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Genetic evaluation with major genes 
and polygenic inheritance when some animals 
are not genotyped using gene content 
multiple‑trait BLUP
Andrés Legarra1* and Zulma G. Vitezica2

Abstract 

Background:  In pedigreed populations with a major gene segregating for a quantitative trait, it is not clear how to 
use pedigree, genotype and phenotype information when some individuals are not genotyped. We propose to con-
sider gene content at the major gene as a second trait correlated to the quantitative trait, in a gene content multiple-
trait best linear unbiased prediction (GCMTBLUP) method.

Results:  The genetic covariance between the trait and gene content at the major gene is a function of the substitu-
tion effect of the gene. This genetic covariance can be written in a multiple-trait form that accommodates any pattern 
of missing values for either genotype or phenotype data. Effects of major gene alleles and the genetic covariance 
between genotype at the major gene and the phenotype can be estimated using standard EM-REML or Gibbs sam-
pling. Prediction of breeding values with genotypes at the major gene can use multiple-trait BLUP software. Major 
genes with more than two alleles can be considered by including negative covariances between gene contents at 
each different allele. We simulated two scenarios: a selected and an unselected trait with heritabilities of 0.05 and 0.5, 
respectively. In both cases, the major gene explained half the genetic variation. Competing methods used imputed 
gene contents derived by the method of Gengler et al. or by iterative peeling. Imputed gene contents, in contrast to 
GCMTBLUP, do not consider information on the quantitative trait for genotype prediction. GCMTBLUP gave unbiased 
estimates of the gene effect, in contrast to the other methods, with less bias and better or equal accuracy of predic-
tion. GCMTBLUP improved estimation of genotypes in non-genotyped individuals, in particular if these individuals 
had own phenotype records and the trait had a high heritability. Ignoring the major gene in genetic evaluation led to 
serious biases and decreased prediction accuracy.

Conclusions:  CGMTBLUP is the best linear predictor of additive genetic merit including pedigree, phenotype, and 
genotype information at major genes, since it considers missing genotypes. Simulations confirm that it is a simple, 
efficient and theoretically sound method for genetic evaluation of traits influenced by polygenic inheritance and one 
or several major genes.
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License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Several major genes that influence quantitative traits in 
livestock species have been described, e.g. [1, 2]. Ignor-
ing major genes in genetic evaluation affects estimation 

of breeding values [3]. Ideally, genes should be included 
as covariates in genetic evaluation models [4] but this 
is feasible only if all individuals are genotyped. If not all 
individuals are genotyped, there is no straightforward 
method to include observed genotypes at these genes 
in the genetic evaluation. The proposed methods are 
incomplete, impractical, and resort to approximations 
[5, 6], and sometimes focus more on estimation of gene 
effects rather than on genetic evaluation [6]. Algorithms 
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of estimation that consider the joint distribution of 
genotypes at the major gene, polygenic components, 
and phenotypes include peeling and the Gibbs sampler. 
Exact peeling is unfeasible with animal pedigrees and 
approximations using iterative peeling [7] are inaccurate 
or even biased [8, 9], whereas use of the Gibbs sampler 
[10] is slow and its irreducibility is rarely guaranteed [11]. 
Alternatively, Gengler et  al. [12, 13] suggested a practi-
cal method that considers gene content (the number 
of copies of a given allele carried by each individual) at 
a gene (or marker) as a quantitative trait and treats it 
within a best linear unbiased prediction (BLUP) frame-
work. This approach allows estimation of gene content of 
ungenotyped individuals and its use as true genotype for 
genetic prediction. More recently, the idea of using gene 
content as a quantitative trait was taken up by Forneris 
et al. [14] for quality control of genotypes. However, if the 
major gene (e.g. DGAT1) has an effect on a quantitative 
trait recorded for genetic evaluation (e.g. fat content), it 
would make sense to analyze both “traits”, i.e. gene con-
tent at the major gene and the related quantitative trait, 
simultaneously as correlated traits. In this work, we show 
that the genetic correlation between a quantitative trait 
and gene content at a gene is a function of the effect of 
the gene on the trait. Furthermore, joint analysis within 
a BLUP framework results in an estimation method that 
is (1) computationally efficient, (2) theoretically sound 
(it is best, linear and unbiased in a classical sense) and 
therefore provides unbiased estimates of gene effects, 
and (3) uses information on the quantitative trait to infer 
the genotype at the gene for non-genotyped individuals. 
These features are absent in current procedures. Thus, we 
propose an integrated procedure for genetic evaluation of 
a complex trait (partially) controlled by a major gene and 
missing genotypes.

Methods
Theory
Gene content as a quantitative trait
Gene content (z) at a gene is the number of copies of a 
particular reference allele (e.g. z = 0, 1 or 2 for AA, AB 
and BB, respectively) [15]. It can be considered as a 
quantitative trait, with the mean in the base population 
equal to 2p (p is the allele frequency in the base popu-
lation) and variance equal to 2pq where q = 1− p. The 
covariance between gene contents at the major gene 
for two individuals is Cov(zi, zj) = Aij2pq [[16], Equa-
tion  (8)], where Aij is the additive relationship between 
individuals i and j. This leads naturally to the con-
struction of linear estimators of genotypes [13, 17], 
estimation of base population allele frequencies [18] 
and quality control checks [14]. For all these cases, 
a linear model of the form z = Xzbz +Wzuz + ez is  

used, where Xz is typically a column of 1s for a gen-
eral mean, bz = 2p (although multiple base popu-
lations can be considered as well), uz includes 
genetic values for gene content (Cov(uz) = A2pq)  
expressed as the deviation of each individual from the 
base population mean, Wz is an incidence matrix for gen-
otyped individuals, and ez is a vector of error terms that 
should be equal to 0 but, in practice, σ 2

ez
 in Var(ez) = Iσ 2

ez
 

is assigned a very small value, which allows some geno-
typing errors and the use of mixed model equations for 
estimation.

