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Abstract

Background: The reliability of whole-genome prediction models (WGP) based on using high-density single nucleotide
polymorphism (SNP) panels critically depends on proper specification of key hyperparameters. A currently popular
WGP model labeled BayesB specifies a hyperparameter π, that is `loosely used to describe the proportion of SNPs that
are in linkage disequilibrium (LD) with causal variants. The remaining markers are specified to be random draws from a
Student t distribution with key hyperparameters being degrees of freedom v and scale s2.

Methods: We consider three alternative Markov chain Monte Carlo (MCMC) approaches based on the use of
Metropolis-Hastings (MH) to estimate these key hyperparameters. The first approach, termed DFMH, is based on a
previously published strategy for which s2 is drawn by a Gibbs step and v is drawn by a MH step. The second strategy,
termed UNIMH, substitutes MH for Gibbs when drawing s2 and further collapses or marginalizes the full conditional
density of v. The third strategy, termed BIVMH, is based on jointly drawing the two hyperparameters in a bivariate MH
step. We also tested the effect of misspecification of s2 for its effect on accuracy of genomic estimated breeding values
(GEBV), yet allowing for inference on the other hyperparameters.

Results: The UNIMH and BIVMH strategies had significantly greater (P < 0.05) computational efficiencies for estimating
v and s2 than DFMH in BayesA (π = 1) and BayesB implementations. We drew similar conclusions based on an analysis
of the public domain heterogeneous stock mice data. We also determined significant drops (P < 0.01) in accuracies of
GEBV under BayesA by overspecifying s2, whereas BayesB was more robust to such misspecifications. However,
understating s2 was compensated by counterbalancing inferences on v in BayesA and BayesB, and on π in BayesB.

Conclusions: Sampling strategies based solely on MH updates of v and s2, and collapsed representations of full
conditional densities can improve the computational efficiency of MCMC relative to the use of Gibbs updates. We
believe that proper inferences on s2, v and π are vital to ensure that the accuracy of GEBV is maximized when
using parametric WGP models.
Background
Genomic predictions based on the use of high-density
single nucleotide polymorphisms (SNPs) distributed across
the genome have been increasingly adopted for animal and
plant breeding programs. Parametric Bayesian methods
have become particularly popular, most notably BayesA
and BayesB, which were first introduced by Meuwissen
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et al. [1]. BayesB specifies a mixture prior on the SNP
specific effects, with a point mass at 0 with probability
(1- π), or randomly drawn, with probability π, from a
Student t distribution with degrees of freedom v and
scale parameter s2; BayesA is BayesB with π = 1. Note
that Meuwissen et al. [1] define π in the opposite man-
ner, whereas we prefer the definition of π that is used
most commonly in the variable selection literature [2].
Hence, π is typically believed to be the proportion of
SNPs that are associated or in linkage disequilibrium
(LD) with causal variants, although this interpretation
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is somewhat complicated by varying degrees of LD across
the genome. These hyperparameters (v, s2 and π) are rele-
vant in that they partly characterize the genetic architecture
of traits, but more importantly depend upon the density or
characteristics of the SNPs used in the analyses [3].
Key hyperparameters in BayesA or BayesB whole-

genome prediction (WGP) models have been arbitrarily
specified in a wide selection of WGP studies. Meuwissen
et al. [1] used arguments based on population genetics
to set v and s2 at 4.2 and 0.04, respectively, in the BayesB
model of their simulation study. In various simulation
and/or empirical data analysis scenarios, it seems neces-
sary to carefully tune key hyperparameters, since their
optimal specifications should depend upon several key
factors. For example, one could loosely interpret s2 as a
“typical” SNP effect variance component in a BayesA
model (based on the t-distribution being defined as a
scaled-inverted chi square distribution on SNP-specific
variances with heterogeneity across SNPs determined by v),
such that its value should be inversely related to the num-
ber of SNPs used in an analysis. We have demonstrated
this previously [3].
Inference in BayesA- or BayesB-like models is con-

ducted using either Markov chain Monte Carlo (MCMC)
methods for fully Bayesian inference or using faster, albeit
approximate, methods based on the use of the expectation
maximization (EM) algorithm or its various derivatives
[4]. Unfortunately, it has not been readily established how
to properly infer these hyperparameters in the EM-based
methods, such that they are often arbitrarily “tuned” or
specified [5]. Furthermore, although it is possible to infer
these same hyperparameters using MCMC, the poor effi-
ciency and speed of these implementations have seemingly
discouraged their use [6], although recently some software
has facilitated formal Bayesian inference on at least some
of these hyperparameters [7]. In particular, it has been
noted that the correlation between v and s2 across MCMC
cycles is generally so large that these two hyperparameters
are nearly non-identifiable from each other [6,8]. A
MCMC strategy for a “fully” BayesA model was presented
by Yi and Xu [9] who applied a Gibbs update for the full
conditional density (FCD) on s2, since the conditional con-
jugate is a Gamma prior, whereas a Metropolis Hastings
(MH) update was used on sampling from the FCD of v,
since it is not recognizable [9]. We label this particular
algorithm as DFMH (i.e., sampling v using MH), and it
is the control or reference strategy in this paper.
Computational efficiency in MCMC schemes is related

to the degree of mixing or autocorrelation between sub-
sequent samples of the same parameter. The most popu-
lar metric for determining the degree of mixing or
autocorrelation for a fixed number of MCMC cycles on
a particular parameter is the effective sample size (ESS),
which can be readily computed using software packages
like CODA [10]. The ESS determines the effective num-
ber of independent draws such that a greater degree of
autocorrelation between subsequent samples for the
same parameter would lead to a smaller ESS and hence
poorer computational efficiency. Now, although there
are clear exceptions, MCMC sampling strategies that
lead to a greater ESS for a certain total number of
MCMC cycles tend to have greater computational cost
per cycle. This realization is reflected in other quantita-
tive genetics applications [11,12] that derived various
metrics to integrate these two components of computa-
tional efficiency.
We surmised that, compared to the use of DFMH,

there may be a number of MCMC strategies that could
improve the computational efficiency of inferring upon
key hyperparameters in a BayesA or BayesB WGP
model. Furthermore, the efficiency of any strategy could
markedly depend on the choice of an appropriate scale
for the parameters being sampled. For example, a highly
nonlinear relationship between two variables can often
be rendered linear by transforming either one or both of
the corresponding parameters. When v and s2 are both
log-transformed, the resulting scatterplot of MCMC
samples of the transformed variables against each other
often demonstrates a more linear relationship, although
we have also observed counterexamples, where a linear
relationship is maintained on the original scale. At any
rate, a change of variable might facilitate potentially more
efficient MCMC sampling strategies based on multivariate
Gaussian proposal densities, for example, in Metropolis
sampling schemes [13].
There were two primary objectives in this study. First,

we wanted to explore alternative strategies to improve
the computational efficiency of estimating hyperparameters
in BayesA and BayesB WGP models. Second, given the
prevalent practice of specifying rather than estimating
these hyperparameters, we wanted to assess the impact of
misspecifying s2 on the accuracy of genomic estimated
breeding values (GEBV) or even whether s2 could be rea-
sonably extrapolated based on analyses derived from other
marker densities.

