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Abstract

Background: Nellore cattle play an important role in beef production in tropical systems and there is great interest
in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in
this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore)
population.

Methods: Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive
ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples
and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was
adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV)
of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods:
genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model
(Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed
based on the correlation between DGV and dEBV for the testing group.

Results: Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across
traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical
accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to
produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses
suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly
between two breeding subgroups that were identified in a principal component analysis based on genomic
relationships.

Conclusions: Bayesian regression models are of interest for future applications of genomic selection in this
population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the
training population would be required to enable accurate prediction of the genetic merit of young animals. The
technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further
research is needed to permit cost-effective selection decisions using genomic information.
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Background
The possibility of accurately predicting the genetic merit
of individuals based on their genotypes analyzed by dense
single nucleotide polymorphism (SNP) marker panels, a
process known as genomic selection (GS) [1,2], is revolu-
tionizing the design and implementation of livestock
breeding programs especially for dairy cattle. Schaeffer [3]
highlighted the potential benefits of this strategy for dairy
cattle in terms of reducing generation intervals, increasing
prediction accuracies and selection intensities, reducing
breeding organization costs and making it feasible to
perform genetic evaluations of difficult-to-measure traits.
The rationale behind genomic selection in livestock is

that, given a marker density high enough to cover the
entire genome, most of the quantitative trait loci (QTL)
will be in high linkage disequilibrium (LD) with some
of the markers. Therefore, the sum of all SNP effects
(direct genomic value, DGV) will be a good predictor
of the genetic merit of selection candidates and will
enable selection decisions as soon as the genomic
information of those individuals is available [4].
Thanks to the sequencing of the bovine genome [5]

and the availability of dense panels of SNP markers, GS
has moved from simulation approaches to practical ap-
plication in the last years. The first successful application
of GS was in dairy cattle (Holstein) [4,6] and motivated
studies on GS in other breeds and populations [7-9].
Although several previous reports compared statistical

methods applied to GS in cattle using the Illumina Bovine
50 K chip (Illumina, San Diego, CA, USA) [7,10,11], only
a few studies have carried out similar comparisons using
high-density panels, such as the Illumina Bovine HD chip,
which contains more than 700 000 SNPs [12]. In addition,
most of the studies in this field were carried out using data
from Bos taurus breeds. While previous studies have in-
vestigated the application of GS in purebred and compos-
ite populations of Bos indicus (Brahman) [13,14], the
performance of GS in many other Bos indicus populations
is unknown.
Nellore cattle are the primary breed used in beef pro-

duction in tropical systems. Thus, it is expected that
genome-enhanced predictions could considerably con-
tribute to improve the efficiency of breeding programs
in such systems. Brazil has a large number of well-
recorded Nellore animals obtained from several genetic
evaluation initiatives [15] that have achieved significant
genetic progress for growth traits in the last two decades
through conventional selection, although progress for
reproduction, meat quality and feed efficiency traits has
been less significant during the same period [16].
Our aim was to create the scientific basis for the appli-

cation of GS to Nellore cattle, by comparing genomic
prediction results obtained with four different prediction
methods on 15 traits of economic relevance in this breed.
Methods
Data
Phenotypic and genotypic data were available for 691 in-
fluential Nellore bulls. Genotypes were generated with
the Illumina Bovine HD chip (Illumina, San Diego, CA,
USA) and only autosomal SNPs with a GenCall (GC)
score higher than 0.70 were considered for further ana-
lyses. Fifty-four SNP pairs that had the same map coor-
dinates were excluded from the dataset. Quality control
of genotypes was carried out through an iterative process
using the following SNP selection criteria: call rate (CR)
higher than 0.98, minor allele frequency (MAF) higher
than 0.02 and p-value for Hardy-Weinberg equilibrium test
(HWE) higher than 10−5. The SNPs that met these criteria
were further screened to interrogate their linkage disequi-
librium with syntenic SNPs located within a window of
100 neighboring markers, resulting in only one marker
from each pair of highly correlated SNPs (r2 > 0.995)
remaining in the SNP dataset. Finally, samples showing CR
lower than 0.90 were excluded from the analysis. The
process was repeated until no further SNPs or samples
were excluded, which resulted in a final dataset of 685 bulls
with 320 238 SNPs.
Phenotypes were provided by the DeltaGen genetic

evaluation program, a commercial beef cattle operation
managed as an alliance of breeders distributed across 12
Brazilian states [17]. The estimated breeding values
(EBV) from routine genetic evaluations were deregressed
and used as dependent variables to estimate SNP effects
for 15 traits of economic relevance. These traits included
weight and carcass traits, scrotal circumference, gesta-
tion length and two selection indexes [See Additional file 1
for detailed trait definitions]. The deregressed proofs
(dEBV), as well as their associated reliabilities, were ob-
tained according to the procedure proposed by [18], which
removed parent average effects and also accounted for
heterogeneous variances [9].
The genotyped individuals included 65 influential

older bulls born between 1965 and 1990, while the
remaining genotyped animals were younger. The dataset
comprised up to four generations of genotyped animals,
including 292 son-sire pairs, 139 grandson-grandsire
pairs and 51 paternal half-sib families (average size = 4.7).
[See Additional file 2 for more information about the age
structure of the genotyped animals].