Covariance between gene content at the major gene  
and the quantitative trait
Imagine that the gene coded in z as {0, 1, 2} has an effect 
on the trait, such as {0, α, 2α} [α can be understood as a 
substitution effect, possibly including non-additive gene 
action; for instance, if dominance exists, the substitution 
effect is α = a+ d(q − p) where a is half the distance 
between the two genotypic values of the homozygous 
individuals and d the genotypic value of the heterozygote 
[15]]. We will assume the substitution effect to be con-
stant across generations, which holds if there is no inter-
action with the environment, if the gene is the true causal 
variant, and if allelic frequencies do not change. Consider 
a vector of phenotypes for the quantitative trait y deter-
mined partly by additive genetic effects uy. The additive 
genetic effects can be decomposed as:

i.e. decomposed in a polygenic component ε and a com-
ponent due to the effect of the major gene, u∗y = uzα 
(because the heritability of gene content is 1, uz is sim-
ply z minus its average). For instance, for four individu-
als that have genotypes {AA, AB, AA, BB} with a base 
population allele frequency of 0.5, the decomposition of 
the total additive genetic value would be:

The polygenic component ε is assumed to follow a 
multivariate normal distribution with mean zero and 
Var(ε) = Aσ 2

ε .
The genetic variance of gene content is σ 2

uz
= 2pq . 

The genetic variance of u∗y (the genetic variance 
of the quantitative trait y explained by the gene) 
is σ 2

u∗y
= 2pqα2 as expected, and the total addi-

tive genetic variance is σ 2
uy

= σ 2
ε + 2pqα2 . Accord-

ingly, Var(u∗y ) = A2pqα2. Thus, Var(uy) =  
Var(ε + u

∗

y ) = Aσ 2
ε + A2pqα2

= A(σ 2
ε + 2pqα2) = Aσ 2

uy
 . 

We assume that, in the base population, there is no 

uy = ε + u∗y = ε + zα − E(z)α = ε + uzα,




uy1
uy2
uy3
uy4


 =




ε1
ε2
ε3
ε4


+




u∗y1
u∗y2
u∗y3
u∗y4


 =




ε1
ε2
ε3
ε4


+




−1
0
−1
1


α.
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correlation between the gene content and the poly-
genic background [Cov(ε, z) = 0]. For the same reason, 
the genetic covariance between the two traits (quan-
titative trait y and gene content z) in the base popula-
tion is σuz,y = Cov(uy,uz) = Cov(u∗y ,uz) = Cov(uzα,uz)  
= Var(uz)α = 2pqα . Thus, the genetic covariance 
between gene content at a gene and a quantitative trait is 
simply the heterozygosity at the gene times the substitu-
tion effect of the gene on the trait.

We can now write the matrix of covariances between 
breeding values for gene content, uz, and total breeding 
value for trait y, uy. This matrix of covariances is the sec-
ond moment of their joint distribution, which holds even 
if the distribution of z (and uz) is non-normal.

with

with inverse

This enables a multiple-trait evaluation using the 
observed trait phenotypes and the observed genotypes 
to be performed. Assuming a small residual variance 
for gene content, it is possible to use Henderson’s mixed 
model equations, which are for a simple case (no fixed 
effects, one record per individual) equal to:

where σ 2
ey is the residual variance of the observed trait 

phenotype and σ 2
ez the residual variance of the observed 

genotypes (typically a value very close to 0). This two-
trait model of y and z as phenotypes is another way of 
writing the “mixed models” that are used in association 
studies (EMMAX and related models [19, 20], which go 
back to [4]), in which the effect of the gene is fitted as a 
covariate. This model is:

where · · · implies other effects (e.g., sex, herd-year-season 
or permanent environment) and z contains the genotypes 

Cov

(
uy

uz

)
=

(
Aσ 2

uy
Aσuz,y

Aσuz,y Aσ 2
uz

)

=

(
A(σ 2

ε + 2pqα2) A2pqα
A2pqα A2pq

)
= G0 ⊗ A,

G0 =

(
σ 2
uy

σuz,y

σuz,y σ 2
uz

)
=

(
(σ 2

ε + 2pqα2) 2pqα
2pqα 2pq

)

G−1
0 =

(
σ 11 σ 12

σ 21 σ 22

)
=

(
1/σ 2

ε −α/σ 2
ε

−α/σ 2
ε

σ 2
ε +2pqα2

2pqσ 2
ε

)
.

(
Iσ−2

ey + A−1σ 11 A−1σ 12

A−1σ 21 A−1σ 22 + Iσ−2
ez

)(
ûy
ûz

)
=

(
yσ−2

ey

zσ−2
ez

)

y = · · · + zα + ε + e

for the locus considered. Our particular case consid-
ers that pedigrees are available and Var(ε) = Aσ 2

ε , using 
a kinship matrix from pedigree, as in [4]. Note that if z 
is observed, and because its heritability is equal to 1, it 
is irrelevant to consider that a priori it has a covariance 
matrix A2pq. A proof that our multiple-trait model as 
described above and the model in [4] are equivalent 
models is given in the “Appendix”.

Estimation of effects of a single gene when some  
genotypes are missing
However, implementing the model in [4] in which the 
effect of the gene is fitted as a covariate requires that 
all genotypes in z are observed. To remove this require-
ment, Gengler et al. [13] suggested using estimates of z in 
place of true values, although Christensen and Lund [17] 
remarked that this ignores uncertainty in the estimation 
of z and showed how to include this uncertainty in a sin-
gle-step procedure. In this paper, we suggest an extension 
of both these ideas.