Methods
Whole-genome prediction model
The WGP model used for comparison of the various
computational strategies and/or hyperparameter specifi-
cations can be denoted as follows:

yi ¼ x
0
iβþ

Xm
j¼1

zijgj þ ei ; ð1Þ

where yi is the phenotype for animal i (i = 1,2,…,n), β is a
vector of fixed effects such that x

0
i is the known incidence
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row vector connecting yi to β, zij is the genotype covariate
for SNP j on animal i, coded as either 0, 1, or 2 copies
of a reference allele for SNP j on animal i, gj is the ran-
dom effect for SNP j, and ei is the residual. We assume

gj eNID 0; σ2gj

� �
conditionally and ei eN 0; σ2e

� �
.

Stranden and Christensen [14] recently demonstrated
that MCMC mixing of key parameters, including fixed ef-
fects, can be dramatically improved by simply expressing
the covariate zij for each SNP genotype j as a deviation

from that SNP average; i.e. using zij� ¼ zij − 1
n

Xn
i¼1

zij as

the covariate in Model (1). As Stranden and Christensen
[14] further demonstrate, this recoding does not alter
inference on SNP effects {gj}; however, we assumed that
this recoding could only help to facilitate mixing on all
other parameters whose FCD are functions of {gj}. Hence,
we applied this strategy for all computational efficiency
comparisons considered in this paper.
The prior distribution of σ2gj in BayesB is a mixture of

two components: a scaled inverted chi-square distri-
bution with σ2gj e χ−2 ν; νs2ð Þ, having probability π, and a

spike at 0 with probability (1 − π). Here, π loosely repre-
sents the proportion of SNPs having associated genetic
effects on the phenotype. Recall that BayesA is a special
case of BayesB when π = 1. Following Yang and Tempelman
[3], we specify the following prior distributions on the
hyperparameters: ν ~ p(ν) ∝ (ν + 1)− 2 in both BayesA and
BayesB, the Gelman prior [15] s2 ~ χ− 2(−1, 0) in BayesA, a
proper but diffuse conjugate prior s2 ~Gamma(αs, βs)
such that E s2ð Þ e αs

βs
with shape parameter αs = 0.1 and rate

parameter βs = 0.1 in BayesB; more informative alternative
specifications could be provided for s2 in either model as
desired. Finally, we specify π ~ p(π|απ, βπ) = Beta(απ, βπ)
with απ = 1 and βπ = 8 in BayesB. A Beta prior is equiva-
lent to specifying a prior mean of απ/(απ + βπ) based on a
prior sample size of απ + βπ. For all three computational
strategies that we describe subsequently, we adapt the
same commonly used MCMC strategies for sampling
from all parameters or random variables as outlined by
Meuwissen et al. [1], noting the exceptions for v, s2, and π
that Meuwissen et al. [1] treated as fixed or known. For all
algorithms, the FCD of π in Bayes B was deemed to be
Beta(απ +m1, βπ +m −m1), where m1 denotes the number
of non-zero gj sampled for that MCMC cycle [3]. We now
describe each of three computational strategies.

Univariate metropolis Hastings sampling on v and Gibbs
update on s2 (DFMH)
This strategy, which we designate as DFMH, closely follows
Yi and Xu [9]. The FCD of v does not have a recognizable
form; hence sampling from this FCD requires a strategy
other than a Gibbs step. Here, we used the MH algorithm
to sample from the FCD of v, drawing from our experi-
ences in various other applications [3,16-18]. More specif-
ically, we generate from the FCD of ξ = log(ν), ensuring
that the FCD of ξ takes into account the Jacobian of the
transformation from v to ξ [See Additional file 1]. Since ξ
can conceptually be defined anywhere on the continuous
real line, we believe that this transformation better justifies
the use of a Gaussian proposal density centered on the
value of ξ from the previous MCMC cycle; i.e., a random
walk MH step [19]; alternatively, a heavier-tailed Student t
proposal density could be used as well. During the first
half of burn-in, we adaptively tune the variance of this
proposal density such that the MH acceptance ratios are
intermediate (i.e., 25 to 75%), adapting the strategy de-
scribed by Muller [20] and in accordance with standard
recommendations [21,22]. The variance of the proposal
density was then fixed for the last half of burn-in, in order
to ensure a proper convergent MCMC algorithm. Yi and
Xu [9] demonstrated that the FCD of s2 is Gamma, pro-
vided that a conditionally conjugate Gamma prior is used.
Hence, for DFMH, we sampled v, using the described MH
update, and s2 with a Gibbs update. To facilitate even bet-
ter the mixing of v through the joint posterior density,
given that the MH acceptance rates are potentially less
than 50%, we drew 10 MH samples for v per MCMC cycle
conditional on all other unknowns. Further details on the
DFMH strategy are provided in [See Additional file 1].

Univariate metropolis hastings sampling for each of v and
s2 (UNIMH)
Metropolis Hastings sampling, if properly tuned with
good proposal densities and intermediate acceptance
rates, can often lead to faster mixing and hence greater
MCMC efficiency relative to Gibbs sampling. This is be-
cause MH sampling typically proposes bigger jumps
throughout the posterior density compared to the use of
Gibbs sampling. Hence, we propose a second strategy,
UNIMH, whereby we again use MH to sample from v
but also use MH to sample from s2. However, we also
embed an additional strategy, whereby the FCD for both

v and s2 is based on integrating out σ2gj

n om

j¼1
from the

joint posterior density of all unknowns, such that the
prior specification on g is explicitly provided as a mix-
ture involving a Student t distribution, rather than a
scaled inverted chi-square distribution mixture of nor-
mals. This strategy leads to a “collapsed” sampler, which
is also known to facilitate faster MCMC mixing [23]

since uncertainty on σ2gj

n om

j¼1
is completely accounted for

in the MCMC draws of v and s2.
As with v in DFMH, we sample s2 by invoking a

change of variable to its logarithm (i.e., ψ = log(s2)),
allowing for the Jacobian of the transformation from s2
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to ψ, and use a random walk MH algorithm based on a
Gaussian proposal density for ψ. Similar to what was
done for v, the variance of this proposal density was only
tuned for intermediate acceptance rates during the first
half of burn-in, to ensure a properly convergent MCMC
chain. For reasons similar to those provided for DFMH,
10 MH samples per MCMC cycle were specified for
sampling v and s2 in UNIMH. Further details on this
strategy are provided in [See Additional file 1].

