
were imputed using Beagle’s hidden Markov model. After
obtaining the phased and imputed data for each individ-
ual, local genealogical trees were constructed using the
Blossoc software [18]. In Blossoc, a genealogy is repre-
sented as a single rooted binary tree topology, which is
constructed around each marker. The procedure was as
follows: first, the four-gamete rule was used to find the lar-
gest segment around each marker that does not require
recombination to be inferred. Assuming an infinite sites
model, if all the four possible haplotypes of two markers
are observed (00, 01, 10 and 11), a single genealogy that
does not incorporate recombination can be reconstructed



Table 1 Data for three traits with reference and test datasets

Trait h2 Reference Test

n r2DRE range (DRE) median (DRE) n r2DRE range (DRE) median (DRE)

Fertility 0.04 3084 0.67 7.8-251.7 105.4 1267 0.58 19.1-202.2 103.7

Protein 0.39 3040 0.94 49.0-145.3 92.5 1292 0.92 59.6-153.8 106.0

Mastitis 0.04 3081 0.76 44.6-165.7 101.1 1333 0.67 43.3-188.6 103.4

h2: heritability; n: number of bulls; r2DRE : average reliabilities; range (DRE) and median (DRE): range and median of de-regressed EBV (DRE) for bulls; Reference:
reference dataset; Test: test dataset.
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[18]. For each marker, Blossoc considers the region
around that marker that includes as many markers as pos-
sible without violation of the four-gamete rule. Then, an
unrooted genealogy was reconstructed for this region. The
root of this local genealogy tree was on the branch of the
tree where the mutation for the current marker occurred.
An example of construction of the tree and graphical rep-
resentations of the tree can be found in [18] and [11].
Haplotypes were clustered based on the reconstructed

genealogy. Local genealogical trees contain many levels
but only the first three levels were considered, because
as the number of levels increases, the frequency number
of haplotypes per cluster decreases and this could lead
to numerical instability. The first level consisted of the
root marker. The second level had two nodes and the
third level four nodes. Each node had two branches and
every branch below the third level was considered as
one cluster. After constructing the tree, there was a
maximum of eight clusters of haplotypes per tree. This
process was repeated for all markers in the dataset.
Each individual had two haplotypes (one maternal and

one paternal) in each genealogy and each haplotype
belonged to exactly one of the eight clusters. Thus, each
individual possessed 0, 1 or 2 copies of each haplotype.
In haplotype-based prediction, these numbers replace
the marker allele counts in genomic prediction.

Statistical models
One non-Bayesian method, i.e. GBLUP and four Bayesian
methods, i.e. BayesB, BayesBπ, BayesC and BayesCπ, were
used to predict direct genomic values (DGV). Prediction
was done using individual markers or haplotypes as covari-
ates and resulting predictions were compared.

Bayesian methods
In BayesB [1], each covariate had its own variance with a
scaled inverse chi-square prior [19]. The proportion of co-
variates with zero effect, π, was set to 0.99. BayesC also fitted
data using a mixture distribution of marker effects, with ef-
fects equal to zero with probability π but an effect that is
sampled from a normal distribution with mean zero and a
variance parameter that is shared for all markers with non-
zero effects with probability 1-π. This common variance is
treated as unknown and has a scaled inverse-chi square
prior with 4.2 degrees of freedom and the same scale as de-
rived for BayesB. More details are available in [19]. For com-
parison, BayesC was fitted with π fixed at 0.99 and 0.999.
BayesCπ is similar to BayesC. However, in contrast to

BayesC, π was treated as an unknown parameter with a
uniform (0,1) prior distribution. The actual value was
sampled conditional on the data as part of the Gibbs
sampler. The posterior mean of π from BayesCπ was
also used as the fixed value in BayesB, which will be re-
ferred to as BayesBπ.
The general Bayesian statistical model was:

y ¼ 1μþ
XK

i¼1

ziai þ e;

where y is the vector of DRE, 1 a vector of 10s, μ the
overall mean, K the number of covariates, zi an N × 1
vector of genotypes at SNP i with individual marker-
based prediction and the number of haplotype copies for
each animal in covariate i with haplotype-based predic-
tion, ai a covariate effect i, with ai ∼N 0; σ2a

� �
(with prob-

ability 1 - π) or ai = 0 (with probability π), e a vector of
residual effects and e ∼N 0;Dσ2e

� �
. D is a diagonal matrix

with element dii = 1/wi, where wi is a weighting factor
for the ith DRE. The weighting factor, wi = reliability of
DREi/(1-reliability of DREi), was applied to account for
heterogeneous residual variances due to different reli-
abilities of DRE. To avoid possible problems caused by
extremely high weights, reliabilities larger than 0.98 were
replaced by 0.98 in the calculation of weights. Details
concerning the estimation of σ2a are described in Habier
et al. [18].
All analyses were carried out using the GenSel software

[20]. The Gibbs sampler was run as a single chain with a
length of 10 000 samples, of which the first 1000 samples
were discarded as burn-in. DGV were estimated as the
posterior mean of the sum of ai from the remaining 9000
samples. A Gibbs sampler with a longer chain and burn-in
(50 000 samples and 20 000 as burn-in) was tested and pro-
duced the same results. Convergence of estimated parame-
ters was visually examined and a chain of 10 000 samples
was found to be sufficient.