The real interest of our proposed method is in the 
case of missing genotypes and/or phenotypes (e.g. bulls 
are genotyped and dairy cows have phenotypes for milk 
yield), a situation (several traits with missing records) 
that is frequent in animal breeding [21, 22] but has only 
been recently considered in human genetics [23]. In the 
case of missing records for either y, z, or both, the covari-
ance matrix of y and z can be rewritten as [22]:

where W =

(
Wy 0
0 Wz

)
 is an incidence matrix relating 

individuals to y and z (and which specifically keeps track 
of the missing observations) and R is a block-diagonal 
matrix that contains residual variances for y, for z, or for 
both, depending on the pattern of missingness of records. 
Note that if all z are observed, and because it has a her-
itability of 1, there is no uncertainty associated with z 
and the model is equivalent to the regression of Kennedy 
et al. [4]. Assuming normality for z, the covariance pre-
sented above also defines a likelihood function, i.e.:

This covariance structure is correct if missingness is 
ignorable in the sense of Rubin [24], that is, the pattern 
of missingness does not depend on specific values of y 
and z. For instance, when only sick animals are geno-
typed, the pattern of missingness is not ignorable and 
thus the above likelihood is not correct. Also, if only elite 
animals are genotyped, there will be a positive residual 

Cov

(
y
z

)
= W(G0 ⊗ A)W

′

+ R

p

(
y
z

∣∣∣G0,R,by,bz

)
≈ N

(
Xyby
Xzbz

,W(G0 ⊗ A)W
′

+ R

)
.
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covariance between phenotype for the trait and gene 
content.

If missingness can be ignored, any pattern of ignorable 
missingness of y and z can be considered and, thus, all 
individuals can be included in the analysis, regardless of 
whether they have observations only for the phenotype, 
only for the genotype, both, or none. The normal multi-
variate likelihood is an approximation as we assume nor-
mality for z. Using this framework, two different analyses 
can be performed.

Gene content multiple‑trait BLUP (GCMTBLUP)
The variance components in G0 can be constructed from 
estimates of the gene effect and its allele frequencies at 
the base population. Alternatively, they can be estimated 
from the analysis that we present in the next section 
(GCMTREML).

Assuming the variance components in G0 are known, a 
multiple-trait analysis can be run, where the first trait is y 
and the second trait is z. The model for y does not explic-
itly include the gene, which is included through genetic 
covariances of y with z. The model for z includes an over-
all mean (or several if there are several genetic origins) 
plus the additive breeding values uz. For instance:

with genetic covariance between traits as described 
above:

In addition, ey and ez are uncorrelated, and σ 2
ez

 must be 
set to a small but non zero value in order to use the mixed 
model equations. Based on these equations, GCMTB-
LUP can deal with any pattern of missing traits and be 
easily solved with existing software. Solutions (BLUP) of 
uy and uz contain estimates of the overall breeding value 
for trait y, which include the effect of the major gene, and 
estimates of the breeding value for z, that is, estimates 
of gene content. Estimates of the polygenic component 
of uy can be obtained as ε̂ = ûy − ûzα. Note that these 
solutions are obtained regardless of the missing data pat-
tern; thus, an individual with no genotype data but with 
phenotype data will benefit from own phenotype records 
and from the genotype and phenotype records of all its 
relatives. Accordingly, an individual with no phenotype 
record but with genotype data will be predicted based 
on the phenotypes of the relatives and its own geno-
type data. To date, there is no efficient method that can 
combine both sources of information with missing data. 

y = Xyby +Wyuy + ey

z = Xzbz +Wzuz + ez

G0 =

(
σ 2
uy

σuz,y

σuz,y σ 2
uz

)
=

( (
σ 2
ε + 2pqα2

)
2pqα

2pqα 2pq

)
.

Because the heritability of z is equal to 1, the genomic 
estimated breeding value of genotyped individuals is 
equal to z minus its base population average. The method 
can in principle be applied to as many genes and traits as 
needed, although complexity of the system of equations 
will grow up quadratically.

Gene content multiple‑trait REML (GCMTREML)
A simple way to estimate the substitution gene effect 
(α), its heterozygosity (2pq) and the polygenic vari-
ance not accounted for by the trait (σ 2

ε ) is to estimate 
the genetic covariance matrix G0. This estimation can 
typically be carried by multiple-trait restricted maxi-
mum likelihood (REML) [22, 25, 26]. REML is a con-
sistent estimator under normality, but also has good 
properties as a minimum-variance quadratic unbiased 
estimator (MIVQUE) under non normality [27]. Alter-
natively, a Bayesian estimator using a multiple-trait 
Gibbs sampler can be used.From the estimated covari-
ance matrix:

the estimate of the gene effect is α̂ = σ̂uz,y/σ̂
2
uz

. A confi-
dence interval for this estimate can be obtained by the 
delta method [28]. Because it is derived from the joint 
covariances of the trait and gene content, this estimate α̂ 
should provide unbiased estimates of the gene effect.

Significance of the gene effect can be tested by a likeli-
hood ratio test between this alternative model, for which 
σuz,y is estimated, and a null model in which σuz,y = 0 but 
in which all other variances are also estimated by REML. 
This test is asymptotically distributed as a Chi square 
with one degree of freedom since σuz,y is unbounded [28], 
contrary to the typical case in genetics where the vari-
ance component is bounded [29, 30].

This analysis also results in an estimate of the allele fre-
quency of the major gene in the base generation, from 
σ̂ 2
uz

= 2p̂(1− p̂). The allele frequency can also be esti-
mated from the overall mean of the model, b̂z = 2p̂. In 
practice, they are close but not exactly the same.

GCMTBLUP with a multiallelic gene
Consider a locus with multiple n alleles (1, 2 . . . n), with 
respective effects α1, . . . ,αn. In this case, the gene con-
tent of each allele can be considered as a “trait”, with 
value 0, 1 or 2 if the allele is not observed, observed once, 
or observed twice, respectively [16]. Thus, individuals 
with genotypes 11, 12, 33 would have gene contents z1, z2, 

z3 with values 




2
1
0


,




0
1
0


, and




0
0
2


, respectively.