Bivariate metropolis hastings sampling on v and s2

(BIVMH)
As previously noted, the posterior correlation between v
and s2 can be high; hence, it might be advantageous to
jointly sample these two parameters with a bivariate ran-
dom walk MH sampler, as demonstrated with a different
application by Ntzoufras [13]. Hence, we proposed a third
sampling algorithm that we named BIVMH. Here, we di-
vided the burn-in period for this strategy into four stages
of equal lengths with respect to the number of MCMC cy-
cles; arguably, a more efficient partition of these stages
might be possible given that these stages may not neces-
sarily need to be of the same length. In Stage 1, we sam-
pled log(v) and log(s2) from their respective FCD using
the UNIMH strategy previously described, fine-tuning the
variances of the two separate Gaussian proposal densities
to ensure that MH acceptance rates fall between 25 and
75%. In Stage 2, we sampled log (v) and log (s2) using
UNIMH, fixing the variances of their respective proposal
densities to those values tuned at the end of Stage 1, while
computing the empirical correlation between the samples
of log (v) and log (s2) drawn from within the same cycle.
In Stage 3, log (v) and log (s2) were jointly sampled using a
bivariate Gaussian proposal density with variances based
on those tuned at the end of Stage 1 and a covariance
based on the correlation computed from Stage 2. During
Stage 3, we further fine-tuned the proposal variances to
ensure intermediate acceptance rates for joint samples of
log (v) and log (s2), with the proposal covariance based on
the same correlation derived in Stage 3. In Stage 4, we
drew samples using the same joint MH random walk from
the newly tuned bivariate Gaussian proposal density in
Stage 3 but without further tuning, in order to ensure a
properly convergent MCMC chain before the end of the
burn-in period. At the end of Stage 4, and hence burn-in,
we saved samples for the hyperparameters of v and s2

(i.e., back-transformed) for MCMC-based fully Bayesian
inference. As with UNIMH, 10 MH samples were drawn
for each of v and s2 at each stage per MCMC cycle. Details
on this strategy are provided in [See Additional file 1].

Simulation study
In order to test the computational efficiency of the three
sampling strategies, DFMH, UNIMH and BIVMH, under
the BayesA and BayesB modeling specifications, we sim-
ulated 15 replicated datasets using the HaploSim pack-
age in R [24]. The simulated genome was composed of
one chromosome of 1 Morgan that comprised 100 000
equally spaced loci. For each of the 100 animals in the
base population, every 5th locus on this chromosome
was heterozygous (i.e., for a total of 20 000 such loci),
whereas the remaining 80 000 loci were completely
monomorphic, similar to the simulation in Coster et al.
[24]. Individuals were randomly mated to generate 100
animals within each of 6000 subsequent generations in
order to generate LD between loci. The number of re-
combinations per meiosis was drawn from a Poisson dis-
tribution, with the position of each recombination being
randomly drawn from a uniform distribution on the
chromosome consistent with a Haldane mapping function
(i.e., no interference). Furthermore, we specified the recur-
rent mutation rate to be 10−5 per locus per generation.
In Generation 6000, random matings were used to in-

crease the population size to 1000 individuals in Generation
6001. In Generation 6001, we deleted loci with a minor al-
lele frequency (MAF) less than 0.05 and randomly selected
30 from the remaining loci to be quantitative trait loci
(QTL). Following Meuwissen et al. [1], we simulated allele
substitution effects α for these 30 QTL from a reflected
Gamma distribution with shape parameter 0.4 and rate
parameter 1.66, such that the true breeding values (TBV)
were genotype-based linear combinations of α. Pheno-
types for animals in Generation 6001 were generated
based on a heritability of 50%, i.e., such that σ2e = var
(TBV). Note that the heritability specification thereby
renders the specification of the rate parameter value of
1.66 irrelevant. Additionally, genotypes for 1000 offspring
in Generation 6002 were based on random matings of
individuals in Generation 6001. Again, TBV were based
on linear combinations of α based on QTL genotypes
inherited from Generation 6001.
After discarding SNPs with a MAF less than 0.05, we

then selected every single, 4th and 10th SNP for inclusion
in analyses in order to consider the effect of different
marker densities; i.e., high (average of 2394 SNPs),
medium (average of 598 SNPs), and low (average of 239
SNPs) across the 15 replicates; these marker densities
subsequently influence the average pairwise LD measures
between adjacent markers. We compared the computa-
tional efficiencies between the three strategies for inferring
on key hyperparameters (i.e., π , v and s2) under these
three marker densities. We ignored additionally fitting
polygenic effects [25] for all comparisons in the simulation
study to further facilitate computational feasibility, assum-
ing that this would not affect the relative efficiency of each
computing strategy.
We compared the computational efficiencies of the

three MCMC strategies for each replicated dataset,
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considering each marker density. Since computational
efficiency pertains to a particular hyperparameter, it
was defined as the effective sample size (ESS) for the
post-burn-in MCMC cycles divided by total CPU time,
i.e., ESS/CPU recorded in number per second. That is,
the greater ESS/CPU, the greater the computational effi-
ciency for inferring the posterior density of that particular
hyperparameter.
Recognizing that many researchers do not infer some

or even all hyperparameters in WGP models, because of
the perceived inferential challenges, we thought it was
important to assess the impact of misspecification of
these parameters on the accuracy of genomic prediction.
Using the same simulated data as described previously,
we focused on five scenarios, all at the medium marker
density (selecting every 4th marker). Each scenario was
based on setting s2 as an arbitrary multiplicative con-
stant of the average posterior mean at the medium
marker density ( �s2med ), based on the corresponding
model (BayesA or BayesB) while other hyperparameters
(v and π where applicable) were inferred upon. Values
for s2 for these five scenarios were set to 1) s2 = �s2med , 2)
s2 = 0.1 �s2med , 3) s2 = 0.01 �s2med , 4) s2 = 10 �s2med , and 5)
s2 = 100 �s2med . Note that the specification of �s2med depended
on which model (BayesA or BayesB) was used, as de-
scribed later, and that the other hyperparameters (v and π
where applicable) were still inferred upon within each of
these scenarios in order to remove confounding effects of
their misspecification.
We also investigated if it was possible to specify a

roughly good working value for s2 by merely extrapo-
lating it from an estimate derived from, e.g., the ana-
lysis of the same phenotypes but based on a SNP
panel with a different marker density. Since s2 repre-
sents a typical value for the SNP-specific variances σ2gj ,

with the mean being greater and the mode being less
than s2, the value of s2 should be inversely related to
the number of SNPs, as previously reported [3]. For
example, given that there were, on average, four times
as many markers in the high-density panel as there
were in the medium-density panel in our simulation
study, a candidate specification for s2 at the high-density
might be to use s2 = 0.25 �s2med . Similarly, since there were
2.5 times as many SNPs in the medium-density panel
than in the low-density panel, a candidate specification
for the low-density marker specification might be
s2 = 2.5 �s2med . These specifications for s2 were compared
for their effect on the accuracy of GEBV relative to the
situation where s2 was directly inferred upon under BayesA
and BayesB for all 15 replicated datasets. Again, all these
comparisons were conducted such that all remaining
hyperparameters (v and π where applicable) were inferred
upon as well.
In all cases, accuracy of prediction was defined as the
correlation between GEBV and TBV, where GEBV for

animal i was defined as
Xm
j¼1

z�ij�g j , where �g j is the posterior

mean of gj and TBV is defined as before. Hypothesis test-
ing between accuracies of different methods were based
on blocking on replicated datasets, using a Wilcoxon
signed rank test. Furthermore, every single MCMC ana-
lysis was based on 120 000 cycles during burn-in, followed
by 400 000 cycles after burn-in, saving every 10 for a total
of 40 000 samples.