Genomic prediction design
For each individual trait, a forward prediction scheme
was adopted, which splits the dataset into a training
(reference) population, that included bulls with EBV ac-
curacies greater than 0.50 in 2007, and a testing popu-
lation that included bulls that did not have accurate
EBV in 2007 but had EBV accuracies greater than 0.50
in 2011.
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The sizes of the training and testing datasets differed
between traits (Table 1). Most traits were moderately
heritable, with heritabilities (h2) ranging from 0.25 (score
for carcass conformation and finishing precocity at
weaning) to 0.49 (gestation length), with an average of
about 0.30 (Table 1). Such heritability estimates were
based on REML estimates of variance components, ob-
tained using the same database from which the EBV
employed in this study were obtained. For all traits, aver-
age EBV accuracies were greater than 0.80 and 0.74 in
the training and testing sets, respectively.
In our study, model training was carried out using dEBV

based on the 2007 genetic evaluation (dEBV2007), while
dEBV based on the 2011 genetic evaluation (dEBV2011)
were used for validation purposes. Using dEBV2007 for
model training ensured that information of own perform-
ance (and/or progeny records) of the testing animals did
not contribute to the dEBV of the training set, thus
preventing overlapping information between training and
testing sets, which could inflate the estimates of predictive
ability of GS [19].
Because the dataset included many pairs of closely

related animals, the forward prediction scheme resulted
in many testing animals having close relatives in the
Table 1 Summary statistics related to the estimated breeding
training and testing sets for 15 traits under forward predictio

Trait2 h2 Training set

N3 Mean EBV (SD)4 Mean accurac

WG 0.26 494 1.60 (5.57) 0.86 (0.12)

Cw 0.25 472 0.10 (0.31) 0.85 (0.12)

Pw 0.25 472 −0.03 (0.42) 0.85 (0.12)

Mw 0.26 473 −0.02 (0.40) 0.85 (0.12)

Nw 0.27 468 0.02 (0.27) 0.85 (0.12)

PWG 0.33 473 0.66 (7.58) 0.85 (0.12)

Cy 0.31 454 0.13 (0.36) 0.84 (0.13)

Py 0.31 455 −0.06 (0.55) 0.83 (0.13)

My 0.30 448 −0.05 (0.51) 0.84 (0.12)

Ny 0.30 443 0.03 (0.30) 0.84 (0.13)

SCaw 0.40 446 −0.22 (1.21) 0.81 (0.14)

BW 0.37 457 0.40 (1.35) 0.86 (0.11)

GL 0.49 307 0.17 (3.25) 0.88 (0.10)

WI - 479 2.74 (13.03) 0.85 (0.12)

FI - 465 0.86 (12.13) 0.84 (0.12)
1Training set composed of bulls with accurate EBV in 2007 and testing set composed o
statistics were obtained considering the EBV obtained in either 2007 (training set) or 2
from birth to weaning (about 205 days of age); Cw, Pw, Mw, Nw= visual scores record
navel, respectively; PWG=weight gain from weaning to yearling (at 550 days of age);
carcass finishing precocity, muscling and navel, respectively; SCaw= scrotal circumfere
WI =weaning index, composed of traits evaluated at weaning; FI = final index, compos
details]; 3 N = sample size; 4Mean EBV(SD) = average (standard deviation) of estimated
EBVs’ accuracies.
training set. The pattern of relationships between ani-
mals in the training and validation sets was consistent
across traits [See Additional file 2].

Statistical methods
The following statistical methods were used in order to
estimate SNP effects and direct genomic values (DGV):
(i) best linear unbiased prediction (BLUP) using a gen-
omic relationship matrix (GBLUP), (ii) Bayesian regres-
sion using a mixture model (Bayes C) and (iii) Bayesian
LASSO (BLASSO). All methods only accounted for the
allele substitution (additive) effects of the markers, i.e.
apart from an overall mean, no other effects (environ-
mental or genetic) were included in the models.
GBLUP model can be described as:

y ¼ 1nμþ Zgþ e; ð1Þ

where y is the vector of dEBV for the respective trait, μ is
the location parameter common to all observations, 1n is
a vector of 1's, Z is the incidence matrix relating genomic
breeding values to y, g is the vector of genomic breeding
values and e is the vector of random residual terms. It was
assumed that g ~N (0,G*σ2g) and e~N (0,Rσ2e), where
values (EBV) of Bos indicus (Nellore) bulls included in
n1

Testing set

y (SD)5 N3 Mean EBV (SD)4 Mean accuracy (SD)5

187 4.11 (5.17) 0.80 (0.11)

185 0.19 (0.35) 0.79 (0.12)

184 0.21 (0.42) 0.79 (0.12)

185 0.20 (0.41) 0.80 (0.11)

188 0.06 (0.23) 0.80 (0.11)

115 2.83 (7.65) 0.81 (0.10)

118 0.29 (0.40) 0.80 (0.11)

117 0.24 (0.53) 0.80 (0.11)

121 0.25 (0.50) 0.79 (0.11)

122 0.07 (0.26) 0.79 (0.11)

115 −0.15 (1.15) 0.75 (0.12)

189 0.15 (1.25) 0.83(0.11)

138 −0.77 (4.04) 0.88 (0.10)

185 9.83 (13.10) 0.80 (0.11)

130 8.17 (11.94) 0.77 (0.13)

f remaining bulls with accurate EBV in 2011 but not in 2007; the summary
011 (testing set); EBV were obtained with BLUP animal models; 2WG=weight gain
ed at weaning for carcass conformation, carcass finishing precocity, muscling and
Cy, Py, My, Ny = visual scores recorded at yearling for carcass conformation,
nce adjusted for age and weight; BW= birth weight; GL = gestation length;
ed of traits evaluated at weaning and yearling (FI) [See Additional file 1 for more
breeding values (EBV); 5Mean accuracy (SD) = average (standard deviation) of
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G* is a combined relationship matrix and R is a diag-
onal matrix, whose elements account for the differences
in the reliabilities of the observations in y, similarly as
in [20]. The diagonal elements of R (Rii) were obtained
as Rii = (1-ri