Table 2 Accuracy of genomic predictions (ACC) and
standard errors (SE) for three traits

Prediction
method

Fertility Protein yield Mastitis

ACC SE ACC SE ACC SE

Individual marker prediction

GBLUP 0.599 0.013 0.646 0.016 0.622 0.013

BayesC π = 0.999 0.521 0.024 0.558 0.023 0.526 0.023

BayesC π = 0.99 0.574 0.023 0.625 0.022 0.595 0.022

BayesCπ 0.596 0.023 0.650 0.021 0.629 0.021

π 0.91 0.91 0.90

BayesBπ 0.594 0.023 0.651 0.021 0.623 0.021

BayesB π = 0.99 0.570 0.023 0.624 0.022 0.586 0.022

Haplotype prediction

GBLUP 0.596 0.013 0.651 0.016 0.628 0.013

BayesC π = 0.999 0.566 0.023 0.611 0.022 0.575 0.022

BayesC π = 0.99 0.598 0.023 0.656 0.021 0.629 0.021

BayesCπ 0.596 0.023 0.658 0.021 0.629 0.021

π 0.90 0.97 0.89

BayesBπ 0.593 0.023 0.657 0.021 0.633 0.021

BayesB π = 0.99 0.595 0.023 0.651 0.021 0.624 0.021
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GBLUP analysis
The GBLUP model [21,22] was:

y ¼ 1μþ Zgþ e;

where y is the vector of DRE, 1 a vector of 10s, μ the
overall mean, Z the design matrix of SNP genotypes or
haplotypes covariates associating g with response vari-
ables, g the vector of covariate effects with g∼Nð0;Gσ2gÞ,
where σ2g is the additive genetic variance, G the realized

genomic relationship matrix and e the vector of random
residuals with e ∼N 0;Dσ2e

� �
. D was the same as in the

Bayesian method. Details of the model and construction
of the G matrix are in [23]. When using haplotypes to
construct G, the matrix (M) that links haplotypes to in-
dividuals and its number of columns is equal to the
number of haplotype covariates. The element in row i
and column j of this matrix was equal to 0, 1 or 2, corre-
sponding to the number of copies of haplotypes j in in-
dividual i. Then, matrix G was calculated in the same
way as with use of marker genotypes. Based on the
present data, the two G matrices built using either
marker genotypes or haplotypes were very similar. The
correlation coefficient between the two G matrices was
0.995 for the diagonal elements and 0.944 for the off-
diagonal elements. The GBLUP analyses were performed
using the DMU package [24].

Validation of genomic predictions
The predictive ability of each model was assessed using
a validation procedure in which the whole dataset was
divided into two parts: 3084 Holstein animals born be-
fore October 1 2001 constituted the reference popula-
tion and 1333 animals born after that date, the test
population. Because not all genotyped animals had DRE
for all three traits, the number of animals in the refer-
ence and test datasets differed between traits (Table 1).
Accuracies of genomic predictions were measured as the
correlation between DRE and DGV divided by the
square root of the average reliability of DRE for animals
in the test population [23]. Bias of genomic predictions
was assessed by examining the regression of DRE on
DGV in the test population. The standard errors of the
regression coefficients and accuracies were calculated
using R (v. 2.15) (http://www.r-project.org/).

Results
After editing, the dataset contained 43 503 markers.
Construction and cutting of local genealogies produced
326 055 haplotype covariates. The total number of co-
variates divided by the total number of markers was
around 7.5, i.e. less than 8 covariates per marker, since
some local genealogies were very unbalanced with some
branches empty. Not all markers had a complete tree. A
tree was complete when all the nodes in the three levels
had two branches such that there were eight clusters of
haplotypes in the bottom of the tree to use for
prediction.
Accuracies of DGV and their standard errors in the