Data application
In the real dataset, 2296 mice were genotyped for 12 147
SNPs with a high pairwise LD of r2 = 0.6 [26]. After fil-
tering data on genotypes [3], there were 1940 animals
with 10 467 SNPs. We selected 50, 100 and 200 SNPs
from each of the 19 autosomes to create three different
marker densities using pre-corrected body weight at
6 weeks as phenotypes. As in Yang and Tempelman [3],
we also modeled the random effects of cage in addition
to SNP effects and polygenic effects in the WGP model,
using the Gelman prior [15] for the cage (σ2

c ) and the
polygenic (σ2u) variance components. After merging phe-
notypes with the genotypes, 1917 animals remained with
complete phenotypes and genotypes on 950, 1900 and
3800 SNPs for the three different marker densities across
the 19 autosomes. Computing efficiency was directly com-
pared between each of the three methods based on 80 000
samples obtained by saving every 10th sample of 800 000
MCMC cycles, after a burn-in period of 120 000 samples.

Results
Simulation study
By selecting every single, 4th and 10th SNP for inclusion,
the average LD measure (r2) between adjacent SNPs,
was 0.32, 0.24 and 0.17 for the three marker densities
over the 15 replicated datasets. Pairwise scatterplots
used to assess quality control on our procedures are in
[See Additional file 2: Figures S1, S2, S3, S4 and S5]. In-
ferences on s2 using each of the three sampling strategies
DFMH, UNIMH and BIVMH were compared under
both BayesA [See Additional file 2: Figure S1] and
BayesB [See Additional file 2: Figure S2] specifications.
We observed that estimates (posterior medians) of s2

decreased as the marker density increased and that es-
timates derived from BayesB were generally one order
of magnitude greater than those in BayesA. Further-
more, posterior medians of π generally increased [See
Additional file 2: Figure S3], whereas posterior medians of
v generally decreased as marker density increased, for
both BayesA [See Additional file 2: Figure S4] and BayesB
[See Additional file 2: Figure S5].
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Overall, pairwise scatterplots of the posterior medians
of s2, π and v under the three computational strategies
for each of the three marker densities indicated very
good agreement, as expected, since the joint posterior
density should not differ regardless of whether one uses
DFMH, UNIMH or BIVMH, provided that the prior
specifications are identical. Better agreement between
the three algorithms was generally found for BayesA
than for BayesB inference on s2 and v. This was as antic-
ipated, since BayesB requires inference on one more
hyperparameter (π) and hence potentially greater Monte
Carlo error for the same number of cycles; furthermore,
inference on s2 and v is essentially based on information
from only non-zero SNP effects, which is appreciably
less than the effective total number of SNPs used for esti-
mating s2 and v in BayesA [3]. Moreover, greater agreement
was found between all algorithms at the lowest-density of
markers (last row of each scatterplots in Figures S1, S2, S3,
S4 and S5 [See Additional file 2: Figures S1, S2, S3, S4 and
S5], since the ESS were generally much greater (results
not shown) in that case; that is, higher ESS generally
translates into smaller Monte Carlo error. For the same
reason, there was generally greater agreement between
UNIMH and BIVMH (last column of each scatterplots in
Figures S1, S2, S3, S4 and S5 [See Additional file 2: Figures
S1, S2, S3, S4 and S5], since the DFMH showed relatively
poorer MCMC mixing (low ESS) and hence greater Monte
Carlo error.
Table 1 provides median ESS/CPU as a measure of

MCMC computational efficiency for each of the three
strategies under each of the three marker densities for v
and s2, respectively, under the BayesA model. In all cases,
ESS/CPU increased with lower marker densities, since
that leads to an inferential situation of more data infor-
mation per marker (i.e., higher n/m) or a greater level of
determinedness [27]. Furthermore, ESS/CPU was always
higher for BIVMH and UNIMH compared to DFMH
(P < 0.05). For v at the high marker density (r2 = 0.32),
Table 1 Median computational efficiencies for inferring
hyperparameters in BayesA based on alternative
algorithms

Computing efficiency2 by algorithm

Parameter Density1 DFMH UNIMH BIVMH

s2 0.17 0.065a 2,3 0.32b 0.37b

0.24 0.014a 0.058b 0.063c

0.32 0.0015a 0.0056b 0.0043b

ν 0.17 0.08a 0.42b 0.47b

0.24 0.016a 0.064b 0.069b

0.32 0.00088a 0.0035b 0.0026c

1Based on average r2 between adjacent markers; 2computing efficiency
measured as effective sample size divided by total CPU time in seconds; 3any
two medians not sharing the same letter within the same row are concluded
to be different from each other based on a Wilcoxon rank sum test (P<0.05).
UNIMH had higher ESS/CPU than BIVMH (P < 0.05),
whereas for s2 at the medium marker density (r2 = 0.24),
median ESS/CPU was higher for BIVMH than UNIMH
(P < 0.05). Interestingly, the ratios of computing efficien-
cies for both hyperparameters between UNIMH and
BIVMH with DFMH hovered between 3 and 6 across
marker densities. Efficiencies for the three alternative sam-
pling strategies were also compared under the BayesB
model for v, s2, and π (Table 2). Again, we found that
UNIMH and BIVMH had significantly greater computing
efficiencies compared to DFMH for all three hyperpara-
meters (P < 0.05), with values several times greater for v
and s2, whereas the computing efficiency advantage was
somewhat less pronounced for π.
We were interested in determining whether the accuracy

of GEBV depends on misspecification of hyperparameters,
say, s2. We assessed the impact on accuracy of GEBV based
on setting s2 equal to a wide range of multiples (0.01× to
100×) of the average posterior mean (�s2med = 7×10−4 for
BayesA, �s2med = 4×10−2 for BayesB) across the 15 replicates
under the medium marker density. For BayesA (Figure 1),
we found no significant difference in accuracies when s2

was understated (i.e., s2 = 0.1 �s2med and s2 = 0.01 �s2med );
however, GEBV accuracies were significantly compro-
mised when s2 was overstated, particularly at s2 = 100 �s2med