2)/(ri
2), where ri

2 is the reliability associated
with the ith dEBV, obtained following [18].
The G* matrix is a combined relationship matrix,

computed as G* = (1-w)G + wA, where G is the genomic
relationship matrix and A is the regular numerator rela-
tionship matrix, both of order equal to the number of
genotyped bulls. G was defined as G =MM'/Σ2pi(1-pi),
in which M is the incidence matrix of marker scores
whose elements in the ith column are 0-2pi, 1-2pi and 2-
2pi, depending on whether the animal’s genotype was 11,
12 or 22, respectively, and pi is the allele frequency of
allele 2 at the ith marker [20].
In the computation of the genomic relationship matrix

G*, attributing a weight (w) for pedigree-based relation-
ships is equivalent to fitting residual polygenic effects
that are not captured by the markers [21]. After testing
different values for w (ranging from 0 to 0.40), Gao et al.
[21] reported that w = 0.20 provided the best comprom-
ise in terms of reliability and scale of DGV. Since our
aim was to investigate the benefit of this strategy, GBLUP
predictions were obtained setting w = 0 or w = 0.20, here-
after referred to as GBLUP0 and GBLUP20, respectively.
Theoretically, allele frequencies from the unselected

base population should be used to construct G [20],
which could be estimated after using linear regression to
predict gene content (number of copies of a particular
allele in a genotype of an individual) of non-genotyped
ancestors, based on the available information of geno-
types and pedigree [22]. However, there is some evidence
that similar accuracies of prediction are obtained using
either base population or current allele frequencies
[20,23]. Hence, in this study, G was constructed using
current allele frequencies (computed considering all ge-
notyped animals). The GBLUP method was imple-
mented using the gebv software described in [24]. This
formulation of the GBLUP method is equivalent to as-
suming a normal distribution of SNP effects with con-
stant variance across SNPs [25].
The Bayes C (BayesC) method consisted of fitting a

mixture model for SNP effects using the same model
equation as in (1), in which y, 1n, μ, z, g, and e were
defined as before, but the elements of vector g were

calculated for each animal as
XN
i¼1

ziaiIið Þ; where zi is the

genotype of the ith marker, coded as the number of cop-
ies of the reference allele, ai is the effect of marker i,
and Ii is an indicator variable that is equal to 1 if the ith

marker has a non-zero effect on the trait and 0
otherwise.
Model parameters were estimated within a Bayesian
framework. It was assumed that ai ~ N(0, σ

2
a) and e ~N

(0,Rσ2e). Scaled inverse chi-squared distributions, with v
degrees of freedom and scale parameter S were assumed
for σ2a and σ2e. Unlike the Bayes B method [2], this
mixture model assumes that SNP marker effects are
sampled from a single (normal) distribution, instead of
estimating marker-specific variances. An arbitrarily small
value of 4 was assumed for v, while the scale parameters
were derived according to [26]. R was defined as de-
scribed before. A binomial distribution with probability
π was assumed for Ii and an informative beta distribu-
tion (α = 1.d8, β = 1.d10) was assigned for π (implying
that this parameter was kept fixed around 0.01). This
method was very similar to that proposed in [26], except
that π was assumed to be known, as in [9].
The SNP effects were estimated using the Gibbs sam-

pling algorithm implemented in the GS3 software [27].
A single chain with a length of 100 000 iterations was
used. The burn-in period was 20 000 iterations and the
thinning interval was 100 iterations.
The model for Bayesian LASSO (BLASSO) was similar

to the one in equation (1), except for the assumption
about SNP marker effects. This implementation can be
understood as a linear mixed model assuming an expo-
nential prior distribution for variances of marker effects.
Originally, the LASSO procedure [28] was a statistical

method that combined both variable selection and
shrinkage. Legarra et al. [11] proposed an alternative
Bayesian implementation of this method, which we used
here. Based on the parameterization proposed by these
authors, the prior for individual SNP effects (ai) can be
represented by:

P ai τ
2ÞeN 0; τ 2

i

� �
and P

�
τ 2
i λ

� ¼ λ2=2
� �

exp −λ2 τ 2
i

�� ��� �
:

�����

This parameterization implies that individual variances
for each SNP (i.e. τi

2) are estimated, conditional on a
regularization parameter λ, which was estimated by
using a prior gamma distribution bounded between 0
and 107. Flat priors were assumed for σ2a and σ2e and dif-
ferences in reliabilities of dEBV were accounted for via
the matrix R, as for the other methods. A single chain
with a length of 100 000 iterations was generated using
GS3 software. The burn-in period was 20 000 iterations
and the thinning interval was 100 iterations.
The programs used to compute genomic predictions

handle missing markers internally. In GS3, missing calls
for a given marker are set to the population mean for
the respective marker, while in the gebv software missing
genotypes are inferred using a pedigree-based algorithm.
Due to the low frequency of missing genotypes (0.25%)
the effects of different imputation procedures are ex-
pected to be negligible, as already reported by [29].
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Comparison criteria
The four statistical methods used to derive DGV were
evaluated based on comparison of DGV with dEBV2011 of
animals from the testing set using the following statistics:

(i) Pearson’s correlation between DGV and dEBV2011,
divided by the average accuracy of dEBV2011, was
computed as the empirical accuracy of prediction
(rTBV,DGV). This quantity can be used as a proxy for
the correlation of the DGV with the true breeding
value [4], which is why it is abbreviated as
“rTBV,DGV”. The average accuracy of dEBV2011 was
computed as the average of the dEBV accuracies
calculated according to [18].

(ii) the slope of the regression of dEBV2011 on DGV for
animals in the testing set (b1dEBV,DGV) was evaluated
to measure the degree of inflation/deflation of
genomic predictions, i.e. the scale of the DGV
compared to that of dEBV. Estimates of b1dEBV,DGV
close to 1 are indicative of predictions that are on
scale similar to that of the dEBV.

(iii) the mean squared error of prediction (MSE)
between DGV and dEBV of animals in the testing
set was used as a measure of the overall fit of each
model to the data. Larger estimates of rTBV,DGV are
indicative of more reliable predictions and a lower
MSE is associated with a better overall fit, including
scale.

