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Abstract

Background: With the advent of genomic selection, alternative relationship matrices are used in animal breeding,
which vary in their coverage of distant relationships due to old common ancestors. Relationships based on
pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known
pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single
nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL
(quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip,
which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to
cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged
relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig
breeding situation.

Methods: Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which
considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense
genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668
records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate
breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices.
Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the
alternative genomic predictions.

Results: Correlations between the relationships and regressions of older on younger relationships revealed that the
age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded
significantly higher prediction accuracies than A. GH and G, differed not significantly, but were significantly more
accurate than GLA.

Conclusions: Our hypothesis that intermediate-aged relationships yield more accurate genomic predictions than
G was confirmed for two of four traits, but these results were not statistically significant. Use of estimated
genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of
ungenotyped animals.
Background
Wright’s [1] numerator relationship matrix, A, is based
on pedigree relationships and relies on the assumption
of a base population, in which animals are unrelated, i.e.,
without known parents and non-inbred. Relationship
and inbreeding coefficients are expressed in terms of
Identity-by-Descent (IBD) probabilities, where the IBD
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occurs after the base population was established. If the
base population is moved further back in time, IBD
probabilities increase and eventually approach 1. In-
breeding coefficients (F) and relationships should thus
be evaluated relative to each other and not in terms of
their absolute values. For instance, the rate of inbreed-
ing, ΔF = (Ft − Ft − 1)/(1 − Ft − 1), expresses the difference
in inbreeding between generations t and t-1 relative
to the maximum level of inbreeding, and is robust to
the choice of the base population. For practical reasons,
base populations are usually quite recent, because old
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pedigrees may not be available, or are rather incomplete,
or because numerator relationships (A) reduce quickly
over generations and Best Linear Unbiased Prediction of
Breeding Values based on A (ABLUP-EBV) are not
much affected by information from old ancestors.
GBLUP-EBV are BLUP- estimated breeding values

based on genomic relationship matrices, G, and are com-
monly used in genomic selection (GS) [2,3]. Genomic re-
lationship matrices are based on alleles at molecular
genetic markers being Identical-By-State (IBS). When tra-
cing the inheritance of the two marker alleles back in time,
their paths of inheritance eventually coalesce into a single
common ancestor, and IBS thus implies that there was no
mutation in any of these inheritance paths. Because of this
(ancient) common ancestor, two alleles that are IBS are
also IBD. Thus, marker-based IBS relationship matrices
are also expressed relative to a base population, which is
on average 1/(2ν) generations ago, where ν is the SNP mu-
tation rate, as shown by [4] but considering recombination
events instead of mutations. However, if the effective
population size, Ne, is small, the two paths coalesce rap-
idly, which implies that only recent mutations result
in DNA polymorphisms (old mutations have either been
fixed or lost in a small population). Thus, for small Ne,
a slightly higher mutation rate may be assumed in the
1/(2ν) term to mimic the young age of most mutations. Es-
pecially when the markers on the SNP panel were selected
based on having high minor allele frequencies (MAF), the
SNP markers reflect rather old mutations. This is because
all mutations start at a low frequency, and most mutations
are lost before reaching substantial allele frequencies. It fol-
lows that low MAF alleles are mainly due to young muta-
tions and high MAF alleles represent quite old mutations.
Thus, if markers are selected based on high MAF, marker
mutations may well predate QTL mutations that affect
traits of interest, because traits of interest have been under
selection, and old mutations that affect them were either
lost or fixed. In the case of disease resistance traits, natural
selection may have weeded out deleterious alleles and exist-
ing genetic variation may be due to relatively recent muta-
tions. Even for neutral loci, e.g. for a neutral trait, there will
be relatively more low MAF genes than on the SNP-chip.
IBS between alleles at a locus for two gametes is

strictly defined as the molecular coancestry, i.e. f Mij
¼ xi

xj þ 1−xið Þ 1−xij
� �

, where xi (xj) is the allele state code
(xi = 0 or 1) for gamete i (j) [5]. VanRaden’s [6] estimate
of the genomic relationship is gVRij