(P < 0.0001). For BayesB (Figure 2), we did not see any
significant differences in accuracy of prediction between
any of the various misspecifications of s2.
Another question is whether some of the non-significant

accuracy differences in these comparisons could be
partly attributed to compensation in the inferences on
other hyperparameters, specifically v and, additionally
for BayesB, π. Indeed we noted that, as the specification
Computing efficiency2 by algorithm

Parameter Density1 DFMH UNIMH BIVMH

s2 0.17 0.080a 2,3 0.44b 0.50c

0.24 0.033a 0.14b 0.15b

0.32 0.0084a 0.032b 0.030c

ν 0.17 0.16a 1.10b 1.08b

0.24 0.11a 0.85b 0.74b

0.32 0.029a 0.42b 0.29b

π 0.17 0.12a 0.3b 0.29b

0.24 0.029a 0.068b 0.071b

0.32 0.0033a 0.0057b 0.0043c

1Based on average r2 between adjacent markers; 2computing efficiency
measured as effective sample size divided by total CPU time in seconds; 3any
two medians not sharing the same letter within the same row are concluded
to be different from each other based on a Wilcoxon rank sum test (P<0.05).



Figure 1 Boxplots of breeding value accuracies under a BayesA model with s2 set equal to different orders of magnitude. s2 is set to
various multiples (0.01, 0.1, 1, 10 and 100) of its average posterior mean (�s2med = 7x10−4) as estimated from 15 replicates at an intermediate level
of LD (adjacent pairwise r2 = 0.24); accuracies provided in the figure are based on those same 15 replicates; significant differences in accuracies
from that based on 1 �s2med are indicated by *(P < 0.01) or *** (P < 0.0001).
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on s2 increased from 0.01 �s2med to 100 �s2med , the posterior
means of v also increased under both BayesA (Figure 3)
and BayesB (Figure 4), as somewhat anticipated given
the high posterior correlation between these two hyper-
parameters. Misspecification of s2 also impacted estimates
of π in a BayesB analysis, as illustrated in Figure 5. Never-
theless, this feature also provided BayesB with more flexi-
bility than BayesA, as it pertains to misspecification of s2;
that is, overstated values of s2 merely distribute the num-

ber of non-zero gj
n om

j¼1
over a smaller number of markers,

as indicated by lower estimates of π.
Figure 2 Boxplots of breeding value accuracies under a BayesB mode
various multiples (0.01, 0.1, 1, 10 and 100) of its average posterior mean (�s2m
LD (adjacent pairwise r2 = 0.24); accuracies provided in the figure are based
We also wondered if estimates of s2 based on analysis
of certain marker densities could be extrapolated to
other marker densities for analysis of the same pheno-
types. Recall that �s2med = 7×10−4 for BayesA, �s2med = 4×10−2

for BayesB with the medium-density panel (r2 = 0.24).
For the high-density panel that included four times as
many markers, we specified s2 = 0.25 �s2med , whereas for
the low-density panel, which contained only about 40%
as many markers, we specified s2 = 2.5 �s2med . We found no
significant differences in accuracies of prediction in any
case (see Figures 6 and 7), except for a significantly lower
l with s2 set equal to different orders of magnitude. s2 is set to

ed = 4x10−2) as estimated from 15 replicates at an intermediate level of
on the same 15 replicates.



Figure 3 Boxplots of posterior means and medians for v under the BayesA model with s2 set equal to different orders of magnitude.
s2 is set to various multiples (0.01, 0.1, 1, 10 and 100) of its average posterior mean (�s2med = 7x10−4) as estimated from 15 replicates at an
intermediate level of LD (adjacent pairwise r2 = 0.24); estimates provided in the figure are based on the same 15 replicates.
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accuracy for extrapolation on s2 at the higher marker
density using BayesA (P = 0.04).

Application to heterogeneous stock mice data
We summarize posterior inferences for the key hyperpara-
meters under BayesA and BayesB analyses of the heteroge-
neous stock mice data in Tables 3, 4 and 5 for the three
marker densities of 950, 1900 and 3800 SNPs, respectively.
A fuller visual assessment of the posterior densities for each
of these marker densities is provided in [See Additional
file 2 Figure S6] for s2, in [See Additional file 2: Figure S7]
for v, and for π in [See Additional file 2: Figure S8], which
indicate general agreement between the three computing
strategies, albeit there was seemingly a slight discrepancy
Figure 4 Boxplots of posterior means and medians for ν under the Ba
s2 is set to various multiples (0.01, 0.1, 1, 10 and 100) of its average posterio
intermediate level of LD (adjacent pairwise r2 = 0.24); estimates provided in
for v between DFMH versus UNIMH and BIVMH under
a BayesB model. Using the 950-SNP panel, the ESS/CPU
for s2 was up to 3 times greater using UNIMH and
BIVMH compared to DFMH, whereas the ESS/CPU
for v was up to 50 times greater in UNIMH and
BIVMH compared to DFMH. In other words, UNIMH
and BIVMH had greater computing efficiency. For the
1900-SNP panel (Table 4), the ESS/CPU for UNIMH
and BIVMH compared to DFMH were up to 80 times
greater for v and up to 10 times greater for s2, with ad-
vantages for v being particularly noticeable for BayesB
implementations. For the 3800-SNP panel (Table 5),
the respective ESS/CPU ratios were up to 80 times for
v and up to 8 times greater for s2.
yesB model with s2 set equal to different orders of magnitude.
r mean (�s2med = 4x10−2) as estimated from 15 replicates at an
the figure are based on the same 15 replicates.



Figure 5 Boxplots of posterior means and medians for π under the BayesB model with s2 set equal to different orders of magnitude.
s2 is set to various multiples (0.01, 0.1, 1, 10 and 100) of its average posterior mean (�s2med = 4x10−2) as estimated from 15 replicates at an
intermediate level of LD (adjacent pairwise r2 = 0.24); estimates provided in the figure are based on the same 15 replicates.
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In all cases, it should be noted that the posterior me-
dians were generally in better agreement between algo-
rithms than were the posterior means, especially for v.
Furthermore, the posterior means were substantially
higher than the corresponding medians, again especially
for v and, in particular, for DFMH analyses based on
3800 markers (Table 5). That is, DFMH sampling for v
periodically wandered off to extremely high values for a
sustained number of cycles before revisiting more
Figure 6 Boxplots of breeding value accuracies under a BayesA
model with s2 either estimated or extrapolated from a different
marker density. Accuracies based upon 15 replicates at high and
low levels of LD (pairwise LD r2 = 0.32 and 0.17). Dark grey boxplots
pertain to BayesA inferring upon both v and s2; extrapolations for s2

based on average posterior mean (�s2med = 7x10−4) estimated from
15 replicates at a medium level of LD (pairwise LD r2 = 0.24)
determined to be �s2med/4 for a high level of LD (light grey boxplot)
and �s2med*2.5 for a low level of LD (white boxplot) while estimating ν;
accuracies provided in the figure are based on the same 15
replicates at the respective LD levels and are judged different from
each other based on *(P < 0.05).
typical values (i.e. near the posterior median) during the
MCMC chain; in order words, the MCMC chain mixed
very poorly for DFMH.
Pairwise scatterplots of posterior means of SNP effects

