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Abstract 

Background: There is growing interest in the role of rare variants in the variation of complex traits due to increasing 
evidence that rare variants are associated with quantitative traits. However, association methods that are commonly 
used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large 
half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it dif-
ficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly 
applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated pheno-
types. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of 
choice to account for both family relationships and population structure in cattle.

Results: We observed that the power of the LMM approach was low for mapping a rare variant (defined as those 
that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple 
rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across 
the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of 
whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in 
the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic 
variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), 
these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a 
gene with sample sizes of 1000 or 5000.

Conclusions: We observed that the methods that combine multiple rare variants within a gene into a meta-variant 
generally had greater power to map rare variants compared to LMM. Therefore, it is recommended to use rare variant 
association mapping methods to map rare genetic variants that affect quantitative traits in livestock, such as bovine 
populations.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genome-wide association studies (GWAS) have been 
successful in identifying common variants that are asso-
ciated with complex diseases and quantitative traits. 
However, the common variants that have been identified 

thus far account for only a small fraction of the esti-
mated heritabilities [1–3]. Theoretical and empirical 
studies suggest that rare variants (defined as those that 
have frequencies lower than 0.01), could play a signifi-
cant role in quantitative trait variation [3, 4]. In addition, 
studies on several Mendelian diseases indicate that com-
mon variants may often have a key role as modifiers of 
the effects of rarer, more highly penetrant contributors 
to disease risk in humans [5, 6]. Therefore, the detection 
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and investigation of rare variants should help researchers 
to further understand the genetic architecture of quanti-
tative traits and may provide new ways to use such rare 
variants for mapping genes and improving accuracies of 
genomic prediction.

Rare variants are poorly captured by the commonly 
used single nucleotide polymorphism (SNP) chips, 
because SNPs on these chips typically have a much 
higher minor allele frequency (MAF) than rare variants 
and, thus, are generally in low linkage disequilibrium 
(LD) with these. Recent technological advances allow 
us to study individual genomes at the base-pair resolu-
tion [7], including the detection of rare variants. Based 
on a large number of sequenced individuals (e.g. 1000), 
the optimal sequencing depth required for variants with 
a frequency lower than 0.01 is ~27 [8]. Therefore, low-
coverage sequencing yields low calling accuracy at rare 
variant sites, and in addition, deep sequencing a large 
number of individuals remains economically prohibi-
tive. The alternative is to impute high-density SNPs to 
whole-genome sequence. However, compared to com-
mon variants, rare variants are more often private to a 
sub-population or to families within a population [9], and 
thus, imputation accuracy for rare variants is consider-
ably lower than for common variants. It has been shown 
in cattle that imputation accuracy from lower density 
SNP panels to whole-genome sequence data drops very 
quickly when allele frequency is lower than 0.1 [10–12]. 
Although some imputation algorithms, such as that 
implemented in the IMPUTE2 software, tend to achieve 
higher imputation accuracies for rare variants than other 
algorithms, imputation accuracy remains rather low [10]. 
Thus, imputation of rare variants remains a challenge, 
and is currently not sufficiently accurate to study the 
power of gene-based rare variant mapping. Instead deep 
re-sequencing of a large number of individuals (i.e. at 
least 1000) is necessary to identify rare variants, but cur-
rently this is economically prohibitive although the cost 
of whole-genome sequencing is continuously decreas-
ing. An alternative approach to study the power to detect 
rare variants is to carry out a simulation study. Besides, 
simulated data has the advantage that the causal vari-
ants and their simulated effects are known with certainty 
and therefore, it is possible to compare methods for 
their accuracies of estimated effects. It is important that 
the genetic variation of the simulated dataset represents 
the complete spectrum of allele frequencies and retains 
the same haplotype structure as the empirical data [13]. 
Therefore, we used imputed sequence variants for a large 
number of SNP-array genotyped individuals to compare 
gene-based rare variant mapping approaches in cattle. 
Since the phenotypes were simulated based on imputed 

sequence variants, imputation errors did not distort the 
individuals’ phenotypes.

Methods for GWAS based on common SNP variants 
are well established [3]. However, mapping rare variants 
remains a challenge and rare-variant association studies 
are generally “gene-based”, in the sense that rare vari-
ants that are located within the same gene are grouped 
and then statistical methods are applied to assess the sig-
nificance of the association between the phenotype and 
the combined rare variants. Cirulli [14] emphasized the 
increasing importance of gene-based analyses in a review 
of 150 exome sequencing studies that claim that a disease 
can be caused by different rare variants in the same gene. 
Recently, guidelines on how to combine rare variants in 
gene-based analyses were formulated by MacArthur et al. 
[15].