¼ xi−0:5ð Þ xj−0:5
� �

=
0:25, assuming allele frequencies of 0.5 in order to maxi-
mise expected relationships. Since gVRij

¼ 2f Mij
−1, these

estimates are proportional to each other, and we will
thus consider the resulting genomic relationship matrix,
G, as indicating IBS relationships. IBS-based relationship
matrices, as commonly used in GS, reflect rather old re-
lationships, whereas pedigree-based relationships, A, are
rather young and decay quickly. The latter may be im-
proved by the use of relationship matrices based on
genome-wide linkage analysis, GLA, which combine pedi-
gree and marker information, which in dairy cattle have
yielded similar accuracies as GBLUP [7]. However, linkage
analysis relationships may be as young as pedigree rela-
tionships, or even younger when the base population is
put forward in time due to lack of genotype data on old
ancestors. Although G and GLA relationship matrices
yielded very similar accuracies [7], they contain quite dif-
ferent relationships, which suggests that intermediate-
aged relationships may improve the accuracy of GS.
Habier et al. [8] distinguished three sources of information
for GS: (i) family relationships, as contained in the pedi-
gree; (ii) linkage analysis information, as contained in
GLA, which they called co-segregation of alleles; and (iii)
linkage disequilibrium (LD) information, as contained in
G, and which is already present in the base population.
This distinction of information sources coincides well with
our distinction of ages of the relationships, indicating that
the relationships at different ages tend to reflect funda-
mentally different sources of information.
In view of this background, it seems that the G matrix

traces relationships that are too old and GLA traces only
very recent relationships. Thus, we hypothesised that re-
lationships of more intermediate age are more appropri-
ate for GS, and developed a haplotype-based relationship
matrix, GH, since recombination of haplotypes occurs
more frequently than mutations at single SNPs. Our aim
was to compare relationship matrices that express rela-
tionships over different genetic distances (ages), and the
resulting accuracies of GS in a pig breeding situation.

Methods
Genotyping data
Genotyping and phenotyping data were kindly provided by
Norsvin AS. Genotypes from 3250 Norwegian Landrace
pigs were available, of which 2553 boars came from the
boar-test station and 697 dams from the nucleus herds, all
born between 2010 and 2013. All animals were genotyped
at CIGENE (www.cigene.no), using the porcine 60 K
SNP array from Illumina (Illumina, San Diego, CA, USA).
Clustering and genotype calling were performed using
the genotyping module in the Genome Studio software
(Illumina, San Diego, CA, USA). In total, 60 451 SNPs
were used for genotyping, and 38 453 informative
markers passed quality control, which was based on
having a MAF > 0.01, call frequency > 0.10, and parent–
child Mendelian errors < 0.025. Samples were included
in the analysis if their call rate was > 75%, although the
average call rate was equal to 99.5% with a standard de-
viation of 1.6%. Parentage tests are routinely performed
for all boars at the boar test station so no pedigree er-
rors were observed. Occasional missing genotypes were

http://www.cigene.no
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imputed and the genotype data were phased using Beagle
v3.3.1 [9]. After quality control, a total of 3250 genotyped
animals were available for analysis. The pedigree of the ge-
notyped animals was traced back for five generations to
form a pedigree file containing 8187 animals.

Phenotypic records
Four traits were chosen for analysis, mainly based on their
high frequency of recording, such that the number of ani-
mals with missing phenotypes was relatively small. The
traits were a mixture of production, product quality and
reproduction traits: growth rate (GR), measured in number
of days required to grow from 25 to 100 kg live weight;
meat percentage (M%), which is measured on live evalu-
ation of boars by computer tomography, using Norsvin’s
image analysis software (Jørgen Kongsro, Norsvin, personal
communication); weight at 3 weeks of age (W3W), which
is mainly viewed as a fitness trait of the piglet; number of
teats (NT), which is counted on both males and females.
All available phenotypes on all 8187 animals in the pedigree
were collected, including on non-genotyped animals. The
number of phenotypes and trait heritabilities (as used in
Norsvin’s routine breeding value evaluation) are in Table 1.