Alternative validation designs
In addition to the forward prediction scheme (FORW),
two alternative validation strategies were tested for
GBLUP20 in order to investigate the impact of the genetic
relationship between training and testing sets on the
accuracy of genomic predictions in this population. These
strategies were based on 5-fold cross-validation that either
separated animals in five groups of similar size at random
(RAND) or based on minimizing genetic relationships be-
tween groups (DIST). For DIST, a k-means algorithm [30]
was applied, with the distance matrix built based on the
genomic relationships among genotyped animals, similar
to [9]. In the case of RAND and DIST, the dEBV gener-
ated from the 2011 genetic evaluations were used for both
the training and testing steps and the average rTBV,DGV
(calculated using the five folds) was used as a proxy for
the empirical accuracy of the DGV.

Impact of relatedness with training set on the accuracy of
individual DGV
In order to investigate the extent to which individual
accuracies of the DGV of animals in the testing set were
influenced by their relatedness with individuals from the
training set, under the forward prediction design, differ-
ent measures of its genomic relatedness with animals in
the training set were calculated for each animal in the
testing set, based on the genomic relationship matrix
(G) used in GBLUP, similar to [31]. The maximum rela-
tionship (maxr) and the average of the top 5 (ave5), 10
(ave10), 20 (ave20) and 50 (ave50) relationships between
each testing animal and all animals in the training set
were calculated. Since GBLUP allowed the calculation of
individual DGV accuracies based on elements of the
inverse of the coefficient matrix (hereafter, estimated
accuracies, or rPEV), the correlations of rPEV with the
different measures of relatedness with the training set
were determined.
Finally, the empirical accuracies and estimated accur-

acies (averaged across animals in the testing set) were
compared with the analytical expectation for accuracy of
genomic predictions, calculated according to a formula
proposed by [32] (i.e. Equation 1 in that study). This for-
mula predicts the expected accuracy for an animal with-
out phenotypic information and without close relatives
in the training set, as a function of the number of ani-
mals in the training set, the heritability of pseudo-
phenotypes and effective number of chromosome seg-
ments (Me), which was approximated using estimates of
genome size (L) and effective population size (Ne), i.e.
Me = 2NeL/ln(4NeL). For such calculations, a 30 Morgan
genome was assumed, the average reliability of the ani-
mals in the training set were considered as the heritability
of pseudo-phenotypes, and markers were assumed to cap-
ture 80% of the genetic variance for all traits. A value of
120 was adopted for Ne, similar to the estimate obtained
by [33] for the population used in this study.

Results
Minor allele frequency and linkage disequilibrium
After quality control of the genotyping data (QC), the
average (SD) minor allele frequency was 0.226 (0.144)
and the average (median) linkage disequilibrium (r2) be-
tween pairs of adjacent markers was 0.293 (0.164).

Accuracy of genomic predictions
Empirical accuracies of genomic predictions (rTBV,DGV)
ranged from 0.17 (navel at weaning) to 0.74 (carcass fin-
ishing precocity at yearling). The average empirical ac-
curacy across traits was 0.39 and 0.40 for GBLUP0 and
GBLUP20, respectively, and 0.44 for both BayesC and
BLASSO (Table 2). For traits measured in both periods,
empirical accuracies were from 18% to 61% higher at
yearling than at weaning.
For most traits, GBLUP20 resulted in slightly greater

accuracies than GBLUP0, although this advantage was
greater (12%) for gestation length, while for conformation
at weaning, GBLUP0 was 13% more accurate than
GBLUP20 (Table 2). In general, empirical accuracies of
BayesC were very similar to those of BLASSO and



Table 2 Empirical accuracies and inflation of genomic predictions obtained for 15 traits of Bos indicus (Nellore) cattle
based on different methods