and GEBV between the three computing strategies are
also provided in Additional file 2, with BayesA posterior
mean scatterplots of SNP effects provided in Figure S9
[See Additional file 2: Figure S9], BayesB posterior
mean scatterplots of SNP effects provided in Figure S10
[See Additional file 2: Figure S10], BayesA posterior mean
Figure 7 Boxplots of breeding value accuracies under a BayesB
model with s2 either estimated or extrapolated from a different
marker density. Accuracies based upon 15 replicates at high and
low levels of LD (pairwise LD r2 = 0.32 and 0.17). Dark grey boxplots
pertain to BayesB inferring upon π, v and s2; extrapolations for s2

based on average posterior mean (�s2med = 4x10−2) estimated from 15
replicates at medium LD level (pairwise LD r2 = 0.24) determined to
be �s2med/4 for high LD level (light grey boxplot) and �s2med*2.5 for low
LD level (white boxplot) while estimating π and v, accuracies
depicted in the figure are based on those same 15 replicates at the
respective LD levels.



Table 3 Estimates of key parameters based on BayesA and BayesB analyses of the heterogeneous stock mice dataset
(950 SNP markers)

DFMH UNIMH BIVMH

Parameter PMEAN1 PMED2 ESS/CPU3 PMEAN PMED ESS/CPU PMEAN PMED ESS/CPU

BayesA

μ 9.44E-03 9.46E-03 0.013 9.94E-03 9.88E-03 0.011 9.42E-03 9.21E-03 0.007

σ2e 5.16E-04 3.99E-04 0.004 4.96E-04 3.68E-04 0.004 4.82E-04 3.50E-04 0.003

σ2c 4.18E-03 4.16E-03 0.046 4.20E-03 4.18E-03 0.040 4.18E-03 4.16E-03 0.034

σ2u 7.77-03 7.87E-03 0.005 7.73E-03 7.92E-03 0.004 7.78E-03 7.96E-03 0.004

v 20.47 7.16 0.008 46.60 7.52 0.375 37.37 7.34 0.096

s2 2.80E-06 2.76E-06 0.004 2.84E-06 2.81E-06 0.014 2.79E-06 2.75E-06 0.011

BayesB

μ 9.94E-03 1.02E-02 0.010 8.87E-03 8.63E-03 0.010 9.65E-03 9.70E-03 0.009

σ2e 4.50E-04 3.14E-04 0.004 4.42E-04 2.81E-04 0.003 5.25E-04 4.11E-04 0.003

σ2c 4.20E-03 4.18E-03 0.003 4.20E-03 4.18E-03 0.040 4.20E-03 4.18E-03 0.040

σ2u 7.95E-03 8.14E-03 0.005 7.98E-03 8.20E-03 0.004 7.82E-03 7.98E-03 0.004

v 74.89 10.26 0.018 60.28 8.59 0.588 81.18 9.02 0.560

s2 1.22E-05 10.4E-05 0.007 1.21E-05 1.07E-05 0.014 1.24E-05 1.08E-05 0.013

π 0.27 0.25 0.007 0.26 0.24 0.009 0.26 0.24 0.009
1Posterior means; 2posterior medians; 3effective sample size divided by total CPU time in seconds using one of three computing strategies (DFMH, UNIMH, or
BIVMH) based on 80 000 MCMC cycles.
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scatterplots of GEBV provided in Figure S11 [See
Additional file 2 Figure S11], and BayesB posterior
mean scatterplots of GEBV provided in Figure S12 [See
Additional file 2 Figure S12]. These scatterplots indicate
that inferences on SNP effects and GEBV were not in-
fluenced by the three computing strategies.
Table 4 Estimates of key parameters based on BayesA and Ba
(1900 SNP markers)

DFMH UNIMH

Parameter PMEAN1 PMED2 ESS/CPU3 PMEAN

BayesA

μ 8.94E-03 8.93E-03 0.009 9.55E-03

σ2e 5.43E-04 4.17E-04 0.003 5.04E-04

σ2c 4.18E-03 4.17E-03 0.035 4.18E-03

σ2u 7.37E-03 7.55E-03 0.004 7.41E-03

v 18.62 6.31 0.003 54.52

s2 1.63E-06 1.62E-06 0.002 1.70E-06

BayesB

μ 9.17E-03 9.17E-03 0.013 9.24E-03

σ2e 6.02E-04 5.00E-04 0.003 6.14E-04

σ2c 4.20E-03 4.18E-03 0.047 4.20E-03

σ2u 7.35E-03 7.51E-03 0.004 7.33E-03

v 44.67 10.51 0.011 68.09

s2 8.84E-06 7.66E-06 0.003 8.47E-06

π 0.24 0.23 0.004 0.24
1Posterior means; 2posterior medians; 3effective sample size divided by total CPU ti
BIVMH) based on 80 000 MCMC cycles.
Discussion
Most researchers have not inferred key hyperparameters
(i.e., v, s2 and π) that partly characterize the genetic
architecture and/or marker LD or densities in BayesA or
BayesB WGP models. This default action may be in part
due to the high posterior correlation that exists between
yesB analyses of the heterogeneous stock mice dataset

BIVMH

PMED ESS/CPU PMEAN PMED ESS/CPU

9.60E-03 0.011 9.37E-03 9.33E-03 0.023

3.63E-04 0.003 6.31E-04 5.39E-04 0.007

4.16E-03 0.034 4.20E-03 4.18E-03 0.109

7.63E-03 0.004 7.19E-03 7.32E-03 0.009

6.34 0.116 36.74 6.06 0.074

1.65E-06 0.008 1.64E-06 1.61E-06 0.020

9.29E-03 0.026 9.21E-03 9.18E-03 0.029

5.15E-04 0.006 6.46E-04 5.50E-04 0.007

4.18E-03 0.082 4.20E-03 4.18E-03 0.108

7.47E-03 0.008 7.27E-03 7.42E-03 0.008

8.26 0.883 517.85 8.68 0.620

7.32E-06 0.021 8.95E-06 7.83E-06 0.024

0.23 0.017 0.24 0.22 0.013

me in seconds using one of three computing strategies (DFMH, UNIMH, or



Table 5 Estimates of key parameters based on BayesA and BayesB analyses of the heterogeneous stock mice dataset
(3800 SNP markers)