Ĝ0 =

(
σ̂ 2
uy

σ̂uz,y

σ̂uz,y σ̂ 2
uz

)
=

(
(σ̂ 2

ε + 2̂pqα2) 2̂pqα

2̂pqα 2̂pq

)
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Obviously, these three pseudo-traits are correlated, 
because absence of alleles 1 and 2 implies that the geno-
type is 33. This corresponds to two times a multinomial 
distribution with parameters (p1, p2, . . . pn), the allele fre-
quencies, and the covariance matrix between gene con-
tents is singular and equal to:

Thus, inclusion of gene contents in the model to 
account for the different effects of each allele can be 
done by using a multiple-trait model that is similar to 
the model already described for a biallelic gene but 
including the quantitative trait y and n− 1 gene con-
tents z (one of the alleles at the gene is ignored to avoid 
redundancy). Therefore, a genetic covariance matrix 
of size n is estimated (of which the above matrix is a 
submatrix). The covariance matrix of n− 1 dimension 
generalizes the idea of Gengler et  al. [13] for biallelic 
loci to multiallelic loci. Gengler et al. [13] and Mulder 
et  al. [31] suggested fitting each allele separately but 
this ignores that presence of one allele impedes pres-
ence of another one. The use of genetic covariances 
among gene contents is more accurate. The effect of 
the ignored allele is absorbed into the overall mean of 
the model (and thus implicitly set to 0). The effect αi of 
the i-th allele is then estimated as α̂i = σ̂uzi ,y

/σ̂ 2
uzi

.

Major genes on sex chromosomes
Some major genes lie on the X chromosome, with males 
having one copy and females two copies; one example is 
the gene BMP15 [1]. In this case, the covariance of gene 
contents between two individuals does not follow regular 
relationships. However, the relationship matrix of X-chro-
mosomal inheritance [32] correctly describes the covari-
ances of gene contents on the X chromosome between 
two individuals and also the covariance between the 
quantitative trait y and the observed genotype z, and this 
relationship matrix can be easily used in the GCMTBLUP 
analysis.

Numerical example
Assume pedigree and phenotype as in Table 1. The two 
vectors of traits are y = (NA, 15, 7, NA, 12)′ (where NA 
codes for “missing”) and z = (1, NA, NA, 2, 0)′, where 
z is the number of B alleles. The respective incidence 
matrices are (for the general means):

Var




z1
z2
· · ·

zn


 = 2




p1q1 −p1p2 · · · −p1pn
−p2p1 p2q2 · · · −p2pn
· · · · · · · · · · · ·

−pnp1 −pnp2 · · · pnqn


.

and (for the breeding values):

Assume the residual covariances R0 =

(
0.95 0
0 0.001

)
 

and G0 =

(
0.05 0.11
0.11 0.5

)
, implying a quantitative trait 

with a heritability of 0.05 and half of the genetic vari-
ation explained by a single gene with an allele fre-
quency of 0.5. Note that heritability for gene content 
is equal to 0.05/(0.001+ 0.5) ≈ 0.998, which is not 
exactly 1, to allow the use of Henderson’s mixed model  
equations.

With these elements, the mixed model equations 
can be created. Assume that in the mixed model equa-
tions, traits are ordered within levels of effects, that is, 
mixed model equations contain A−1 ⊗G−1

0  instead of 
G−1
0 ⊗ A−1. The right hand side is:

For example, the two first values are scaled sums of phe-
notypes and genotypes. The following two values contain 
the phenotype and the genotype of animal 1; the next two 
for animal 2; and so on.

The left hand side is (truncated at two decimal places):

Xy =
(
0 1 1 0 1

)′
and Xz =

(
1 0 0 1 1

)′
,

Wy =




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1


,

and Wz =




1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1


.

(35.79, 3000, 0, 1000, 15.79, 0, 7.37,

0, 0, 2000, 12.63, 0)′.

Table 1  Example pedigree and data

Individual Father Mother Phenotype Genotype

1 0 0 Missing AB

2 0 0 15 Missing

3 1 2 7 Missing

4 1 2 Missing BB

5 1 2 12 AA
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Solutions to the equations are (11.42 1.05 −0.06 −0.05  
0.06 0.05 −0.11 −0.25 0.21 0.94 −0.22 −1.05 ). Note 
that 1.05 is the estimate of 2p and estimated breeding 
values for z for individuals 1, 4 and 5 are equal to −0.05, 
0.94 and −1.05, respectively, which summed to the mean 
of the trait give the observed genotypes 1, 2 and 0.

Simulations
Scenario with a major gene for a lowly heritable trait
Consider the following scenario with a major gene for a 
lowly heritable trait. This is loosely based on the example 
of prolificacy genes for sheep [1]. The rationale for this 
scenario is that a major gene is typically fixed by selec-
tion, unless selection is recent, not strong, or the trait has 
a low heritability. Therefore, to simulate a major gene that 
has undergone selection but not fixation (yet), we used 
QMSim [33] under a scenario similar to selection for lit-
ter size in sheep: heritability of 0.05, of which half (0.025) 
is due to the major gene and the rest is polygenic. Selec-
tion is based on progeny-testing for males (with 10 to 20 
daughters per male). Eleven generations with 2600 ani-
mals each were simulated, with 200 males acting as sires. 
The gene allele frequency at generation 0 was set to 0.5, 
resulting in an effect of α =

√
0.025/(2 · 0.52) = 0.226 in 

the base population for a phenotypic variance of 1. Phe-
notypes (for a continuous trait) were recorded for the 
first 10 generations, with animals in generation 11 used 
as candidates for selection. Only females were pheno-
typed and all 920 sires were genotyped. In addition, two 
scenarios were simulated for 1315 selection candidates 
from generation 11; they were considered as genotyped 
in one scenario but not in the other.