Several classes of statistical methods have been devel-
oped for the analysis of rare variants for ‘case–control’ 
designs and quantitative traits in humans for both ran-
domly sampled and related individuals [16–19]. A short 
overview of the approaches is given below.

One broad class of such methods is known as the “bur-
den test” [16, 18, 20, 21]. A burden test collapses multi-
ple rare variants in a region of the genome into a single 
meta-allele to represent a genetic burden score. These 
meta-alleles are then used in association analyses. The 
power of these burden tests depends on the effect of the 
pooled variants and assumes that the effects of the rare 
alleles at different variant sites in a region of interest are 
in the same direction. Recent developments around these 
burden tests have enabled the analysis of data on related 
individuals [22, 23].

The second broad class of methods comprises vari-
ance component tests, such as that implemented in the 
C-alpha [17] and sequence kernel association test (SKAT) 
[19]. Variance component tests aggregate individual vari-
ant statistics that measure the similarity of the variants 
within a region and incorporate flexible weights to boost 
the power of the analysis. Compared to the burden test, 
variance component tests are more robust for the identi-
fication of a gene even when multiple rare variants within 
the targeted gene have effects in different directions 
(positive and negative). There are also extensions for this 
kind of method for related individuals such as that imple-
mented in famSKAT [22] and other similar approaches 
[23–25].

The third category of methods combines burden tests 
and variance component tests to exploit the strengths 
of both approaches. This is implemented in the software 
SKAT-O for unrelated individuals [26] and in MON-
STER (minimum p value optimized nuisance parameter 
score test extended to relatives) for related individuals 
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[27]. These methods introduce a nuisance parameter that 
defines the trade-off between burden tests and variance 
component tests, and is adaptively determined from the 
data to optimize power. Therefore, the combination of 
these two tests will be optimally balanced by the data 
itself and can detect both the common effect across rare 
variants (as in the burden tests) and the individual devia-
tions from the average effect (as in the variance compo-
nent tests).

Several studies have mapped rare variants that contrib-
ute to complex diseases in humans by using deep exome 
sequencing [9, 15, 28, 29]. However, to date, association 
studies for rare variants in cattle and other livestock spe-
cies have not been reported. Increasing access to a large 
number of whole-genome sequences [30] and availabil-
ity of exome sequence data in the near future could be 
used to map rare variants in cattle. This will open new 
opportunities to capture rare variants that affect eco-
nomic traits in cattle especially those that are related to 
disease susceptibility, which, so far, was not possible by 
using SNP chip data. This should substantially improve 
success both in finding causative mutations and using the 
information for genomic selection to improve accuracy 
of prediction. Once the causative mutations are identified 
for one population, they can be directly tested in other 
populations and thus, results may be transposable from 
one breed to another.

The above-mentioned methods for rare variant asso-
ciation mapping were developed for human studies for 
which samples are obtained at random from a popula-
tion or data that originate from small families, e.g. trio 
and sib-pair analyses. In contrast, bovine datasets usu-
ally include large half-sib families, and intensive arti-
ficial selection in cattle may pose special issues that are 
related to data analysis. For example, rare variants may 
be confounded with family structure, making it more 
difficult to disentangle their effects from family mean 
effects. In addition, the availability of large half-sib fam-
ily sizes in cattle has the advantage that rare variants may 
be observed at a higher frequency within extended fami-
lies compared to the population as a whole. The suitabil-
ity of the above-described statistical methods that were 
developed to map rare variants for quantitative traits in 
humans still remains unexplored for data structures such 
as those of cattle and other livestock species. Thus, the 
objective of our study was to investigate power and type 
I errors of several approaches used to map rare variants 
in bovine data. Our hypothesis is that the power of the 
specialized methods that were developed to detect rare 
variants in the human genome will be higher than that 
of a linear mixed model approach, which is currently the 
method of choice to map common variants in the bovine 
genome. Thus, we propose method(s) for rare variant 

mapping in livestock populations, which should contrib-
ute to the development of models that are geared towards 
exploiting rare variants in genome-assisted breeding.