Estimation of breeding values
The data were analysed with single-trait animal models
using statistical models that were the same as those used
by Norsvin for their routine EBV estimation:

yGR ¼ FGRfGR þ SGRsGR þ LGRlGR þ PGRpGR þ ZGRaGR þ eGR
yM% ¼ FM%fM% þ VM%vM% þ wbM% on w þ LM%lM% þ PM%pM%

þ ZM%aM% þ eM%

yW3W ¼ FW3WfW3W þ SW3WsW3W þNW3WnW3W þDW3WdW3W

þ LW3WlW3W þ ZW3WaW3W þ eW3W

yNT ¼ FNTfNT þ SNTsNT þ LNTlNT þ ZNTaNT þ eNT;
Table 1 Number of records and genetic parameters of the
analysed traits: growth (GR), meat percentage (M%),
weight at 3 weeks (W3W) and number of teats (NT)

GR M% W3W NT

Number of phenotypes

Total 2668 2618 7387 6851

Genotyped 2504 2472 3244 3225

Non-genotyped. 154 146 4143 3626

Masked 458 424 486 486

Variance components

Genetic 15.3 3.34 0.127 0.342

Residual 22.5 3.56 1.157 0.539

Litter 5 0.3 0.661 0.04

Pen 3.2 2.7 X X

Heritability 0.40 0.48 0.10 0.39
where (for brevity, trait subscripts are omitted): f =
vector of fixed effects of farm-year with design matrix F;
s = vector of fixed sex effects with design matrix S; v =
vector of fixed effects of the version number of the
method used to calculate meat percentage with design
matrix V; wbM% on w denotes the regression of meat per-
centage on the weights of the animals, w; n = vector of
fixed effects of the parity of the mother with design
matrix N; d = vector of fixed effects of month of birth
with design matrix D; l = vector of random Normal inde-
pendently distributed litter effects with design matrix L;
p = vector of random NIID distributed pen effects with
design matrix P; a = vector of random normally distrib-
uted animal effect with design matrix Z and V(a) = Gxσa

2,
where Gx is the relationship matrix calculated by method
x (see below for the methods used). Variance components
of the random effects were previously estimated in a large
Norsvin dataset for regular breeding value estimation
using pedigree relationships (see Table 1), and were used
as known input parameters in the current study. Thus, the
variance of the animal effect was assumed constant and
did not depend on the relationship matrix used. The ana-
lyses were performed by ASREML [10], using the BLUP
option.
The alternative methods used for the breeding value

estimation are explained below:
ABLUP: the numerator relationship matrix A (and its

inverse) was set up based on pedigree relationships [11].
GLABLUP: following Luan et al. [7], linkage analysis

was used to calculate a relationship matrix GLAj at every
marker position j, which were then averaged over all
marker positions j to arrive at the final GLA matrix. The
GLAj matrices were set up using the approach of
Fernando and Grossman [12] based on the segregation
probabilities, i.e. the probability of inheriting a paternally
or maternally derived allele. The latter probabilities were
estimated by the LDMIP software [13]. Computationally,
GLA is the most demanding of the G matrices. After
running LDMIP, it was necessary to set up a gametic re-
lationship matrix at all positions, j, which requires four
times as much computer resources per position than set-
ting up A. Calculation of the 38 453 GLAj matrices was
parallelised, but computer memory demands increased
linearly with the number of GLAj matrices that were cal-
culated in parallel, which may limit the degree of paral-
lelisation of the computations.
GBLUP: The relationship matrix G was constructed

using the approach of [6]:

G� ¼ XX’= 2
X

pj 1−pj
� �� �

;

where X is a matrix of standardised genotypes, with
element Xij = Iij-2pj and Iij being the number of “1” al-
leles that animal i carries for SNP j. The LDMIP
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program [13] was used to estimate genotype probabil-
ities for the ungenotyped animals. These genotype prob-
abilities were used to estimate Iij in the case of missing
genotypes.
Because the genotyped animals cannot predict the ge-

notypes of the ungenotyped animals with certainty, a re-
sidual relationship matrix, R, must be accounted for, i.e.
the relationships of the ungenotyped animals given the
genotyped animals [14,15]. Following [16], this residual
relationship matrix was calculated using GLA instead of
A, i. e. R = GLA11 −GLA12G

− 1
LA22GLA21, where subscript

2 (1) denotes the (un)genotyped block of animals. This R
matrix was added to the elements of G* pertaining to the
ungenotyped animals to arrive at the final matrix: G.
GHBLUP: Haplotype alleles were set up following a sug-

gestion by Mike Goddard (personal communication):
starting at SNP position j = 0, Step 1: set j = j + 1 and in-
clude SNP j into the haplotype (which is relatively easy
since the genotypes were phased by Beagle); repeat this
step until the number of haplotype alleles exceeds a fixed
number (we used 10); Step 2: output the detected haplo-
type alleles, and go back to Step 1 to set up the haplotypes
for the next segment until the entire chromosome is proc-
essed. In contrast to the usual methods for setting up hap-
lotypes, in which haplotype boundaries are pre-set, here
the boundaries occur at positions where the number of
haplotype alleles expands and exceeds the maximum of
10. When extending the size of the haplotype, a large in-
crease in number of haplotype alleles suggests that we are
no longer handling a single haplotype but a combination
of two adjacent haplotypes, i.e. such positions form a nat-
ural place for a haplotype boundary. The total number of
haplotypes formed by this method was 54 303.
In order to analyse these haplotypes by the SNP-based

methods and software, the haplotypes were translated into
SNPs in the following way. If a haplotype at a particular
position had four alleles A, B, C and D, this was translated
into four ‘artificial’ SNPs where SNP1 has allele ‘1’ when
haplotype A occurred and otherwise ‘0’, SNP2 has allele ‘1’
when haplotype B occurred and otherwise ‘0’, SNP3 had
allele ‘1’ when haplotype C occurred, etc. The recombin-
ation rate between these four artificial SNPs was assumed
to be very small (10−5). In order to obtain predictions of
haplotype alleles for ungenotyped animals, the haplotypes
were analysed by LDMIP. Next, the artificial SNP geno-
types were translated into a relationship matrix, GH

*, fol-
lowing the same procedure as used for GBLUP, to which
the same R matrix as for GBLUP was added for the unge-
notyped animals to arrive at the final matrix GH.

Evaluation of the accuracy of GS
In order to assess the accuracy of GS, the phenotypic re-
cords of the youngest animals born after September
2012 were masked in the analyses, i.e. their phenotypes
were set to missing. See Table 1 for the numbers of
masked records. Next, these records were predicted
using the estimates of the effects in the model. The
squared correlation, ρ2, between the predicted and real
phenotypic records was calculated and interpreted in
terms of explained variance of the records, i.e. a fraction
ρ2 of the variance of the records could be explained and
the unexplained fraction was (1-ρ2). Similar to how SAS
(SAS Institute, Cary NC) interprets the (un)explained
sum of squares relative to a model that includes only an
overall mean, we interpreted the (un)explained variance
relative to a model that includes all non-genetic effects,
i.e. all effects except the animal effect. If the fraction of
the explained variance achieved by a model including
only non-genetic effects is denoted by ρ0

2, the extra vari-
ance explained by the animal effect in model x, rx

2, was
obtained from:

1−ρx
2

� � ¼ 1−ρ0
2

� �
1−rx2
� �

; ð1Þ

i.e., the total variance reduction is the product of the
variance reduction from the non-genetic model and the
variance reduction due to fitting the animal effect.
Since the animal effect cannot explain the environ-

mental variance, the maximum variance reduction is
(1 − ρmax

2) = σe
2/V(y), where σe

2 is from Table 1, and V
(y) is the variance of the masked records. Using equation
(1), this variance reduction was put relative to a model
that already contains all non-genetic effects, resulting in
rmax

2. Note that rmax
2 is probably over-estimated be-

cause its derivation assumed that not only the animal ef-
fects are predicted with an accuracy of 1, but also all other
non-genetic effects. Finally, the accuracy of the prediction
of the animal effects using model x, i.e. the correlation
between predicted and true values, was calculated as
rGSx = rx/rmax, which is expected to be underestimated
because of the over-estimation of rmax.

Significance testing
The increase in the accuracy of prediction when using a
more sophisticated relationship matrix was tested for its
statistical significance. A more powerful test can be de-
vised than just considering the standard errors of correl-
ation estimates (which tests whether any two correlation
estimates differ), since all correlation estimates were
based on the same set of phenotypes. Let yi; cy1i , and cy2i ,
denote the recorded phenotype value, its prediction using
method 1, and its prediction using method 2 for record i,
then the correlations between yi; cy1i , and cy2i , were esti-
mated using the model:

yicy1icy2i

2
4

3
5 ¼

μ0
μ1
μ2

2
4

3
5þ

e0i
e1i
e2i

2
4

3
5;
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where [μ0 μ1 μ2] ‘denotes the mean, and [e0ie1ie2i]’
denotes the residuals, which were assumed to have
(co)variance matrix:

var
e0i
e1i
e2i

2
4

3
5

0
@

1
A ¼

σ20 r01σ0σ1 r02σ0σ2
r01σ0σ1 σ21 r12σ1σ2
r02σ0σ2 r12σ1σ2 σ22

2
4

3
5

where all variances and correlations were estimated by
ASREML [10], together with the log likelood of this
alternative-hypothesis model, LogL1. In the null-
hypothesis model, the correlation between yi and cy1i was
assumed equal to that between yi and cy2i , i.e. the restric-
tion was r01 = r02, which resulted in the likelihood of the
null model: LogL0. Under the null-hypothesis, 2(LogL0-
LogL1) is approximately chi-squared distributed with one
degree of freedom. The resulting P values were halved
here because a one-sided test was performed (a priori
one of the methods was assumed superior, and if the
data did not support this assumption, the test was al-
ways considered not-significant). This significance test
was applied within one cohort of the youngest animals
using another (older) cohort of training animals, and
thus does not account for extra variability, e.g. due to
different relationships between animals, that occurs if
the design would have been replicated.

Results
Table 2 shows the relationships between the off-diagonal
elements of the relationship matrices, since the off-
diagonals are most important for the accuracy of breed-
ing value prediction. The variances of the relationships
increase as we go from A to GLA to GH to G, where G
shows 2.3 fold the variance of A. This is expected as the
relationship matrices make an increasing use of the
marker data in this order. The regression coefficient of
GLA on A is equal to 1.001, which is expected since both
are known to be unbiased estimators of relationships.
For the regressions of GH and G on A, the regression
coefficients are slightly smaller than 1, showing that gen-
etic differences picked up by A are also reflected in G
Table 2 Correlations (below the diagonal), variances (on
the diagonal), and regression coefficients (B; above the
diagonal) of the off-diagonal elements of the different
relationship matrices1