Genetic parameters of gene content and the phenotypic 
trait were estimated based on the GCMTREML method 
described previously using the EM-REML algorithm of 
remlf90 [34], and based on these variance component 
estimates, the effect of the gene was derived. Using these 
estimates, breeding values for the continuous trait and 
for gene content were obtained for all individuals using 
GCMTBLUP. The same process was repeated by setting 

to 0 the genetic covariance between the continuous trait 
and the gene content, which prevents observed genotypes 
from influencing estimation of breeding values and trait 
phenotypes from influencing the prediction of gene con-
tent. The simulation was repeated 10 times. A particular 
case that was also studied, which represents the upper 
bound of accuracy, is when all individuals are genotyped. 
Quality of prediction was assessed for the 1315 candidates 
to selection (generation 11) and for the 2800 females of 
generation 10, that had own phenotypes but no genotype 
data. We checked accuracy and bias [slope of the regres-
sion of true breeding values (TBV) on estimated breeding 
values (EBV)] for the quantitative trait and for the predic-
tion of gene content, i.e., of the genotype of the candidate 
(which may be useful, e.g., for planned matings).

In addition to joint analysis of all genotypes and phe-
notypes, we used two methods that first estimated gen-
otypes and then used the estimated genotypes as true 
genotypes fitted explicitly as a covariable [4]. We imple-
mented the method of Gengler et al. [13], in which gene 
content was predicted as a quantitative trait for ungeno-
typed animals based on observed genotypes for geno-
typed animals. The second method was “peeling” [35], 
which considers the joint distribution of all observed 
genotypes conditional on the pedigree and takes the 
discrete nature of alleles into account (i.e., homozygous 
parents can only transmit one allele). We used iterative 
peeling as described in Fernando et al. [35], which results 
in posterior probabilities of each genotype for each indi-
vidual. These were combined to create a prediction of 
gene content. In contrast to the prediction of gene con-
tent of Gengler et  al. [13], iterative peeling is nonlinear 
and, in principle, is more accurate, although in the pres-
ence of pedigree loops it does not produce the optimal 
solutions that are obtained by exact peeling [35].

Scenario with a major gene for a highly heritable trait
The second scenario was as above, but the trait was 
highly heritable i.e. 0.5, of which half was explained by 
the major gene. The trait was unselected to avoid fixation 

3.15 0 0 0 1.05 0 1.05 0 0 0 1.05 0
0 3000 0 1000 0 0 0 0 0 1000 0 1000
0 0 96.89 −21.31 58.13 −12.79 −38.75 8.52 −38.75 8.52 −38.75 8.52
0 1000 −21.31 1009.68 −12.79 5.81 8.52 −3.87 8.52 −3.87 8.52 −3.87

1.05 0 58.13 −12.79 97.95 −21.31 −38.75 8.52 −38.75 8.52 −38.75 8.52
0 0 −12.79 5.81 −21.31 9.68 8.52 −3.87 8.52 −3.87 8.52 −3.87

1.05 0 −38.75 8.52 −38.75 8.52 78.57 −17.05 0 0 0 0
0 0 8.52 −3.87 8.52 −3.87 −17.05 7.75 0 0 0 0
0 0 −38.75 8.52 −38.75 8.52 0 0 77.51 −17.05 0 0
0 1000 8.52 −3.87 8.52 −3.87 0 0 −17.05 1007.75 0 0

1.05 0 −38.75 8.52 −38.75 8.52 0 0 0 0 78.57 −17.05
0 1000 8.52 −3.87 8.52 −3.87 0 0 0 0 −17.03 1007.75
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of the favorable allele of the major gene. The aim was to 
reflect major genes such as DGAT1 for which both alleles 
are selected or, alternatively, a major gene for a trait that 
has not been selected so far.

Results
Estimation of the variance component associated to 
the major gene effect took a large number of iterations 
(around 100, totaling 30  min until convergence) in the 
EM algorithm used for REML, since the likelihood was 
rather flat (animals with genotypes did not have pheno-
types and vice versa). Using average information REML 
(AIREML; [26]) did not improve convergence since herit-
ability of gene content is in the boundary of the paramet-
ric space. Although estimation of the genetic parameters 
was slow, GCMTBLUP prediction with known variance 
components was very fast; a simulation similar to the low 
heritability scenario that included 10 million females non 
genotyped but with records and 50,000 genotyped males 
without records was solved in 45 min, with 300 iterations 
using preconditioned conjugate gradients and iteration 
on data (blup90iod2: [34]). Single-trait estimation with-
out genotypes took 25 min and 155 iterations.

Scenario with a major gene for a lowly heritable trait
Using GCMTREML, estimates of the substitution effect 
were equal to 0.237 ± 0.03 and 0.223 ± 0.03, when gen-
eration 11 was genotyped or not, respectively. These 
results compare very well with the true value of 0.226. In 
all cases, the likelihood ratio test supported the hypoth-
esis of non-null genetic covariance, that is, of a non-null 
effect of the major gene. Heritability was slightly under-
estimated (0.04 instead of 0.05), possibly due to selection.

Using the method of Gengler et  al. [13] to estimate 
genotypes and then fitting them as known, resulted in 
estimates of gene effect of 0.269 ± 0.03 when animals in 

generation 11 were genotyped, and 0.250 ±  0.03 when 
they were not. Using iterative peeling, the estimates 
were equal to 0.281  ±  0.03 and 0.260  ±  0.03, respec-
tively. Thus, these two methods resulted in estimated 
gene effects that were biased upward. Selection for the 
favorable allele is unaccounted for in these methods and 
this may be a cause of bias. Another possible source of 
bias is the use of estimated genotypes (estimated without 
including phenotype information).