r(TBV,DGV)1 b1(dEBV,DGV)2

Trait3 GBLUP0 GBLUP20 BayesC BLASSO GBLUP0 GBLUP20 BayesC BLASSO

WG 0.28 0.27 0.37 0.37 0.79 0.85 1.45 1.39

Cw 0.21 0.18 0.22 0.23 0.85 0.88 1.12 1.10

Pw 0.43 0.45 0.49 0.49 1.08 1.12 1.37 1.35

Mw 0.43 0.44 0.49 0.49 1.09 1.14 1.41 1.39

Nw 0.17 0.17 0.20 0.19 0.75 0.85 1.01 0.99

PWG 0.53 0.56 0.50 0.51 0.92 1.06 1.47 1.43

Cy 0.29 0.30 0.29 0.29 0.98 1.14 1.30 1.26

Py 0.70 0.72 0.74 0.74 1.19 1.24 1.39 1.37

My 0.68 0.69 0.69 0.69 1.13 1.22 1.32 1.30

Ny 0.20 0.20 0.23 0.24 0.94 1.05 1.19 1.19

SCaw 0.68 0.71 0.72 0.72 1.27 1.44 1.68 1.65

BW 0.24 0.24 0.30 0.30 0.57 0.70 0.94 0.91

GL 0.22 0.24 0.36 0.36 0.90 1.09 2.35 2.12

WI 0.30 0.30 0.39 0.39 0.87 0.93 1.39 1.36

FI 0.49 0.51 0.55 0.54 1.01 1.11 1.40 1.37
1Accuracies measured as the Pearson’s correlation between direct genomic values (DGV) and deregressed EBV (dEBV) of the bulls in the testing set, r(dEBV,DGV),
divided by the average accuracy of dEBV in the testing set; 2Inflation of genomic predictions measured by the slope of the regression of dEBV on DGV, b1(dEBV,
DGV); The estimates of empirical accuracies and inflation refer to the forward prediction design; 3WG = weight gain from birth to weaning (about 205 days of age);
Cw, Pw, Mw, Nw = visual scores taken at weaning for carcass conformation, finishing precocity, muscling and navel, respectively; PWG =weight gain from weaning
to yearling (about 550 days of age); Cy, Py, My, Ny = visual scores taken at yearling for carcass conformation, finishing precocity, muscling and navel, respectively;
SCaw = scrotal circumference adjusted for age and weight; BW = birth weight; GL = gestation length; WI = weaning index, composed by traits evaluated at
weaning; FI = final index, composed by traits evaluated at weaning and yearling (FI) [See Additional file 1 for more details].
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superior to those achieved with both implementations of
GBLUP. The largest advantage of Bayesian regression
methods over GBLUP20 in terms of empirical accuracy
was obtained for gestation length (+48%), weight gain
from birth to weaning (+35%), conformation at weaning
(+25%) and birth weight (+25%). Conversely, GBLUP20
was more accurate than Bayesian regressions for weight
gain from weaning to yearling (+9.5%) and for conform-
ation at yearling (+4.5%) (Table 2).

Scale of genomic predictions and mean squared
prediction error (MSE)
The slope of the regression of dEBV on DGV (b1dEBV,
DGV) was expected to be close to 1, which would indi-
cate that genomic predictions are on a similar scale as
the deregressed EBV, i.e. not inflated or deflated. In gen-
eral, both GBLUP0 and GBLUP20 outperformed the
Bayesian regression methods in terms of scale, i.e., for
most traits, predictions of DGV obtained with both
BayesC and BLASSO were deflated (Table 2). Predictions
from GBLUP20 tended to be slightly deflated, while
those from GBLUP0 tended to be slightly inflated
(Table 2). When averaged across traits, the slope of the
regression of dEBV on DGV was equal to 0.96, 1.05,
1.39 and 1.35 for GBLUP0, GBLUP20, BayesC and
BLASSO, respectively. However, for birth weight and
navel at weaning, BayesC and BLASSO clearly outper-
formed GBLUP in terms of scale.
For most traits, the overall fit of the model to the data,

judged by the mean squared prediction error (MSE), fa-
vored both GBLUP methods over the Bayesian regres-
sion methods (Table 3). However, for three of the traits
(scrotal circumference, birth weight and gestation
length), lower estimates of MSE were obtained for Bayes
C and Bayesian LASSO (Table 3).
Individual accuracy of DGV
For most traits, the average accuracy of the DGV (rPEV)
was around 0.46, ranging from 0.22 to 0.61 (Table 4).
Correlations between accuracies estimated for individ-
uals in the testing set and their relatedness with animals
in the training set were strong. The best predictor for
this association was the average of the top five relation-
ships between a testing animal and animals in the train-
ing set (ave5), for which the average correlation with
rPEV across traits was 0.81. The maximum relationship
between a testing animal and animals in the training set
(maxr) also exhibited a strong association with rPEV
(average correlation of 0.78). Across all animals in the
testing set, the average maxr and ave5 was equal to 0.35
and 0.20, respectively (Table 4).



Table 3 Mean squared error (MSE) of genomic predictions
for 15 traits2 of Bos indicus (Nellore) cattle based on
different prediction methods

MSE1

Trait3 GBLUP0 GBLUP20 BayesC BLASSO

WG 164.1 165.0 212.6 209.6

Cw 0.7 0.70 0.8 0.9

Pw 0.9 0.9 1.2 1.3

Mw 0.8 0.8 1.1 1.2

Nw 0.3 0.3 0.5 0.7

PWG 194.4 192.6 291.0 335.7

Cy 0.8 0.8 1.2 1.3

Py 0.9 0.9 2.0 2.7

My 0.8 0.8 1.4 1.8

Ny 0.3 0.3 0.6 0.8

SCaw 6.1 6.0 6.0 5.8

BW 5.5 5.4 5.3 5.3

GL 48.9 48.4 47.6 47.5

WI 1029.4 1031.3 1409.1 1602.1

FI 708.5 704.1 1415.0 1568.9
1MSE: mean squared prediction error. MSE ¼ 1

N

X
DGV−dEBVð Þ2; this statistic

was calculated considering the bulls in the testing set, under the forward
prediction design; 2 WG=weight gain from birth to weaning (about 205 days of
age); Cw, Pw, Mw, Nw = visual scores taken at weaning for carcass conformation,
finishing precocity, muscling and navel, respectively; PWG =weight gain from
weaning to yearling (about 550 days of age); Cy, Py, My, Ny = visual scores taken
at yearling for carcass conformation, finishing precocity, muscling and navel,
respectively; SCaw = scrotal circumference adjusted for age and weight;
BW= birth weight; GL = gestation length; WI: weaning index, composed by traits
evaluated at weaning; FI = final index, composed of traits evaluated at weaning
and yearling (FI) [See Additional file 1 for more details].
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Expected accuracies
When compared across traits, the mean (SD) of ex-
pected accuracies based on Daetwyler’s formula [32] was
equal to 0.49 (0.03). In general, although the average em-
pirical accuracies matched their expectations well, values
higher than expected were observed for some traits,
notably for carcass finishing precocity and muscling
evaluated at yearling, as well as for scrotal circumference
(Figure 1). In contrast, for conformation at weaning and
the navel traits, empirical accuracies were at least 50%
lower than their expected values.

Accuracy of genomic predictions with different validation
strategies
Across traits, empirical accuracies were on average 41%
smaller for DIST than for the RAND strategy (Figure 2).
The extent of relatedness between testing and training
animals was evaluated using statistics similar to maxr
and ave5 (described previously). For this, both maxr and
ave5 were averaged across the testing animals of each
fold and a pooled average was calculated based on the
averages of the five folds.
The pooled averages of maxr and ave5 were 0.37 and
0.24, respectively, under the RAND strategy and were
thus slightly greater than those found for the forward
prediction strategy. For DIST, pooled averages of maxr
and ave5 were about 2-fold lower (0.20 and 0.12, re-
spectively) than for RAND and the forward prediction
strategy.
The empirical accuracies obtained for RAND and

DIST cannot be compared directly with those of the for-
ward prediction scheme, since dEBV from the same gen-
etic evaluation (dEBV2011) were used for both training
and testing animals for RAND and DIST, which is
expected to bias the predictive abilities upwards.
Considering all traits, the average proportion of ani-

mals in the training set was about 83% for both RAND
and DIST, although there was greater variation in fold
sizes for DIST. The average size of the training set was
slightly smaller for the forward prediction scheme, which
could also contribute to slightly smaller empirical accur-
acies in this strategy.