Methods
Statistical methods
Statistical methods for rare variant mapping
The statistical methods that we tested for rare variant 
mapping were famBT [22], famSKAT [22] and MON-
STER [27]. The famBT method is a burden test that 
accounts for family relationships and assumes that the 
effects of all the rare variants are in the same direction 
[22] while the family-based SKAT (famSKAT) method 
makes no assumption on the direction of the effects 
of rare variants [22]. The MONSTER method adap-
tively determines a nuisance parameter to adjust to the 
unknown composition of the effects at rare variant sites 
by applying a mixed effects model that accounts for 
covariates and additive polygenic effects [27].

When written in more conventional animal breeding 
notation, the MONSTER model becomes:

where y is a vector of phenotypes, X is a design matrix for 
fixed covariates including the intercept, γ is a vector of 
unknown covariate effects, Z is an incidence matrix relat-
ing phenotypes to the corresponding random polygenic 
effect, u is a vector of random polygenic effects that fol-
lows a multivariate normal distribution N (0,Aσ 2

a), where 
A is the additive genetic relationship matrix and σ 2

a  is 
the polygenic variance, e is a vector of random residu-
als, e ∼ N

(

0, Iσ 2
e

)

, M is a n × m matrix that encodes the 
genotype at the m tested variant loci and n is the number 
of individuals with mij representing the allele dosage (0, 1 
or 2) of the minor allele at the j-th variant of individual i, 
and β is a vector of (possibly correlated) random effects 
of the m variants, β ∼ N

(

0,Rρσ
2
q

)

, Rρ = (1− ρ)I+ ρI 
with 0 ≤ ρ ≤ 1. The limiting cases ρ = 0 and ρ = 1 cor-
respond to models famSKAT and famBT, respectively. 
This method for detecting rare variants is referred to as 
MONSTER [27]. A grid of 11 equally-spaced points: val-
ues of ρ i.e. ρ1 = 0, ρ2 = 0.1, . . . , ρ10 = 0.9, ρ11 = 1 were 
tested in MONSTER. When ρ = 0, MONSTER is equiva-
lent to famSKAT and when ρ = 1, MONSTER is equiva-
lent to famBT.

To detect associations between a trait and a genomic 
region of interest, we tested the null hypothesis H0 that 
σ 2
q = 0 against H1 that σ 2

q > 0. This analysis was done 
using the software MONSTER [27]. To access the type I 
error rate, the null model was tested for 1000 replicates 
for which the effects for all rare variants were assumed 
to be equal to 0. The genomic control coefficient λ 

y = Xγ+Mβ+ Zu + e,



Page 4 of 13Zhang et al. Genet Sel Evol  (2016) 48:60 

[31], which for test statistics measures the departure of 
the median p value from its expectation under the null 
hypothesis, was calculated for all statistical methods con-
sidered to detect rare variants.

Statistical methods for GWAS with common variants
We compared MONSTER, famBT and famSKAT to two 
methods that are used for association mapping of com-
mon variants: a linear mixed model [32] and a simplified 
linear mixed model as implemented in the EMMAX soft-
ware [33]. These methods were included to investigate 
their ability to map rare variants and are briefly described 
below.

The linear mixed model (LMM) carries out a SNP-
by-SNP analysis. Complex familial relationships are the 
primary confounding factor in GWAS of livestock popu-
lations. In cattle, LMM, which model the effects of rela-
tionships among individuals through polygenic effects, 
can control the false positive rate caused by family struc-
ture and population stratification [34, 35]. Here for the 
LMM, association between a SNP and a phenotype was 
assessed by a single-locus regression analysis using the 
following equation:

where y is the vector of phenotypes, 1 is a vector of ones, 
μ is the general mean, m is a vector of allele dosages 
(ranging from 0 to 2) that associate records to the marker 
effect, g is the scalar additive effect of the SNP, Z is an 
incidence matrix relating phenotypes to the correspond-
ing random polygenic effect, u is a vector of random 
polygenic effects that follows a multivariate normal dis-
tribution N

(

0,Aσ 2
a

)

, where A is an additive relationship 
matrix and σa

2 is the polygenic variance, and e is a vector 
of random environmental deviates that follows a normal 
distribution N

(

0, Iσ 2
e

)

, where σe
2 is the error variance and 

I is an identity matrix. The model was fitted by restricted 
maximum likelihood (REML) using the software DMU 
[36], and the null hypothesis H0 that g = 0 was assessed 
using a t-test. The null hypothesis was tested with 1000 
replicates and the results are presented as the null model. 
The genomic control coefficient [31] was used to cor-
rect for stratification by adjusting association statistics at 
each SNP by the overall inflation factor (λ). A SNP was 
considered to be significantly associated with a trait if 
the p-value was below a significance threshold after cor-
rection for multiple-testing. We used two different mul-
tiple-testing correction approaches that are described in 
section “Comparison of different methods used to map 
rare variants in the simulation”.