Prediction accuracies of selection candidates are 
in Table  2 and in all cases, GCMTBLUP, the method 
of Gengler et  al. [13] and iterative peeling were more 
accurate and less biased than regular BLUP, even when 
selection candidates were not genotyped. In general, dif-
ferences between methods were significant (p < 0.05) for 
the slope but not for accuracy but GCMTBLUP was gen-
erally the best. GCMTBLUP and the other methods are 
more accurate than simple BLUP because (1) the overall 
genetic value of their ancestors is better modeled, and (2) 
the genotype at the major genes in the candidates is con-
sidered. These two advantages are cumulative, based on 
comparing accuracy when candidates are genotyped ver-
sus not genotyped. When candidates were genotyped, the 
method of Gengler et al. [13] and peeling were as accu-
rate as GCMTBLUP but were more biased and resulted 
in EBV that showed over-dispersion. All studied methods 
were clearly superior to simple BLUP. Regarding predic-
tion of genotypes, all methods had similar accuracies and 
slopes. If the gene effect was accurately estimated with 
partial genotyping, as for GCMTBLUP, selection candi-
dates did not benefit, in terms of accuracy, from extend-
ing the genotyping to all the population.

Results for females with own phenotype were similar 
(Table  3). Again, GCMTBLUP was slightly more accu-
rate and less biased than the other methods that used 
genotypes. Females benefitted from the genotyping of 

Table 2  Low heritability scenario for candidates to selection

Accuracy, intercept and slope of the comparison of estimated and true breeding values of 1315 selection candidates to selection for the model including gene 
content (GCMTBLUP) or not (Simple BLUP), for the method of Gengler et al. [13], and for the iterative peeling method of gene prediction
a  All individuals are genotyped

Method Quantitative trait Gene content Candidates 
genotyped

Accuracy Slope Accuracy Slope

Simple BLUP 0.30 ± 0.04 0.86 ± 0.13 – –

GCMTBLUP 0.39 ± 0.02 0.98 ± 0.13 0.53 ± 0.05 1.00 ± 0.05 No

Method of Gengler et al. 0.39 ± 0.02 0.94 ± 0.11 0.52 ± 0.05 1.00 ± 0.05 No

Iterative peeling 0.39 ± 0.02 0.92 ± 0.04 0.53 ± 0.05 0.97 ± 0.06 No

GCMTBLUP 0.59 ± 0.03 0.95 ± 0.05 1 1 Yes

Method of Gengler et al. 0.59 ± 0.04 0.87 ± 0.05 1 1 Yes

Iterative peeling 0.59 ± 0.04 0.83 ± 0.04 1 1 Yes

All genotypeda 0.59 ± 0.03 0.98 ± 0.06 1 1
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selection candidates because there was slightly more 
information. However, females benefitted from own gen-
otyping data, even if they had own phenotype records, 
because the trait had a low heritability and thus did not 
provide much information on the genotype, although the 
gene explained half the genetic variance.

Scenario with a major gene for a highly heritable trait
Estimates of the substitution effect (true value =  0.71) 
by GCMTBLUP were equal to 0.71  ±  0.04, versus 
0.72 ±  0.05 obtained with the method of Gengler et  al. 
[13] and 0.71 ± 0.05 with peeling, regardless of whether 
selection candidates were genotyped or not. All three 
methods were equally good for the prediction of the 
overall breeding value of the candidates (Table  4) but 
GCMTBLUP was slightly superior in predicting gene 
content. For females, BLUP was already highly accu-
rate since females had own phenotype records (Table 5). 
However, GCMTBLUP was the most accurate method 

for predicting gene content, because it used information 
from the observed phenotypes at the quantitative trait.

Discussion
Joint analysis of genotype and phenotype data is an old 
problem in genetics (i.e. [10, 36–40] and many others). In 
general, there are three sources of information: (a) pedi-
gree; (b) genotypes at genes or markers associated with 
the trait; and (c) phenotypes at the trait of interest. To 
infer genotypes or (in linkage studies) local genomic pat-
terns of identity by descent across individuals, all three 
sources can be used in principle, i.e., the phenotype at 
the trait of interest can serve to infer the genotype at 
the gene or marker. In many cases, this is not done due 
to its complexity; obtaining the joint distribution of the 
markers and a complex trait is a notoriously difficult task 
that fails for complex pedigrees, even by using Monte 
Carlo methods [41]. As a result, a two-step procedure 
is often used where genotypes are used or deduced first 
and the phenotypes are used later [8, 9, 13, 38, 39, 42]. 

Table 3  Low heritability scenario for females with phenotype

Accuracy, intercept and slope of the comparison of estimated and true breeding values of 2800 females in generation 9 with phenotype but not genotype for the 
model including gene content (GCMTBLUP) or not (Simple BLUP), for the method of Gengler et al. [13], and for the iterative peeling method of gene prediction
a  All individuals are genotyped

Method Quantitative trait Gene content Candidates genotyped

Accuracy Slope Accuracy Slope

Simple BLUP 0.36 ± 0.04 0.85 ± 0.09 – –

GCMTBLUP 0.43 ± 0.04 0.94 ± 0.09 0.53 ± 0.05 0.98 ± 0.05 No

Method of Gengler et al. 0.42 ± 0.04 0.94 ± 0.08 0.52 ± 0.05 0.98 ± 0.06 No

Iterative peeling 0.42 ± 0.04 0.92 ± 0.07 0.52 ± 0.05 0.96 ± 0.06 No

GCMTBLUP 0.45 ± 0.03 0.95 ± 0.07 0.59 ± 0.04 1.02 ± 0.04 Yes

Method of Gengler et al. 0.44 ± 0.03 0.92 ± 0.07 0.58 ± 0.04 1.02 ± 0.04 Yes

Iterative peeling 0.45 ± 0.03 0.88 ± 0.05 0.60 ± 0.04 0.98 ± 0.04 Yes

All genotypeda 0.57 ± 0.03 0.99 ± 0.04 1 1

Table 4  High heritability scenario for candidates to selection

Accuracy, intercept and slope of the comparison of estimated and true breeding values of 1315 candidates to selection for the model including gene content 
(GCMTBLUP) or not (Simple BLUP), for the method of Gengler et al. [13], and for the iterative peeling method of gene prediction
a  All individuals are genotyped