A GLA GH G

A 0.00129 1.001 0.925 0.922

GLA 0.944 0.00145 0.942 0.967

GH 0.709 0.765 0.00219 1.076

G 0.612 0.680 0.932 0.00292
1Regression coefficients, Bj on i, are from the column variable j on the row
variable i; the covariance of variables i and j can be calculated as Bj on i times
the diagonal of i.
and GH, with only minor scaling differences (however
the regression of A on G is less than 1 and differences in
genomic relationships are not fully reflected in A). These
minor scaling differences suggest that the use of the
same animal variance for all G matrices is justified. The
regression of GH and G on GLA are similar to those on
A. Correlations between the relationships can be as low
as 0.6, which shows that pedigree and genomic relation-
ships are quite different; correlations are lower than
those found in dairy cattle [7]. The correlations between
the elements of GLA and A are high (0.94).
Table 3 shows the raw correlations, ρ, between the

masked records and their predicted values using the al-
ternative relationship matrices. Generally, there is a sub-
stantial improvement in accuracies when moving from
the A matrix to genomic relationship matrices. Although
the improvement due to the implementation of the link-
age analysis matrix, GLA, is more moderate, it is statisti-
cally significant. Moving from GLA to G yields in most
cases a clear and significant improvement. There is a
tendency for the GH matrix to improve the accuracies
for two (GR and M%) of the four traits analyzed, but
these differences are not significant. It is notable that
prediction accuracies are lowest for growth, despite its
quite high heritability. This is probably because growth
has historically been a major part of the breeding goal,
which reduces the between-family genetic variance for
this trait, and the between-family component is easier to
predict than the within-family (Mendelian sampling)
component.
Table 4 shows the accuracies of selection, rGSx, for the

alternative relationship matrices. Apart from growth
(which is commented above), the genomic selection ac-
curacies range from 0.3 to 0.65, which are quite high, es-
pecially when considering the fact that candidates have
masked phenotypes, the number of genotyped animals is
low and the data consist of phenotypic records instead
of accurate deregressed proofs. The pattern of the accur-
acies is similar to that for the correlations in Table 3.
For W3W, the accuracy of traditional selection is quite
high and is relatively not much improved by genomic
Table 3 Accuracy of prediction of the masked records,
ρ, for the analysed traits using different relationship
matrices1

Trait A GLA G GH

GR 0.136 0.192*** 0.294*** 0.307−

M% 0.265 0.304* 0.468*** 0.475−

W3W 0.447 0.459** 0.466− 0.465−

NT 0.284 0.322* 0.420*** 0.421−

1The increase in accuracy when moving from method/column i-1 to i was
tested for its statistical significance using a one-sided test where *, **, and ***
denote P values < 0.05, < 0.01, and < 0.001, respectively, and – denotes
no-significant increase.



Table 4 Accuracy of genomic selection, rGS, for the
analysed traits using different relationship matrices

Trait A GLA G GH

GR 0.126 0.213 0.353 0.370

M% 0.199 0.299 0.609 0.620

W3W 0.329 0.431 0.487 0.475

NT 0.439 0.499 0.650 0.651
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selection. Possibly the assumption that W3W is deter-
mined only by the genetics of the piglet is not valid, in
that the genetics of the mother may also play an import-
ant role, but the genotype of the dam was unknown in
the current analysis. The GLA matrix yields substantially
less accuracy than the IBS-based relationship matrices.

Discussion
Genomic selection may be seen as a form of traditional
BLUP selection where the pedigree relationship matrix,
A, is substituted by a (more accurate) genomic relation-
ship matrix. Our hypothesis was that genomic relation-
ship matrices based on the IBS of single SNPs may put
the base population too far back in time, especially be-
cause the SNP panels are often selected for high MAF.
Identities at QTL alleles may be due to more recent
common ancestors because natural and artificial selec-
tion may have eroded ancient genetic differences. The
results in Table 2 suggest that we have succeeded in cre-
ating relationship matrices that increasingly consider old
relationships in the order A, GLA, GH and G, since the
variance of relationships increases in this order, probably
due to considering more old relationships. These more
variable relationships are real in the sense that the re-
gression on younger relationships is close to 1 and they
result in higher prediction accuracies. Although, there
was a tendency for the haplotype-based relationship
matrix, GH, to yield higher prediction accuracy than the
single-marker based matrix G (for two of four traits),
these results were not statistically significant. Interest-
ingly, the traits for which GH tended to yield higher ac-
curacy than G (GR and M%) are more heavily selected
in pig breeding than the other traits (W3W and NT),
suggesting that the use of more recent relationship
matrices than G is beneficial for more heavily selected
traits. However, the A and GLA matrices apparently re-
sulted in relationships that were too young.
The GH matrix was based on haplotypes with an average