Single variant association analysis using a LMM for full 
sequence variants is computationally demanding, i.e. it 
requires a computation time of O

(

MN3
)

, where M is the 

y = 1′µ+mg + Zu + e,

number of SNPs and N is the number of samples, since 
variance component estimation is repeated for each can-
didate SNP [37]. Therefore, association analysis for each 
imputed sequence variant was also carried out using the 
efficient mixed-model association (EMMA) approach 
where the variance components are estimated once 
instead of for each variant using the EMMAX software 
[33]. Briefly, the polygenic and error variances are esti-
mated using the following variance component model: 
y = 1µ+ Zu + e, where Var

(

y
)

= Gσ 2
a + Iσ 2

e , μ is the 
intercept, y is the vector of phenotypes, G is the genomic 
relationship matrix that is built based on high-density 
(HD) SNP genotypes, I is an identity matrix, σ 2

a  is the 
additive genetic variance and σ 2

e  is the error variance. In 
a second step, the SNP effect is obtained using a general-
ized linear regression model model:

where m is a vector of the imputed allele dosages (rang-
ing from 0 to 2), and η is a vector of random residual 
deviates with variance Gσ 2

a + Iσ 2
e .

Individual genotypes and simulation of phenotypes
In total, the genotypes of 27,119 Holsteins animals were 
available for this study from the Illumina 54 k SNP array 
version 1 or 2 (Illumina Inc., San Diego). The number of 
SNPs remaining after quality control was equal to 43,415, 
for more details see [38]. However, due to the computa-
tional constraints, we limited the analysis by including 
only the genes on chromosome 10 (arbitrarily picked) 
and for 5000 randomly selected individuals. The posi-
tions of the SNPs on the bovine genome were taken from 
the UMD3.1 Bovine genome assembly [39]. The 54  k 
genotypes for chromosome 10 of the 5000 randomly 
sampled animals together with 22,119 other animals were 
imputed to whole-genome sequence data using a two-
step approach with the IMPUTE2 software [40]. Average 
kinship between the sampled bulls was equal to 0.0017 
and the 5000 sampled bulls were sired by 632 bulls that 
had 1–136 sons in the dataset, with a mean value of 7.9. 
The heat map of the relationships between the 5000 sam-
pled individuals is in Additional file 1: Figure S1.

Approaches for rare variant mapping are gene-based, 
thus the results cannot be easily averaged across multi-
ple genes. Therefore, based on the number of rare vari-
ants and level of LD between variant sites, two genes 
on bovine chromosome 10 were selected for this study: 
(1) the ENSEMBL Gene ID: ENSBTAG00000018852 
located between 1,116,669 and 1,212,429  bp that com-
prised 635 annotated SNPs in its transcribed region; 
the 222 rare variants (with a MAF  <  0.01) within this 
gene were grouped into different SNP sets accord-
ing to their MAF; the average pairwise LD (r2) for these 

y = 1µ+mg + η,
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variants was equal to 0.149 with an average distance of 
83 bp between variants; and (2) the ENSEMBL Gene ID: 
ENSBTAG00000035858 located between 610,854 and 
933,224 bp that included 3015 annotated SNPs and 309 
rare variants (MAF < 0.01); the average pairwise LD (r2) 
for these variants was equal to 0.74 with an average dis-
tance of 106 bp between variants.

Phenotypes were simulated as the sum of three com-
ponents, i.e. a polygenic effect, a QTL effect computed 
as the sum of the simulated effects of the underlying 
rare variants, and a random error. The polygenic effects 
were simulated based on pedigree records. The effects 
of rare variants were simulated as random effects. 
Four scenarios with respect to the MAF of the causal 
variants were considered. Rare variants were grouped 
into four classes based on MAF for the sampled indi-
viduals i.e.: 0.01 ≤  MAF  <  0.02; 0.005 ≤  MAF  <  0.01; 
0.001 ≤  MAF  <  0.005; and MAF  <  0.001. Two differ-
ent approaches for assigning effects to rare variants 
were followed: within a MAF class either multiple rare 
variants contributed to the total QTL effect or only one 
rare variant contributed to the whole QTL variance. In 
the scenarios with multiple causal variants, half of the 
rare variants within each MAF class were assigned an 
effect.