Discussion
Linkage disequilibrium in Bos indicus (Nellore) cattle
The pattern of linkage disequilibrium decay in indicine
populations differs from that observed in taurine popula-
tions [34] and beef cattle have a lower level of LD at the
same distance than dairy cattle [35]. The average LD
between adjacent markers obtained with the Bovine HD
panel in Nellore cattle was similar to the values obtained
in Holstein populations with 50 k chips [4,36]. This level
of LD is sufficient to achieve accurate genomic predic-
tions in Bos indicus (Nellore) cattle [37], provided
enough phenotypic information is used to estimate
marker effects.

Genomic prediction methods
Based on the empirical accuracies of prediction, BayesC
and BLASSO outperformed the two alternative imple-
mentations of GBLUP, with few exceptions. For most
traits, GBLUP predictions had smaller MSE and a scale
more compatible with that of the deregressed EBV used
for validation, when compared to the Bayesian regres-
sion methods.
Simulation studies have suggested the superiority of

methods based on some sort of variable selection over
GBLUP [2,38-40]. This advantage has not been con-
firmed in many previous studies that compared different
methods using real data. In studies using real data,
GBLUP performed comparably or better than variable
selection methods [4,7,10,11], although there is evidence
that substantially higher accuracies can be achieved
using variable selection methods for traits that are
known to be affected by genes of moderate-to-large
effects (e.g. traits affected by DGAT1, [6,11]).



Table 4 Summary statistics for the accuracy of individual DGV for testing set animals and its association to relatedness
with the training set for 15 traits* of Bos indicus (Nellore) cattle

rPEV1 Correlation (rPEV, relatedness)2 Average relatedness3

Trait3 Average Min Max maxr ave5 ave10 ave20 ave50 maxr ave5

WG 0.47 0.25 0.61 0.81 0.83 0.68 0.52 0.39 0.35 0.19

Cw 0.46 0.25 0.61 0.81 0.83 0.68 0.52 0.39 0.35 0.19

Pw 0.46 0.25 0.61 0.81 0.83 0.68 0.52 0.39 0.35 0.19

Mw 0.46 0.25 0.61 0.81 0.83 0.68 0.52 0.39 0.35 0.19

Nw 0.46 0.24 0.61 0.82 0.82 0.68 0.52 0.39 0.35 0.19

PWG 0.47 0.27 0.61 0.72 0.79 0.66 0.52 0.42 0.36 0.20

Cy 0.47 0.25 0.60 0.71 0.79 0.65 0.52 0.43 0.36 0.20

Py 0.47 0.25 0.60 0.72 0.79 0.65 0.52 0.43 0.36 0.20

My 0.46 0.25 0.60 0.72 0.79 0.65 0.51 0.42 0.35 0.20

Ny 0.46 0.25 0.60 0.72 0.80 0.66 0.52 0.43 0.36 0.20

SCaw 0.45 0.23 0.60 0.71 0.82 0.69 0.55 0.44 0.35 0.20

BW 0.46 0.25 0.61 0.83 0.82 0.67 0.50 0.38 0.35 0.19

GL 0.44 0.22 0.60 0.84 0.84 0.70 0.55 0.48 0.33 0.18

WI 0.46 0.25 0.61 0.81 0.83 0.68 0.52 0.39 0.35 0.19

FI 0.46 0.25 0.60 0.78 0.80 0.65 0.50 0.39 0.35 0.20
1Estimated theoretical DGV accuracy (rPEV) calculated based on diagonals of inverse of coefficient matrix in GBLUP20; 2association evaluated by the correlation
between individual DGV accuracy and each measure of relatedness of testing set animals with training set, calculated either as the maximum relationship (maxr)
or as the average of the top 5 (ave5), 10 (ave10), 20 (ave20) or 50 (ave50) relationships between each testing animal and all training set animals; 3Averages of
relatedness of testing set animals with training set, evaluated through maxr or ave5; *WG =weight gain from birth to weaning (about 205 days of age); Cw, Pw,
Mw, Nw = visual scores taken at weaning for carcass conformation, finishing precocity, muscling and navel, respectively; PWG =weight gain from weaning to
yearling (about 550 days of age); Cy, Py, My, Ny = visual scores taken at yearling for carcass conformation, finishing precocity, muscling and navel, respectively;
SCaw = scrotal circumference adjusted for age and weight; BW = birth weight; GL = gestation length; WI = weaning index, composed by traits evaluated at
weaning; FI = final index, composed by traits evaluated at weaning and yearling (FI) [See Additional file 1 for more details].