test population using different prediction methods with
individual markers and haplotypes as predictors are
shown in Table 2, along with the posterior mean of π
from the BayesCπ method. For all three traits, the lowest
accuracies were obtained for BayesC when π was fixed
at 0.999 for both individual marker-based and
haplotype-based prediction. The prediction method
yielding the highest accuracy differed between traits:
BayesBπ had the highest accuracy for protein yield,
BayesCπ for mastitis and GBLUP for fertility when indi-
vidual marker prediction was used. The number of co-
variates was larger with haplotype-based prediction than
with individual marker-based prediction. Except for the
BayesC model with π = 0.999, accuracies from different
prediction methods using haplotypes were similar but
the highest accuracies were obtained for different traits
with different methods i.e. for protein yield with
BayesCπ, for mastitis with BayesBπ and for fertility with
BayesC and π = 0.99. With both individual marker-
based and haplotype-based prediction, BayesCπ had the
highest or close to the highest accuracy for all traits. The
posterior means of π were similar with individual
marker-based and haplotype-based predictions for mas-
titis and fertility, but increased from 0.91 to 0.97 with
haplotype-based prediction for protein yield.

http://www.r-project.org/


Edriss et al. Genetics Selection Evolution 2013, 45:5 Page 5 of 7
http://www.gsejournal.org/content/45/1/5
The regression coefficients of DRE on DGV and
their standard errors for individual marker-based and
haplotype-based prediction in the test population are
shown in Table 3. All the regression values were less
than 1, indicating that the variance of the DGV was
over-predicted to some extent. This means that positive
values of DGV over-predict DRE and negative DGV
values under-predict DRE. BayesC with π = 0.999 had
the largest deviation from 1, i.e. the DGV obtained with
this model were the most biased. GBLUP led to the low-
est bias for protein yield and fertility for both individual
marker-based and haplotype-based prediction and the
second lowest bias for mastitis. BayesBπ produced the
least biased DGV for mastitis. The lowest standard error
of the regression coefficient was observed for protein
yield, followed by mastitis and fertility. As shown in
Table 3, in most cases the regression coefficients were
closer to 1 with haplotype-based prediction than with in-
dividual marker-based prediction. The only exception
was BayesBπ for fertility.

Discussion
Use of genealogy-based haplotypes instead of individual
marker genotypes had an effect on the accuracy of gen-
omic prediction. Simulation studies have shown that
using SNP haplotypes improves the accuracy of genomic
prediction [6-8]. Different methods and different num-
bers of markers per haplotype have been used to con-
struct and cluster haplotypes. Although there are many
simulation studies on genomic prediction using haplo-
types, studies based on real data in dairy cattle are lim-
ited. This study investigated the accuracy and bias of
DGV derived using local genealogy haplotypes in the
Table 3 Regression coefficients (REG) and standard errors
(SE) of de-regressed EBV on genomic prediction

Prediction
method

Fertility Protein yield Mastitis

REG SE REG SE REG SE

Individual marker prediction

GBLUP 0.968 0.053 0.869 0.031 0.969 0.045

BayesC π = 0.999 0.848 0.055 0.744 0.033 0.861 0.050

BayesC π = 0.99 0.915 0.053 0.827 0.031 0.930 0.046

BayesCπ 0.956 0.053 0.869 0.031 0.966 0.044

BayesBπ 0.922 0.051 0.847 0.030 0.978 0.045

BayesB π = 0.99 0.911 0.053 0.825 0.031 0.935 0.047

Haplotype prediction

GBLUP 0.961 0.053 0.891 0.031 0.987 0.045

BayesC π = 0.999 0.877 0.052 0.826 0.032 0.908 0.047

BayesC π = 0.99 0.956 0.052 0.871 0.030 0.972 0.044

BayesCπ 0.956 0.053 0.884 0.030 0.980 0.045

BayesBπ 0.906 0.050 0.850 0.029 0.996 0.045

BayesB π = 0.99 0.926 0.051 0.850 0.030 0.985 0.046
Danish Holstein population genotyped with the 50 K
SNP chip.
In our study, the haplotype-based prediction approach

slightly increased the accuracy of DGV compared to in-
dividual marker-based genomic prediction in some
cases. The biggest gain in accuracy was achieved for
protein yield, followed by mastitis. A previous study
reported increased accuracy of DGV using a model with
selected haplotypes and polygenic effects in French dairy
cattle [9].
There could be several reasons why, in our study, only