Three levels of heritability for the trait were consid-
ered i.e. 0.3, 0.5 and 0.8. In addition, three levels of QTL 
variances were considered. The variance explained by the 
QTL (i.e. the collective effect of the causal rare variants 
within the gene) was equal to 0.1, 0.5 or 1 % of the total 
genetic variance when the heritability was equal to 0.5. 
In the scenarios with multiple causal variants, the sum of 
the variance explained by individual causal variants was 
set equal to the predefined total QTL variance. The QTL 
effect (α) was then calculated by the following equation 
and each causal rare variant was assigned an effect with a 
certain weight (as defined next):

where Vqtl is the proportion of genetic variance explained 
by the QTL multiplied by the total genetic variance 
(i.e. 0.1, 0.5 and 1  %), M is the genotype dosage matrix 
including the loci which have a QTL effect. The weights 
were assigned in order to add QTL effects on the simu-
lated phenotypes. Note that this formula considers the 
genotype variance at the QTL, as well as the co-variance 
between the QTL, and that it yields one value for α that is 
used for all QTL. Therefore, the total QTL effect for each 
animal was calculated as: αM.

In addition to the QTL effects, an additive polygenic 
effect was simulated with a variance component propor-
tional to the kinship matrix. The polygenic effects were 

α2
=

Vqtl

Var(M)
,

sampled from the following normal distribution, pro-
ceeding from the oldest to the youngest animal:

Founder: aF ∼ N (0, 1),
Offspring with one parent known: 
aO1

∼ N
(

a
2
,

(

3

4
−

F
4

)

σ 2
a

)

,

Offspring with two known parents: 

aO2
∼ N

(

as+ad
2

,

(

1

4
(1− Fs)+

1

4
(1− Fd)

)

σ 2
a

)

,

where aF is the polygenic effect for a founder, i.e. an ani-
mal with both parents unknown, and aO1 or aO2 are the 
polygenic effects for animals with one or two known par-
ents, respectively, a, as and ad are the polygenic effects for 
the known parent, the sire and the dam, respectively, F, Fs 
and Fd are the inbreeding coefficients for the known par-
ent, the sire and dam, respectively, and σ 2

a  is the additive 
genetic variance.

Finally, an independent error variance component was 
also simulated to account for measurement error and 
individual-specific variability 

(

e ∼ N
(

0, σ 2
e

))

, where σ 2
e  is 

the error variance, which is equal to 20, 50 or 70 % of the 
phenotypic variance.

Simulated scenarios
A scenario with a sample size of 1000 individuals, a 
heritability of 0.5 and a QTL that explained 1  % of 
the total additive genetic variance was considered as 
the base scenario and used for comparison with the 
other scenarios (Table  1). Four MAF classes of rare 
variants (0.01  ≤  MAF  <  0.02; 0.005  ≤  MAF  <  0.01; 

Table 1 Scenarios used in the simulation

Heritability MAF Proportion 
of additive 
genetic variance 
explained by the 
QTL

Sample size 
in the test

0.3 0.01 ≤ MAF < 0.02
0.005 ≤ MAF < 0.01
0.001 ≤ MAF < 0.005
MAF < 0.001

0.01 1000

0.5 0.01 ≤ MAF < 0.02
0.005 ≤ MAF < 0.01
0.001 ≤ MAF < 0.005
MAF < 0.001

0.01 1000

0.8 0.01 ≤ MAF < 0.02
0.005 ≤ MAF < 0.01
0.001 ≤ MAF < 0.005
MAF < 0.001

0.01 1000

0.5 0.001 ≤ MAF < 0.005 0.001; 0.005 or 
0.01

1000

0.5 0.001 ≤ MAF < 0.005 0.001 1000; 5000

0.5 0.001 ≤ MAF < 0.005 0.005 1000; 5000
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0.001 ≤ MAF < 0.005; and MAF < 0.001) based on MAF 
calculated from the whole population (27,119 Holsteins 
animals) were considered as causal variants for each her-
itability and QTL variance scenario. Two additional her-
itability levels (0.3 and 0.8) were simulated to compare 
with the heritability of the base scenario (h2 = 0.5). Dif-
ferent proportions (0.1, 0.5 and 1  %) of additive genetic 
variance explained by the QTL were compared for the 
scenario with MAF class 0.001 ≤ MAF < 0.005. For low 
QTL variance scenarios (0.1 and 0.5 %), two sample sizes 
of 1000 and 5000 randomly selected individuals were 
compared. One hundred replicates were simulated for 
each scenario.