Figure 1 Comparison of empirical and estimated theoretical accuracies (rPEV) with their expectations for 15 traits* in Bos indicus
(Nellore) cattle. Colored bars indicate: empirical accuracies calculated as the Pearson’s correlation between deregressed proofs in 2011 for the
bulls in the testing set and their DGV, divided by the average accuracy of dEBV in the testing set (empirical accuracies were obtained using four
methods of prediction: GBLUP20, GBLUP0, Bayes C and Bayesian LASSO); estimated accuracies (rPEV) were calculated by averaging the individual
accuracies (obtained based on diagonal elements of the inverse of the coefficient matrix in GBLUP20) across all animals in the testing set;
expected accuracies were calculated with the analytical formula proposed by Daetwyler et al. [32]; *WG = weight gain from birth to weaning
(about 205 days of age); Cw, Pw, Mw, Nw = visual scores taken at weaning for carcass conformation, finishing precocity, muscling and navel,
respectively; PWG = weight gain from weaning to yearling (about 550 days of age); Cy, Py, My, Ny = visual scores taken at yearling for carcass
conformation, finishing precocity, muscling and navel, respectively; SCaw = scrotal circumference adjusted for age and weight; BW = birth weight;
GL = gestation length; WI = weaning index, composed of traits evaluated at weaning; FI = final index, composed of traits evaluated at weaning
and yearling (FI) [See Additional file 1 for more details].
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Figure 2 Empirical accuracies of genomic predictions for 15 traits** of Bos indicus (Nellore) cattle for different validation strategies*.
*forward = training set composed of bulls with highly accurate EBV in 2007 and testing set composed of the remaining bulls (with accurate
EBV in 2011); RAND = 5-fold cross-validation (CV), splitting animals randomly into groups of similar size; DIST = 5-fold cross-validation, based on
k-means clustering of animals based on their genomic distance (i.e. minimizing inter-groups relationships); empirical accuracies were calculated as
the Pearson’s correlation between DGV (obtained with GBLUP20) and deregressed EBV (dEBV) in 2011 for the testing set, divided by the average
accuracy of dEBV in the testing set; for the cross-validation strategies (RAND and DIST), the bars and errors bars represent the estimates of means
and standard errors obtained in 5-fold CV, respectively; **WG =weight gain from birth to weaning (about 205 days of age); Cw, Pw, Mw, Nw= visual
scores taken at weaning for carcass conformation, finishing precocity, muscling and navel, respectively; PWG=weight gain from weaning to yearling
(about 550 days of age); Cy, Py, My, Ny = visual scores taken at yearling for carcass conformation, finishing precocity, muscling and navel, respectively;
SCaw= scrotal circumference adjusted for age and weight; BW= birth weight; GL = gestation length; WI = weaning index, composed of traits evaluated
at weaning; FI = final index, composed by traits evaluated at weaning and yearling (FI) [See Additional file 1 for more details].
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The benefit of using variable selection methods is
expected to be higher when the number of markers is
much greater than the number of genotyped animals.
Neither of the previous GS studies on real data con-
tained such large differences between number of animals
in the training set and number of genotyped SNPs, thus
our study included a scenario for which the use of vari-
able selection methods was expected to provide some
benefit. Erbe et al. [12] also confirmed the advantage of
a variable selection method (Bayes R) over GBLUP,
after analyzing GS in dairy cattle using the same type of
high-density panel as we used. These authors suggested
that variable selection methods must be used to take full
advantage of the increased marker density. The larger
empirical accuracies that we obtained with BayesC and
BLASSO here corroborate this hypothesis.
Moreover, the considerably greater empirical accur-

acies that we obtained with BayesC and BLASSO for
some of the traits may also suggest the segregation of
genes of larger effect for these traits. For instance, a
recent GWAS (genome-wide association study) for birth
weight, that used data from this same Bos indicus popu-
lation, provided evidence that a region on chromosome
14 had an important effect on this trait [41]; this region
had previously been shown to be associated to body size
in taurine cattle [42].
The simulation study in [32] provided evidence that

the relative advantage of variable selection methods over
GBLUP depends on the number of QTL (Nqtl)
underlying the trait. When Nqtl is greater than the
effective number of chromosome segments, GBLUP
should perform equally or better than variable selection
methods. In the present study, weight gain from weaning
to yearling was the only trait for which a clear advantage
in terms of empirical accuracy was observed for GBLUP.
Obtaining individual accuracies and reduced computa-

tion time are potential advantages of GBLUP over Bayesian
regression methods. The computation time necessary to
process all 15 traits took less than one minute with GBLUP,
while about two days were required for each of the two
Bayesian regression methods (data not shown). The reason
for such large differences in computing time is partially
due to the fact that the number of genotyped animals is
much smaller than the number of markers, and these
differences are expected to decline as the number of geno-
typed animals increases.

Use of a combined relationship matrix in GBLUP
For most traits, slightly greater empirical accuracy was
achieved with GBLUP20 than with GBLUP0, which con-
firms the results reported by [21]. However, conversely
to what these authors indicated, the use of GBLUP20
showed no clear evidence of improvement in the scale of
the DGV. This, and the fact that GBLUP0 was slightly
more accurate than GBLUP20 for some traits, suggests
that the optimal weight (w) for pedigree-based relation-
ships in this alternative implementation of GBLUP may
be trait-specific, as pointed out by [43].
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Accuracies of genomic predictions
In the present study, both empirical and estimated ac-
curacies of genomic predictions matched their expecta-
tions relatively well but some noteworthy deviances
were found. The relatively small number of animals ana-
lyzed (n = 685) restricted the formation of training and
testing sets to small numbers of individuals, which led to
some degree of variation due to sampling, especially
when correlations were calculated.
Lower than expected empirical accuracies were esti-

mated for some traits, notably for conformation at
weaning and navel. This could be explained by inad-
equacy of the model used for SNP effect estimation, for
instance if the marker density was not sufficiently high
to track all genetic variation associated with these traits.
In addition, for all traits, expected accuracies were based
on the assumption that markers explain 80% of the gen-
etic variance, and the adequacy of this assumption may
be trait-specific. Another potential source of noise is
related to the fact that the response variables used in
model training are prone to prediction errors, the extent
of which can also vary across traits.
Further analyses suggested that empirical accuracies

greater than expected could be caused by population
stratification. As already reported by [41] for this same
population, two breeding subgroups were observed in a
principal component analysis based on genomic rela-
tionships [see Additional file 3]. Other investigations
have also shown higher-than-expected accuracies for
traits for which EBV means differed significantly be-
tween these subgroups (data not shown).
The existence of these subgroups is consistent with