DFMH UNIMH BIVMH

Parameter PMEAN1 PMED2 ESS/CPU3 PMEAN PMED ESS/CPU PMEAN PMED ESS/CPU

BayesA

μ 8.96E-03 8.88E-03 0.008 9.43E-03 9.38E-03 0.020 8.93E-03 8.89E-03 0.023

σ2e 5.43E-04 4.27E-04 0.003 6.40E-04 5.53E-04 0.006 6.47E-04 5.63E-04 0.006

σ2c 4.23E-03 4.21E-03 0.029 4.26E-03 4.23E-03 0.053 4.25E-03 4.23E-03 0.088

σ2u 7.06E-03 7.25E-03 0.004 6.89E-03 7.03E-03 0.006 6.87E-03 7.00E-03 0.007

v 3.16 2.81 0.001 3.48 2.76 0.079 3.35 2.74 0.023

s2 4.63E-07 4.38E-07 0.002 4.38E-07 4.12E-07 0.011 4.40E-07 4.11E-07 0.017

BayesB

μ 9.19E-03 9.32E-03 0.008 9.07E-03 9.13E-03 0.007 8.86E-03 8.83E-03 0.018

σ2e 5.85E-04 4.77E-04 0.003 5.68E-04 4.52E-04 0.002 5.99E-04 5.01E-04 0.006

σ2c 4.23E-03 4.21E-03 0.045 4.23E-03 4.21E-03 0.035 4.23E-03 4.21E-03 0.062

σ2u 7.08E-03 7.23E-03 0.004 7.12E-03 7.30E-03 0.003 7.06E-03 7.22E-03 0.006

v 5081.90 3.76 0.002 7.72 3.63 0.412 5.22 3.55 0.209

s2 4.87E-06 3.55E-06 0.002 5.38E-06 3.68E-06 0.004 4.98E-06 3.59E-06 0.011

π 1.99E-01 1.82E-01 0.003 1.89E-01 1.72E-01 0.004 1.93E-01 1.71E-01 0.008
1Posterior means; 2posterior medians; 3effective sample size divided by total CPU time in seconds using one of three computing strategies (DFMH, UNIMH, or
BIVMH) based on 80 000 MCMC cycles.
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some of these hyperparameters, in particular, v and s2

[6,8]. Nevertheless, recently some researchers [28-30]
have succeeded in using techniques previously presented
by Yi and Xu [9] and Yang and Tempelman [3] to infer
these hyperparameters in a fully Bayesian analysis; their
strategies closely align with the DFMH approach that we
describe in this paper.
Gianola [31] and Lehermeier et al. [32] have recently

provided dire warnings about the arbitrary specification
of these hyperparameters in parametric Bayesian WGP
models such as BayesA and BayesB. Gianola [31] provided
convincing analytical arguments on the large influence of
the priors and the corresponding hyperparameter specifi-
cations in such models, whereas Lehermeier et al. [32]
demonstrated with empirical results that arbitrary specifi-
cation of hyperparameters can adversely impact inferences
on SNP effects. In fact, they demonstrated that misspecifi-
cation of s2 can lead to degradation in genomic prediction
accuracy that seemed substantially greater than what we
observed in our simulation study. However, it should be
quickly noted that we inferred upon the remaining hyper-
parameters, whereas Lehermeier et al. [32] arbitrarily fixed
v = 4 in BayesA and BayesB and π = 0.8 in BayesB. Hence,
their analysis provided far less flexibility when s2 was mis-
specified than our analyses, since our inferences on v and/
or π partly compensated for that misspecification. It seems
practical and reasonable in some cases (e.g. in larger scale
analyses) to infer either v or s2 but not necessarily both,
given this compensation effect, in conjunction with the
high degree of posterior correlation between the two
hyperparameters. Note, for example, that the BayesD-π
model strategy of Habier et al. [8], in which v is fixed
while inferring upon s2 and π, might not be greatly dif-
ferent in its effect from fixing s2 and inferring upon v
and π, as we did in our misspecification study. Our re-
sults are consistent with our previous work [3], in which
more detailed explanations are provided; for example,
estimates of s2 are expected to be larger with BayesB
than with BayesA models since genetic variability is dis-
tributed over fewer SNPs in BayesB if π < < 1; for similar
reasons, one would also expect smaller estimates of s2 in
higher density SNP panels.
We considered two alternative sampling strategies to

DFMH, each involving the use of MH, in an attempt to
improve the computational efficiency of WGP analyses,
as measured by the ratio ESS/CPU. Using simulation stud-
ies and empirical data analyses, we demonstrated that
strategies that are more heavily based on MH and/or col-
lapsed sampling had better computing efficiencies than
the DFMH procedure first advocated by Yi and Xu [9].
Simple modifications such as sampling s2 with a MH on a
collapsed FCD, or joint sampling of s2 and v with a bivari-
ate MH step (BIVMH), lead to substantial improvements
in ESS/CPU compared to the more common strategy
based on a Gibbs step for s2 (UNIMH). We concede that
our investigation is not exhaustive with respect to asses-
sing all possible strategies to improve computing efficiency
in these models; in fact, a hybrid approach may exist that
combines some or all of the three presented sampling
strategies that might be even computationally more
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efficient. Deviations of MH sampling such as Langevin-
Hastings could also have been explored and assessed here,
although its advantage relative to MH sampling has not
been too convincing in other animal breeding models
[11,12]. In work that we do not report here, we attempted
to base the covariance matrix for the proposal density in
BIVMH on the negative Hessian of the joint FCD of log
(v) and log (s2). However, we determined that this matrix
is positive definite generally only when v < 50, thereby
negating its use in this way. Recently, non-MCMC
(i.e. expectation-maximization) schemes have been
increasingly popular. However, it is often not straightfor-
ward to estimate key hyperparameters in these implemen-
tations [5]. In any case, we encourage further development
and work in this area, including the Bayesian LASSO
model [33].
We also examined the components of computing effi-

ciency; i.e., ESS and CPU/cycle in seconds separately for
each parameter in both models and under all three
strategies (results not reported). As anticipated, DFMH
was computationally less expensive in terms of CPU/
cycle compared to the proposed strategies UNIMH and
BIVMH; however, the ESS were such that the values for
UNIMH and BIVMH generally far exceeded those for
DFMH for the same number of MCMC cycles. What
was particularly worrying was how quickly the ESS/
CPU measures degraded with increasing marker dens-
ities, which suggests that higher density panels, without
concomitant increases in sample size, lead to analyses
that require not only greater CPU/cycle but also a
greater number of MCMC cycles to ensure that ESS
values are sufficiently large to ensure reliable posterior
inference on these hyperparameters.
We investigated the impact of these different computing

strategies on GEBV and SNP effects gj , as well as on fixed
effects (in our case the overall mean μ). In the simulation
study and in the mouse data analysis, we saved all MCMC
samples from three randomly chosen gj , three randomly

chosen
Xm
j¼1

zijgj (i.e., GEBV), and μ. In the simulation study,

the ESS/CPU for each of these parameters always
exceeded 1 for BayesA and 0.95 for BayesB, which was a
substantially larger value than any of those for the hyper-
parameters reported in Tables 1 and 2. In the data applica-
tion, we found that ESS/CPU was always several times
greater for these same parameters relative to the poorest
mixing parameters (i.e. σ2u and σ2