Method Quantitative trait Gene content Candidates genotyped

Accuracy Slope Accuracy Slope

Simple BLUP 0.54 ± 0.02 0.99 ± 0.04 – –

GCMTBLUP 0.58 ± 0.02 0.99 ± 0.05 0.61 ± 0.02 1.02 ± 0.02 No

Method of Gengler et al. 0.57 ± 0.02 0.96 ± 0.06 0.57 ± 0.02 1.02 ± 0.02 No

Iterative peeling 0.57 ± 0.02 0.96 ± 0.06 0.57 ± 0.02 1.00 ± 0.02 No

GCMTBLUP 0.78 ± 0.01 1.00 ± 0.05 1 1 Yes

Method of Gengler et al. 0.77 ± 0.01 0.94 ± 0.05 1 1 Yes

Iterative peeling 0.77 ± 0.01 0.94 ± 0.05 1 1 Yes

All genotypeda 0.79 ± 0.01 1.00 ± 0.04 1 1
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Also, phenotypes at the trait of interest are projected on 
the genotyped individuals [43, 44]. All these cases result 
in incomplete use of information, which is of two kinds. 
First, the genotype of an individual that is not genotyped 
is deduced without using the phenotype at the quan-
titative trait [13, 42]. Second, the phenotype of an indi-
vidual that is not genotyped is assigned to a genotyped 
individual [43, 44], and this assumes that the ungeno-
typed individual had on average the same genotype as the 
genotyped individual. In the context of multiple marker 
genomic selection, these problems are solved using sin-
gle-step genomic BLUP (GBLUP) [17, 45]. In single-step 
GBLUP, it is in principle possible to weight markers indi-
vidually [46, 47] and, thus, it can explicitly include major 
genes but this has not yet been attempted with real data.

However, a simpler method that considers major genes, 
as proposed here, is desirable for two reasons. First, there 
are species for which there is no regular multiple marker 
genotyping of individuals but major genes exist and have 
been identified. This is the case for dairy goats (casein 
genes), sheep (several major genes for prolificacy), 
and pigs (halothane gene). In these species, not all ani-
mals are genotyped. Also, a single-step model including 
GCMTBLUP (i.e., the polygenic component is evaluated 
using single-step, whereas the major gene is evaluated as 
a correlated trait) gives a simple alternative to weighted 
or Bayesian regression single-step [46, 47], which might 
be of interest when there are only a few major genes, 
for instance in the case of DGAT1 [2] for fat content in 
dairy cattle. The method that we developed here fulfills 
these conditions. First, it uses all the information and is 
optimal among linear estimators (in Henderson’s sense); 
second, it is straightforward to implement using available 
multi-trait BLUP software.

The GCMTBLUP method can be seen as a sim-
ple extension of the methods of Gengler et  al. [13] and 

Forneris et  al. [14], who estimated heritabilities of gene 
contents; here we propose to fit gene content as a corre-
lated trait instead of a single trait. Christensen and Lund 
[17] used the method of Gengler et al. [13] as a starting 
point to develop single-step GBLUP, and they found that 
its problem was that missing genotypes (zm) were fixed 
at their estimated values, (ẑm), which Christensen and 
Lund corrected by considering Var(ẑm) as a function of 
relationships and heterozygosity 2pq at the markers. This 
shows how close GCMTBLUP is to single-step GBLUP. 
One difference is that, in GCMTBLUP, allele frequen-
cies in the base population are explicitly included in the 
model and estimated, which avoids problems of compat-
ibility that are difficult to solve for multiple markers [48, 
49].

One advantage of GCMTBLUP over the method of 
Gengler et al. [13] or peeling [35] is that it considers trait 
phenotypes to infer the genotype and, thus, is in princi-
ple more accurate. Also, the estimated gene effect is not 
(or less) biased by selection with GCMTBLUP, because 
selection on the trait is accounted for. Kennedy et al. [4] 
reported upward bias in the estimate of the gene effect 
if genotyped animals were considered as “unrelated”. 
Peeling and gene content prediction do not use the phe-
notype and thus the selection process is ignored, which 
leads to bias [8, 9].

Regarding our simulations, it can be argued that sce-
narios with p = 0.5 are the least favorable to peeling, as 
the number of known transmitted alleles is minimal (i.e., 
50 % of the animals in the population are heterozygous). 
Simulations with p = 0.25 for the favorable allele, how-
ever, led to very similar results, i.e. similar accuracies 
across methods but bias when using the method of Gen-
gler et al. [13] or peeling to deduce genotypes.

Another advantage of GCMTBLUP that can be 
observed in Tables  2, 3, 4 and 5 is that prediction with 

Table 5  High heritability scenario for females with phenotype

Accuracy, intercept and slope of the comparison of estimated and true breeding values of 2800 females in generation 9 with phenotype but not genotype for the 
model including gene content (GCMTBLUP) or not (Simple BLUP), for the method of Gengler et al. [13], and for the iterative peeling method of gene prediction
a  All individuals are genotyped