two different artificial selection criteria that were applied
in this population in the past 20 years [41]. The major
differences between such selection criteria consist of
largely different emphases on the traits for which we ob-
served higher-than-expected accuracies in the present
study (i.e. carcass finishing precocity at yearling, musc-
ling at yearling and scrotal circumference).
The results of this study seemed to confirm the associ-

ation reported by [31] between the accuracy of individ-
ual DGV and the relatedness of testing and training
animals, although the strength of this association was
lower in the present study. The authors of [31] found
that the average of the top 10 relationships with training
animals (ave10) was a better predictor of estimated
accuracies than the maximum relationship, while the
opposite was observed in this study.
For some traits, the average of the estimated individual

accuracies was consistent with the empirical accuracies,
while this did not hold for other traits. Clark et al. [31]
also showed that, while estimated and empirical accur-
acies agreed well for simulated data and for eye muscle
depth in Merino sheep, larger differences between these
two sets of accuracies were found for live weight in the
same population.
Reasonable evidence for an association between the

relationship of the animals in the testing set and the
training set and the accuracies of DGV was found, which
confirmed the report by [38]. The cross-validation strat-
egies applied in the present study (RAND and DIST)
indicated that the same association also holds for empir-
ical accuracies. In this context, when comparing RAND
and DIST, we observed that empirical accuracies nearly
halved with a 2-fold decrease in average relatedness be-
tween testing and training set animals. A consequence of
this observation is the possibility of evaluating to which
extent the relationship between selection candidates and
training animals would affect the accuracy of genomic
predictions. Based on the estimates of relationships cal-
culated according to top5 and maxr under the forward
prediction scheme, it is expected that the accuracy of
DGV prediction will not differ much from values re-
ported here, given that the sire or a few half-sibs are in-
cluded in the training set for most selection candidates
in this population. Thus, application of GS in this popu-
lation requires a dynamic training set, because recurrent
inclusion of new sires in the training population is
necessary to enhance predictions of the genetic merit of
young animals [9].

Scale of genomic predictions
Although our study mainly focused on the accuracies of
genomic predictions, depending on the selection scheme,
the scale of predictions should be a matter of concern,
especially to determine whether DGV can be compared to
traditional EBV from routine evaluations. For example, in
situations in which both progeny-tested and newborn ani-
mals are selection candidates, an artificial overestimation
of the genetic trend would lead to undue exaggeration of
DGV over traditional EBV, as discussed by [44].
Although Bayes C and BLASSO were more accurate

than GBLUP for most traits in the present study, these
Bayesian regression methods tended to generate de-
flated predictions. Previous studies have found large
differences in the scale of genomic predictions ob-
tained using Bayesian regression. Some of these studies
do not agree with the trend of deflation we observed
here (e.g. [12,45]), while other methods similar to
BayesC and BLASSO also resulted in deflated predic-
tions for some traits analyzed [9,11,46]. This variation
in scale may be related to differences inherent to the data
analyzed (e.g. the extent to which training animals were
pre-selected) and to differences in the implementation of
the methods. Future studies should investigate whether
including a residual polygenic effect in these Bayesian
regression models could improve the scale of genomic
predictions, as suggested by [45].
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Future work
Because the selection candidates in this population have
own performance data recorded before selection deci-
sions take place, the accuracy of traditional EBV based
on own performance could be a suitable reference to
evaluate the gain in accuracy that can be attributed to
GS. Unfortunately, this information was only available
for a small subset of the testing animals in our study,
due to the fact that a considerable proportion of the ani-
mals were born and had own performance data recorded
within other breeding programs, although they had
enough progeny recorded in the dataset available for this
study to obtain accurate EBV in 2011. A proper com-
parison between empirical accuracies of traditional EBV
and DGV should be carried out as soon as more infor-
mation is available. In addition, DGV accuracies are
expected to increase when more animals are genotyped.
Another topic that deserves further investigation is

the identification of an optimal marker density for gen-
omic prediction in the population analyzed. Theoretic-
ally, a higher marker density is expected to increase the
accuracy of genomic predictions, due to stronger LD
between markers and QTL [47]. Previous studies that
compared genomic predictions obtained with high-
density (~777 000 markers, HD) and medium-density
panels (~54 000 markers, 54 k) in Bos taurus breeds re-
ported only a marginal increase in accuracies when using
high-density panels [12,47]. Because the size of the refer-
ence population in this study is small, the possible benefits
of an increased marker density could be counterbalanced
by an increase in the number of unknown parameters to
be estimated, as previously suggested by [47]. For instance,
in a Jersey population, when genomic predictions were ob-
tained with a training set of size comparable to that of the
present study, the accuracy of the DGV decreased slightly
when moving from 54 k to HD [12]. The relative benefit
of genomic predictions obtained at different marker dens-
ities will be evaluated when more information is available.
While these initial results seem to confirm the tech-

nical feasibility of applying genomic selection in a Bos
indicus (Nellore) beef cattle population, further work is
needed on the design of breeding schemes for this
particular breed. In this context, imputation methods
will probably play an important role to improve cost-
effectiveness of this technology, as suggested by [48].

Conclusions
The technical feasibility of applying genomic prediction
in a Bos indicus (Nellore) population was demonstrated,
although further research on its implementation in breed-
ing schemes is necessary to enable more cost-effective
selection decisions using genomic information. Bayesian
regression models (Bayes C and BLASSO) were more ac-
curate than GBLUP for most traits and are of interest for
future applications of genomic selection in this popula-
tion, but further improvements are needed to reduce
deflation of the predictions obtained with such methods.
The accuracies of genomic predictions depended on the
extent of relatedness between training and testing set ani-
mals, which means that recurrent updates of the training
population are necessary to enhance predictions of the
genetic merit of young animals.
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