size of 8.4 SNPs (result not shown). With a median inter-
marker distance of 28 kb [http://res.illumina.com/docu
ments/products/datasheets/datasheet_porcinesnp60.pdf]
and assuming a recombination rate of 1 cM per 1000 kb,
the recombination rate over a 8.4 SNP region is θ ≈ 0.0022,
resulting in a base population that occurred approximately
1/(2θ) = 223 generations ago [13]. The effective population
size of Norwegian Landrace is about Ne = 100 (personal
communication Dan Olsen, Norsvin, 2013), which yields
an expected heterozygosity of the haplotypes of [17]:

Het ¼ 4Neθ

1þ 4Neθ
¼ 0:47:

Since this expected heterozygosity is close to 50%, the
information contained in the haplotypes is close to max-
imum. The use of larger haplotypes with a higher re-
combination frequency would not maximise the
information contained in the haplotypes but would point
to a quite recent common ancestor in the case of haplo-
type homozygosity, which would be useful when trying
to trace young mutations (e.g. disease mutations). Set-
ting the base population to about 200 generations ago
agrees also with the history of modern European pig
breeds, which originate from a hybridisation with Asian
breeds in the 18th or early 19th century [18].
The linkage analysis matrix GLA yielded poorer predic-

tion accuracies than the G matrix (Table 3), which is con-
trary to the results reported for dairy cattle [7]. The
poorer results of linkage analysis in pigs relative to dairy
cattle may be because: (1) there was only about one gener-
ation of genotyped and phenotyped animals, leaving little
opportunity for tracing chromosome segments from one
generation to the next by linkage analysis; (2) the informa-
tion content of phenotypic records is lower than that of
deregressed proofs, which combined with the fact that
linkage analysis requires re-estimation of chromosomal
effects within families, results in a relatively low rGSGLA for

the pig data; (3) the porcine genome sequence map may
not be as accurate as its bovine counterpart, which may
have hampered the linkage analysis; (4) the Ne of the re-
cent pig population may be larger than that of cattle,
which implies that older ancestors and thus relationships
are important; (5) the prediction of deregressed proofs in
dairy cattle may not require such old relationships com-
pared to prediction of phenotypic records, because dereg-
ressed proofs are themselves predicted by a linear model
using only recent relationships; (6) the aforementioned hy-
bridisation with Asian breeds [18] will have caused con-
siderable LD, which predates pedigree recording and thus
is not captured by GLA. Explanation (5) does, however,
not explain the results in Table 2, where the correlations
between the relationships in the GLA and G matrices are
lower than found by [7] in dairy cattle. In our view, expla-
nations (1) and (2) are the most likely, also if one con-
siders that the youngest animals that were predicted were
rarely sibs of the phenotyped animals, due to the high
turn-over rate of the elite boars in pig breeding. Moreover,
dairy cattle results also indicated that several generations
of linkage analysis are needed for high rGSGLA [7].
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Several authors have attempted to fit haplotypes for gen-
omic prediction [19-23], mainly based on the argument
that haplotypes may show stronger LD with QTL than
single SNPs. Here, we used the argument that haplotypes
trace younger relationships than the old relationships
traced by single SNPs. However, these two arguments are
equivalent, which is similar to the equivalence of SNP-
BLUP genomic selection with GBLUP [3,24]. Our results
also agree with those of [19-23], i.e. the use of haplotypes
increases accuracy only sometimes and not by much.
In machine-learning, prediction is viewed as striking a