Method Quantitative trait Gene content Candidates genotyped

Accuracy Slope Accuracy Slope

Simple BLUP 0.78 ± 0.01 1.01 ± 0.03 – –

GCMTBLUP 0.78 ± 0.01 1.01 ± 0.03 0.68 ± 0.02 1.02 ± 0.03 No

Method of Gengler et al. 0.78 ± 0.01 1.04 ± 0.03 0.56 ± 0.04 1.02 ± 0.03 No

Iterative peeling 0.78 ± 0.01 1.04 ± 0.03 0.57 ± 0.04 1.00 ± 0.03 No

GCMTBLUP 0.78 ± 0.01 1.01 ± 0.03 0.71 ± 0.02 1.02 ± 0.02 Yes

Method of Gengler et al. 0.78 ± 0.01 1.04 ± 0.02 0.61 ± 0.03 1.02 ± 0.02 Yes

Iterative peeling 0.78 ± 0.01 1.04 ± 0.02 0.62 ± 0.03 1.00 ± 0.02 Yes

All genotypeda 0.86 ± 0.01 1.00 ± 0.02 1 1
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GCMTBLUP is less biased, because it does not assume 
that the “imputed” genotype is exact. For instance, 
assume a sheep whose parents have genotypes AB and 
AB for a prolificacy gene (say BB increases prolificacy). 
Prediction of gene content using any method will pro-
vide estimates of the progeny genotype (either a point 
estimate of AB or probabilities 0.25, 0.5 and 0.25 for each 
class); these estimates will be constant during the life of 
the animal and for all subsequent BLUP analyses. How-
ever, if the sheep has repeatedly large litter sizes, the 
genotype is clearly BB, and GCMTBLUP can “see” this 
information to obtain a more accurate estimate of the 
genotype. Estimation of genotypes is useful not only for 
genetic evaluation but also for mating purposes. Meuwis-
sen and Goddard [6] suggested an approximate hybrid 
method in which (approximate) iterative peeling was 
weighted by the likelihood given the quantitative trait, 
but their method is complex to implement and, to the 
best of our knowledge, has not been tested for genetic 
evaluation.

An additional advantage of GCMTBLUP over iterative 
peeling is that GCMTBLUP can handle very large data-
sets (provided the effect of the gene is known), whereas 
iterative peeling is not exact and slow. More refined pro-
cedures can be devised that would couple peeling with 
BLUP style genetic evaluation. For instance, GCMTB-
LUP ignores the fact that an AA sire can only produce A 
gametes.

We also give an extension to multiallelic genes, whereas 
in previous approximations [13, 31] the covariance gen-
erated by a finite number of alleles was ignored. Multi-
allelism is well considered by (iterative) peeling [35, 42].

Extension to multiple genes (and multiple quantitative 
traits) is in principle straightforward, although the size of 
the equations will grow up quadratically and estimation 
of all required parameters will become more complex and 
less accurate. In principle, major genes should have non-
zero genetic correlations only if they are physically linked 
and in linkage disequilibrium in the base population.

Although quite straightforward, we show, for the first 
time, the derivation of the covariance of gene content 
with a trait. However, it was not until recently that major 
genes were included in regular evaluations [9, 12]. Also, 
livestock pedigrees are extraordinarily complex, which 
precludes the use of methods such as exact peeling. Lack 
of availability of good software for peeling also compli-
cates research into these methods, whereas efficient pub-
lic software and, particularly, source codes exist for BLUP.

Deviations from linearity are common for the effects of 
major genes [3]. If the gene has a dominant action, then 
the substitution effect is α = a+ d(q − p). Under selec-
tion or drift, this substitution effect changes as allele 
frequencies change. Thus, in practice, if there are large 

deviations due to dominance, the GCMTBLUP method 
proposed here could be used by including only data from 
a few generations back, so there is no major change in 
frequencies.

A further complication arises if one of the homozy-
gotes (say AA) is sterile; then there is no equilibrium 
until allele A is lost, unless it is under selection. How-
ever, Hardy–Weinberg proportions approximately hold 
if q is small; from one generation to another, �q ≈ −q2 
for small q [15]. Thus, the expression for the substitution 
effect α = a+ d(q − p) is approximately correct over 
generations, and GCMTBLUP is a good approximation. 
However, breeding values and substitution effects are 
really meaningful concepts if mating is at random. In the 
particular case of major genes with sterile homozygotes, 
other methods including dominance variation [50] or 
finite locus models [51] could be used.

Conclusions
GCMTBLUP provides a single, efficient and streamlined 
method for genetic evaluation including polygenic effects 
and biallelic or multiallelic major genes when not all indi-
viduals in the population are genotyped. It considers all 
sources of information, it is computationally efficient, 
and produces unbiased estimates of gene effects and 
unbiased BLUP predictions. Standard software can be 
used.

Appendix
Equivalence between GCMTBLUP and fitting the genotype 
as a covariate when all animals are genotyped
Here we prove that when all individuals with phenotype 
have genotype, using a multiple trait model for y and z, as 
we suggest, or fitting major genes as a fixed covariate [4] 
gives the same result for total genetic merit uy. Consider 
a simple case, animal model with one record per indi-
vidual and all individuals genotyped. The proof however 
extends to any setting where all individuals with pheno-
type have genotype. Consider centered y and z to make 
the algebra simpler. Assume that 2pq and α are known.

We have:

With the inverse:

If we know the effect of the gene, α, then the prediction 
for the quantitative trait is simply:

G0 = Var

(
uy
uz

)
=

(
σ 2
ε + 2pqα2 2pqα
2pqα 2pq

)

G
−1

0
=

(
σ 11 σ 12

σ 21 σ 22

)
=

1

2pqσ 2
ε

(
2pq −2pqα

−2pqα σ 2
ε + 2pqα2

)

=

(
1/σ 2

ε −α/σ 2
ε

−α/σ 2
ε

σ 2
ε +2pqα2

2pqσ 2
ε

)
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We expand the part inside the square brackets:

So, we can write that the estimator of the total genetic 
value is:

Construct the two trait mixed model equations (note that 
σey,z = 0):

Absorb the equations for ûz:

When σ 2
ez → 0 (the true value of residual variance for 

gene content) then:

and

so

However σ 11 = 1/σ 2
ε  and σ 21 = −α/σ 2

ε  and therefore 
this is equal to expression (1):

which completes the proof.
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