Comparison of methods used to map rare variants in the 
simulation
To analyze samples of related individuals, three rare 
variant mapping methods famBT [22], famSKAT [22] 
and a combination of these two methods (MONSTER) 
[27] were compared. In addition, linear mixed model 
approaches as implemented by EMMAX [33] and DMU 
[36] were used. The kinship matrix used for LMM in 
DMU was based on the pedigree-based matrix (DMU-
AMAT) while for EMMAX both a pedigree-based and a 
genomic relationship matrix using 50 k genotypes of the 
individuals computed by the “emmax-kin” option were 
used (EMMAX_AMAT; EMMAX_GMAT). No prior 
weights were assigned for any variants in the rare variant 
mapping of all tested methods.

The power of each method was estimated as the pro-
portion of runs that significantly detected loci that were 
simulated to be causal. A significance level of 0.05 after 
Bonferroni correction was used for each scenario. The p 
values should be corrected by the total number of SNP 
sets tested for the MONSTER, famBT and famSKAT 
methods (there were five SNP tests: one for common var-
iants (MAF ≥ 0.02) and four SNP sets based on the fol-
lowing MAF classes of rare variants: 0.01 ≤ MAF < 0.02; 
0.005  ≤  MAF  <  0.01; 0.001  ≤  MAF  <  0.005; and 
MAF < 0.001). Thus, if the p value for a tested SNP set 
with simulated QTL was less than 0.05/5, it was consid-
ered to be significant. For EMMAX and DMU, the p value 
for simulated QTL was corrected by the total number of 
SNPs tested. For example, if the pvalue for the simulated 
QTL was less than 0.05/635, it should be considered as 
significant for Gene ID: ENSBTAG00000018852. How-
ever, all the variants tested here are located within a gene 
and therefore are not independent because of the LD 
between them. Therefore, we used an alternative multi-
ple-testing correction method based on calculating the 
effective number of independent SNPs for total num-
ber of SNPs according to [41]. Based on this approach, 
the effective number of independent SNPs was equal to 

17 for Gene ID: ENSBTAG00000018852 and the corre-
sponding eigenvalues explained 99.5  % of the SNP data 
variation. Based on these criteria, if the p value for the 
simulated QTL was less than 0.05/17 for the single vari-
ant analysis using EMMAX or DMU, it was considered 
as significant. The standard errors for each scenario were 
calculated from bootstrapping based on 100 re-samplings 
from the 100 simulation runs.

Results
Comparison of different methods with the null model
 Figure  1 shows the quantile–quantile plots for the data 
simulated under the null model (no QTL present). The 
estimated λ (genomic control) values for MONSTER, 
famBT, famSKAT, EMMAX_AMAT, and EMMAX_
GMAT were less than 1, indicating that the p values 
closely followed the expected distribution under the null 
hypothesis. Therefore, these methods showed no evidence 
of inflation of the p values under the null model. However, 
some of the observed χ2 values for DMU_AMAT were far 
too large, which indicated very high false-positive values 
(Fig. 1). However, when rare variants with extremely low 
MAF (MAF  <  0.001) were excluded, the estimated λ for 
DMU_AMAT followed the expected distribution under 
the null hypothesis very well (see Additional file  2: Fig-
ure S2). The type I error rate for DMU_AMAT was much 
higher than that for the other methods (MONSTER, 
famBT, famSKAT, EMMAX_AMAT, and EMMAX_
GMAT) using either Bonferroni correction or multi-
ple-testing correction based on the effective number of 
independent SNPs (see Additional file 3: Figure S3). How-
ever, using the effective number of SNPs to correct the 
significance level also increased type I error rate for linear 
mixed models (EMMAX_AMAT, EMMAX_GMAT and 
DMU_AMAT) (see Additional file 3: Figure S3).