balance between bias and error variance [25], where a
model with strong (oversimplifying) assumptions is biased
and a more realistic model fits too many effects and
thus has large prediction error variances. Haplotype-based
models may reflect the LD structure or the relevant age of
the relationships better, but they usually fit more effects
and, in a situation with limited numbers of training re-
cords, may not prove to be more accurate than GBLUP.
The SNPs in GBLUP predict relationships over long gen-
etic distances, which reduces the prediction error variance
and increases bias but apparently not to the point that the
haplotype models are clearly favoured. In the future, the
numbers of genotyped animals will increase, which will re-
duce prediction error variances, and in sequence data, the
number of haplotypes is lower than the number of SNPs.
All this will favour models that fit haplotype effects.
Deregressed proofs (but the same holds for daughter-

yield-deviations or other estimates that more accurately
reflect the genetics of an animal than a phenotypic rec-
ord) are derived from a linear model including the
masked and unmasked records. If we write the dereg-
ressed proof as DP = TBV + ERR, where TBV is true
breeding value, the error term, ERR, is partly due to
unmasked records in the training data, and thus can be
predicted by the genomic selection model (especially
when it is similar to the model that was used to calculate
the DP). Hence, when predicting masked DP, predicted
accuracies of GS are biased because

Cov GEBV;DPð Þ ¼ Cov GEBV;TBVð Þ
þ Cov GEBV; ERRð Þ;

where GEBV denotes genomic breeding value estimates.
I.e. the second term inflates the covariance between GEBV
and masked DP above that due to prediction of TBV by
GEBV (assuming that the errors of the GEBV are posi-
tively correlated with the errors from the model that
predicts the DP). In this study, we predicted masked
phenotypic records. Errors in phenotypic records, i.e., the
environmental effects, cannot be predicted by genomic se-
lection, and thus a high accuracy of prediction of records
can only be achieved by a high accuracy of prediction of
TBV. Thus, when predicting masked phenotypes, the
predicted accuracies are not expected to be biased, in con-
trast to the use of DP or daughter-yield-deviations.
Especially for the analyses of W3W and NT, the data

included many phenotypic records on non-genotyped
animals (Table 1). Genomic prediction analyses for such
data are usually performed by the so-called one-step ap-
proach [26,27]. We used an alternative approach here,
because of bias problems with the one-step approach
[16,28]. For instance, a relationship of 0.55 between full
sibs can be explained by linkage analysis, i.e. the sibs
happened to inherit more chromosome segments in
common from their parents than expected. However the
one-step approach explains such increased relationships
between family members by adapting the relationships
between the founder animals. The latter is because it
leaves the regression of ungenotyped onto genotyped an-
imals unaltered (in contrast to linkage analysis). The use
of relationship matrix GLA instead of A solves this prob-
lem, because in the GLA matrix these regressions are al-
tered by the marker information [16]. Following [29], we
used the estimated genotype probabilities to calculate re-
lationships of ungenotyped animals. In contrast to the
one-step approach, this does not require quantification
of the difference between a G and A matrix (also not on
the inverse scale), and this avoids scaling problems asso-
ciated with the one-step approach (e.g. [16]; although
the G, GLA and A matrices had quite similar scales here;
see Table 2). Matrix R was added to account for unex-
plained relationships, but this increased the accuracy of
prediction of records only by up to 0.01 (result not
shown). The largest increase was for NT, which had
most phenotypes recorded on ungenotyped animals. In
the future, it is expected that a small minority of pheno-
types will come from ungenotyped ancestors, which may
make the computationally demanding calculation of the
R matrix redundant. This will probably require that the
diagonal elements of the genomic relationship matrix
are calculated by the method of [30] because otherwise
they systematically fall below 1 for ungenotyped animals.
For ungenotyped descendants of genotyped animals, the
one-step method can and should be used, since it is un-
biased and optimal for such animals [16].
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