e) in Tables 3, 4 and 5, with
advantages increasing with the use of UNIMH and BIVMH
and with higher marker densities (results not shown). We
also observed that the allele coding strategies of Stranden
and Christensen [14] were essential to ensure that these
computing efficiencies for GEBV, gj and μ were substantially
larger compared to analyses for which these allele coding
strategies were not implemented (results not shown).
The joint posterior density was the same for all three
algorithms; this was readily established in the simulation
study but was less clear in our analysis of mice weights,
where the data structure and statistical model were con-
siderably more complex. In that situation, we noted that
DFMH was particularly unstable for MCMC inference
on v, partly because MCMC draws of v often got stuck
in high values, yet rather low probability areas of the
posterior density. This situation thereby rendered infer-
ences on v that were less reliable than with UNIMH and
BIVMH, which facilitated good mixing throughout the
joint posterior density. Since UNIMH and BIVMH are
not consistently better or worse than each other in terms
of computing efficiency, we recommend the use of UNIMH
for its greater simplicity of implementation.
Over-specifying s2 appeared to have particularly deleteri-

ous effects on accuracy of genomic prediction in BayesA
models, although no such effect was observed in BayesB
models, which is likely due to the counteracting influence
of π. This may be a key reason why we did not observe
any differences in accuracies of GEBV in BayesB between
various specifications of s2 in Figure 2. This greater ro-
bustness of BayesB to misspecification of hyperparameters
could then be one reason why BayesB often outperforms
BayesA in some previous reports. Note from the prior spe-

cification on σ2gj

n om

j¼1
that E σ2

gj
σ2gj > 0Þ ¼ νs2

ν−2 ; ν > 2
����

;

that is, the average values of the draws of σ2gj

n om

j¼1
within

any one MCMC cycle will be somewhat constrained by

the quantity νs2
ν−2 , which is not expected to be highly vari-

able across MCMC cycles. So if s2 is understated, the esti-
mate of v should decrease accordingly to compensate, so
that there is a good deal of flexibility in maintaining a nar-

row range in νs2
ν−2. However, if s2 is overstated, then there is

very little flexibility to accordingly bring down νs2
ν−2 , even

with extremely large values of v , since νs2
ν−2 can never be

less than s2. We hypothesize that this is the reason why
understating the value of s2 is less serious than overstating
it, at least for BayesA, as further indicated by our results,
provided that the other hyperparameter v is inferred upon.
Furthermore, specifying a very large value for s2 could
create overfitting problems.
Our work on misspecification of one hyperparameter

(s2) is strongly linked to the other hyperparameters (v and/
or π) being inferred upon. However, all three hyperpara-
meters are often arbitrarily specified in most BayesA or
BayesB analyses. We also determined that it may be reason-
able to consider specifying values for s2 for one marker
density based on a previous estimate from another marker
density by taking into account the inverse relationship
between s2 and marker density. This might be particularly
appealing, given that MCMC mixing tends to be substantially
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faster and to better behave for low-density panels. Hence,
a reasonable strategy might be to use such analyses to ex-
trapolate s2 specifications for higher densities, where the
MCMC mixing behavior of s2 might tend to be more
problematic. Or, at the very least, one could base an in-
formative prior density for s2 based on an extrapolation
from the use of a lower density panel. Perez and de los
Campos [7] also discussed other strategies to specify or
infer upon these hyperparameters. An even more ideal situ-
ation might be to base prior densities on posterior densities
based on previous analyses of other data, since informative
prior densities also facilitate better MCMC mixing.
Our simulation study and empirical study admittedly

seem rather small compared to more typical analyses
based on tens or even hundreds of thousands of SNPs.
For example, our simulation study was based on the use
of an average of m = 239, 598 and 2394 SNPs on a single
1 M chromosome on n = 1000 animals. Meuwissen and
Goddard [34] demonstrated that this inferential situation
should not be different from analyses based on a genome
of, say, 30 chromosomes 1 M long, if all of the other
specifications (number of SNPs and number of pheno-
types) are scaled (i.e., by 30×) accordingly. In other
words, our inferences should also characterize a situ-
ation where there are n = 30 000 animals with genotypes
based on an average of m = 7170 (239×30), 17 950
(598×30) or 71 820 (2394×30) SNPs for low, medium,
and high densities on a 30 M genome. Although the ESS
should also be roughly the same between these two sce-
narios, ESS/CPU would be expected to be substantially
smaller in the larger scale analyses because of larger m
and n; however, this needs to be tested more extensively.
We noted that estimates of v progressively decreased

with increasing marker densities, whether in the simula-
tion study or within the data application. While we did
not specifically investigate the effect of misspecification
of v per se, we recognize that work has been indirectly
extensively addressed in the context of BayesA (finite v)
versus GBLUP (v → ∞ ) comparisons [35-38]. In fact,
Nadaf et al. [37] demonstrated that estimated values of v
close to 1 can lead to a greater GEBV accuracy com-
pared to default specifications (4 ≤ v ≤ 5) that are typic-
ally applied in BayesA or BayesB analyses [1,7,8,32]. We
suspect that the advantages of estimating v as opposed
to setting v to an arbitrary value would be context-specific,
as shown with s2; nevertheless, we also anticipate that
misspecification of v would not have such dramatic con-
sequences given the smaller differences in performance
often seen between BayesA and GBLUP models.
At any rate, we provide evidence that these hyper-

parameters should not be arbitrarily specified in BayesA
or BayesB models. We anticipate that these issues are
also relevant to determine tuning parameters for various
nonparametric approaches as well. However, we realize
that the computational challenges may be huge for panels
with marker densities that far exceed those that we con-
sidered in this paper. At the very least, some hyperpara-
meters should be specified based on simple methods of
moments-like (i.e. heritability-based) determinations [6,7]
or other approximations; for example, s2 in BayesA should
not be much different in magnitude from the variance
component for SNP effects in a GBLUP [1] analysis;
hence, a REML-like estimator could be used to provide
a reasonable specification. If this is deemed to be com-
putationally intractable relative to the marker density,
then extrapolations based on analyses based on lower
marker densities might be pursued, similar to those pre-
sented in this paper.

Conclusions
In hierarchical Bayesian WGP models such as BayesA
and BayesB, jointly drawing the degrees of freedom v
and scale parameter s2 and using collapsed representations
of FCD can improve MCMC efficiency for inference on all
hyperparameters. Even separate univariate Metropolis-
Hastings draws on v and s2 are substantially more effi-
cient than using Gibbs sampling of s2. Overspecification
rather than underspecification of the key hyperpara-
meter s2 can adversely affect accuracy of GEBV under a
BayesA model, even when v is estimated. Conversely,
the BayesB model is more robust to misspecification of
s2 provided that inference on π, the probability of asso-
ciation, and v are also inferred upon.
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