Comparison of the power of different methods 
with different scenarios
The power values of the methods used to detect rare 
simulated QTL averaged across 100 replicates are in 
Figs. 2, 3 and 4 (p values adjusted for the effective num-
ber of independent SNPs). First, the power values for 
all rare variant mapping methods across the four MAF 
classes (0.01  ≤  MAF  <  0.02; 0.005  ≤  MAF  <  0.01; 
0.001 ≤ MAF < 0.005; and MAF < 0.001) were very similar 
under one of the scenarios. For the scenario with a mod-
erate heritability (h2 = 0.5), the powers of MONSTER, 
famBT and famSKAT ranged from 0.19 to 0.42 when mul-
tiple rare causal variants were assumed and from 0.09 to 
0.30 when one causal rare variant was assumed. Increas-
ing the heritability from 0.3 to 0.8, increased the power to 
detect QTL from ~0.17 to ~0.61 for MONSTER, famBT 
and famSKAT when multiple rare causal variants were 
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assumed. No method was able to detect QTL (power 
≤ 0.05) that only explained 0.1 % of the genetic variance 
(Fig.  4c, d). When a QTL explained 0.5  % of the genetic 
variance, the power increased from ~0.13 to ~0.86 as the 
number of individuals increased from 1000 to 5000 for 
MONSTER, famBT and famSKAT (when multiple rare 
causal variants were assumed) (Fig. 4a, b). However, when 
the QTL explained only 0.1 % of the genetic variance, there 
was little increase in power (~0.04 to ~0.15) as the number 
of individuals increased from 1000 to 5000 (Fig. 4c, d).

When the p values of the total number of SNPs are 
adjusted by Bonferroni correction, DMU_AMAT, 
EMMAX_AMAT and EMMAX_GMAT had little power 
(<0.05) in all scenarios (see Additional file 4: Figure S4). 
However, when the p values were adjusted by multiple-
testing correction based on the effective number of inde-
pendent SNPs, DMU_AMAT, EMMAX_AMAT and 
EMMAX_GMAT had less power in all scenarios com-
pared to the specialized methods for mapping multiple 
causal rare variants. When only one rare variant contrib-
uted to the total QTL variance, i.e. when there was only 
one variant with a relatively large effect, the powers of the 

LMM (DMU_AMAT, EMMAX_AMAT and EMMAX_
GMAT) were similar compared to the specialized meth-
ods for rare variant mapping (MONSTER, famBT and 
famSKAT) (Figs. 2, 3, 4). With EMMAX, the powers were 
similar regardless of whether the A-matrix or G-matrix 
was used for the kinships (Figs. 2, 3, 4). When heritabil-
ity increased from 0.3 to 0.8, the power of all methods 
increased (Figs.  2, 3). In general, the power was greater 
with multiple rare causal variants than with one causal 
rare variant across all scenarios for MONSTER, famBT 
and famSKAT (Figs. 2, 3, 4). With a heritability of 0.5, the 
power across scenarios with one rare causal variant simu-
lated as a QTL remained similar compared to that across 
scenarios with multiple rare causal variants simulated as 
QTL for DMU_AMAT, EMMAX_AMAT and EMMAX_
GMAT (Figs. 2, 3, 4) but if the total number of SNPs was 
adjusted by multiple-testing correction, power increased 
(see Additional file  4: Figure S4). The power of FamBT, 
compared to the other methods, was greatest across all 
scenarios for multiple rare causal variants, while that of 
famSKAT was highest across most scenarios with only 
one causal rare variant (Figs. 2, 3, 4).
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Discussion
The objective of our study was to compare the power of 
several gene-based methods to detect rare variants using 
simulated phenotype data and imputed whole-genome 
sequence variants for a bovine population with a complex 
pedigree structure.

Methods that are specialized for the detection of rare 
variants in a population of individuals with family rela-
tionships (MONSTER, famBT and famSKAT) yielded 
more power than linear mixed models (DMU_AMAT, 
EMMAX_AMAT and EMMAX_GAMAT) for the detec-
tion of QTL with multiple rare causal variants. The linear 
mixed model which is the method of choice for associa-
tion mapping of common variants was less powerful for 
the detection of QTL with multiple rare causal variants 
(Figs. 2, 3, 4).

The observed association statistics (χ2) for data simu-
lated under the null model (no rare variant contributing 
to the phenotypic variance) followed closely the expected 
distribution under the null hypothesis for all methods 
except DMU_AMAT (see Additional file 2: Figure S2). A 
large number of loci showed a very high observed χ2 (type 
I errors) under the null model for DMU_AMAT. This 

is probably because an extremely low frequency allelic 
variant will remain confined to a few families or indi-
viduals. If, by chance, these families or individuals have 
extreme phenotypes, that effect will be attributed to the 
allele resulting in a false positive association. The lower 
the MAF, the greater the chance that the minor allele is 
confined to a few families or individuals. Therefore, after 
filtering out the loci with a very low MAF (MAF < 0.001), 
the observed χ2 followed closely the expected χ2 for 
DMU_AMAT (see Additional file  2: Figure S2). This 
result suggests that it is necessary to filter out loci with 
extremely low MAF when using LMM in order to con-
trol false positives. However, this phenomenon was not 
observed with the EMMAX approach, which could be 
due to the adjustment of such effects in the first-step of 
EMMAX when the variance components are estimated.