small increases in the accuracy of DGV were obtained
when using haplotype-based prediction. First, local ge-
nealogies were used to cluster haplotypes. The true ge-
nealogy is unknown and must be inferred. There is a
trade-off between accuracy and computing time when
inferring the genealogy. The Blossoc method aims at
achieving computing efficiency [11]. Overall, it took 15 h
to construct genealogy trees for 43 503 markers and
4429 animals with a server with 2.93 GHz CPU and
48 GB RAM. Reconstructing local genealogies more ac-
curately could further increase the accuracy of DGV.
Another reason for the small increases in accuracy from
using haplotypes could be that the tree was cut at the
third level to avoid numerical problem. Cutting the tree
at deeper levels (e.g. fourth or fifth level) would produce
more haplotype clusters and thus haplotypes could be
clustered more accurately. However, this would also re-
duce the number of individuals with data for each clus-
ter and reduce the accuracy of the estimated effects of
the haplotypes. In our study, given the size of the avail-
able population, cutting at the third level was assumed
to be optimal. In cases with larger populations, cutting
at lower levels might be considered.
In general, two sources of information can influence

the accuracy of genomic prediction i.e. (1) LD between
markers and QTL and (2) genetic relationships between
individuals that are captured by markers. The initial as-
sumption was that most of the accuracy of genomic pre-
diction arises from LD [2]. Capturing more LD will
increase the accuracy of genomic prediction, which was
the main idea of using haplotypes. However, several re-
cent studies suggest that a large part of the accuracy of
genomic prediction is derived from reconstruction of
genetic relationships rather than from close LD between
markers and QTL. Daetwyler et al. [5] using data from a
sheep population showed that markers from a single
chromosome captured 86% of the accuracy of genomic
predictions using all markers on the ovine 50 K SNP
chip [5]. These results indicate that there is a small op-
portunity to improve genomic prediction by capturing
more LD information. Thus, constructing haplotypes
from SNP markers is not expected to greatly increase
the accuracy of genomic prediction.
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Bias of genomic predictions was assessed by the re-
gression coefficient of DRE on DGV in the test popula-
tion (Table 3). Regression coefficients were less than 1
for all traits considered and all models applied. This
shows an inflation of genomic predictions. Haplotype-
based prediction led to less bias than individual marker-
based prediction.
Two classes of prediction models were applied in our

study: GBLUP, with the effects of all covariates following
the same distribution, and Bayesian methods, in which a
high proportion of covariates had zero effect (π) and a
small proportion had moderate to large effects. With
GBLUP, haplotype-based prediction fitted around 7.5
times more covariate effects but with only a small gain
in accuracy for protein and mastitis traits, compa-
red with individual marker-based prediction. With the
Bayesian methods, π had a strong effect on the accuracy
of genomic prediction when using individual markers.
Forcing a higher proportion of covariates (π = 0.99) to
have zero effect decreased the accuracy of DGV when
using individual markers but had less influence when
using haplotypes. In methods like BayesB, π is usually
fixed before the analysis and finding the most appropri-
ate π is challenging. With haplotype-based prediction,
DGV accuracies were less influenced by the value of π.
Thus, the challenge consisting in finding the most ap-
propriate π value can be relaxed when using the
haplotype-based approach. The accuracy of haplotype-
based prediction decreased when a very high proportion
of haplotype covariates were forced to have zero effect
(π = 0.999). Loss of accuracy by shrinking a high propor-
tion of the predictor effects to zero indicates that predic-
tors with real predictive power are being removed from
the model.
For protein yield, using the Bayesian haplotype-based

model led to a larger posterior mean of the fraction (π)
of predictors whose effects were set to 0, compared to
the individual marker-based model. This was not the
case for fertility or mastitis. Assuming that the major
source of information in genomic prediction is recon-
struction of relationship and noting that this marker-
based reconstruction of relationships is shared by the
three traits, we would have expected the same result for
all the three traits. Because we see differences in behav-
iour between the three traits, these effects cannot be due
to reconstruction of relationships but there must be dif-
ferences between the traits in their genetic basis and in
the LD relationship of QTL with markers versus haplo-
types used as predictors. The fact that fewer non-zero ef-
fects are needed (higher π) for protein is consistent with
the assumption that fewer factors influence protein yield
than mastitis and fertility. Therefore, a relatively low
number of haplotypes is sufficient to describe the inher-
itance of these factors for protein yield.
More covariates in the prediction models increase the
computing times. With GBLUP, more time was needed
to construct the G matrix with the haplotype-based pre-
diction (20 min) than with the individual marker-based
prediction (5 min), but the time required to obtain pre-
dictions was similar for the two prediction methods
(~40 min) since the dimension of the G matrix was the
same. For the Bayesian models, however, time to obtain
predictions increased from 32 min when using individual
markers to 3 hours and 20 min when using haplotypes.

Conclusions
Accuracy of genomic prediction can be slightly improved
and bias of prediction can be reduced by using haplo-
types based on local genealogy information. The propor-
tion of covariates with zero effects (π) has a large
influence on the accuracy of genomic prediction when
using Bayesian mixture models but haplotype-based pre-
diction is less sensitive to π than individual marker-
based prediction.
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