MONSTER and linear mixed models implemented 
in DMU_AMAT and EMMAX_AMAT captured most 
of the total simulated heritability when considering 
both polygenic variance and the estimated QTL vari-
ance (see Additional file  5: Figure S5). DMU_AMAT 
and EMMAX_AMAT (see Additional file  6: Figure 
S6) yielded similar estimates of the genetic variance 

Fig. 2 Comparison of the power of rare variant mapping methods in scenarios with different MAF for rare variants and heritabilities. a, b Herit-
ability = 0.5; 0.01 ≤ MAF < 0.02, 0.005 ≤ MAF < 0.01, 0.001 ≤ MAF < 0.005, MAF < 0.001; proportion of additive genetic variance explained by the 
QTL = 0.01; sample size in the test = 1000; with multiple rare variants simulated as QTL (a) and one rare variant simulated as a QTL (b). c, d Herit-
ability = 0.3; 0.01 ≤ MAF < 0.02, 0.005 ≤ MAF < 0.01, 0.001 ≤ MAF < 0.005, MAF < 0.001; proportion of additive genetic variance explained by the 
QTL = 0.01; sample size in the test = 1000; with multiple rare variant simulated as a QTL (c) and one rare variant simulated as a QTL (d)
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Fig. 3 Comparison of the power of rare variant mapping methods in scenarios with different heritabilities and proportions of additive genetic vari-
ance explained by the QTL. a, b Heritability = 0.8; 0.01 ≤ MAF < 0.02, 0.005 ≤ MAF < 0.01, 0.001 ≤ MAF < 0.005, MAF < 0.001; proportion of additive 
genetic variance explained by the QTL = 0.01; sample size in the test = 1000; with multiple rare variants simulated as QTL (a) and one rare variant 
simulated as a QTL (b). c, d Heritability = 0.5; 0.001 ≤ MAF < 0.005; proportion of additive genetic variance explained by the QTL = 0.01, 0.005, 
0.001; sample size in the test = 1000; with multiple rare variant simulated as a QTL (c) and one rare variant simulated as a QTL (d)

Fig. 4 Comparison of the power of different methods in scenarios with different sample sizes. a, b Heritability = 0.5; 0.001 ≤ MAF < 0.005; propor-
tion of additive genetic variance explained by the QTL = 0.005; sample size in the test = 1000, 5000; with multiple rare variants simulated as QTL 
(a) and one rare variant simulated as QTL (b). c, d Heritability = 0.5; 0.001 ≤ MAF < 0.005; proportion of additive genetic variance explained by the 
QTL = 0.001; sample size in the test = 1000, 5000; with multiple rare variants simulated as QTL (c) and one rare variant simulated as QTL (d)
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explained by QTL. The genomic heritability estimated 
by EMMAX_GMAT was considerably lower (0.3) than 
its simulated value (0.5) (see Additional file 5: Figure S5). 
The covariance structure among individuals was modeled 
based on pedigree records for phenotype simulation. The 
genomic relationships that were estimated from the 50 k 
SNP data differed considerably from the pedigree-based 
relationships and therefore explained only part of the 
additive genetic variance for the trait.

For the simulation with the ENSBTAG00000035858 
gene (see Additional file  7: Figure S7), a simi-
lar trend was observed as that found for the ENS-
BTAG00000018852 gene (see the "Result" section). 
The power of detecting QTL with a low MAF with the 
specialized methods for mapping rare variants was 
around ~30  % in the scenario with a heritability of 
0.5 and where the QTL explained 1  % of the additive 
genetic variance. Similar results were observed in the 
simulation with the ENSBTAG00000035858 gene, i.e. 
the power of MONSTER, famBT and famSKAT when 
multiple rare variants explain all the QTL variance was 
greater (~40  %) than that of the linear mixed models 
(see Additional file 7: Figure S7). We observed relatively 
more power for low gene effects and small sample sizes, 
which is probably because all causal mutations were 
included in the association analyses. In analyses based 
on real data, it would be very unlikely that all the causal 
mutations were included in the SNP sets, for instance 
because variants may simply be removed during fil-
tration of the data. In our simulation, we also consid-
ered the situation with only one rare variant explaining 
all the QTL variance, and we found that the power of 
MONSTER, famBT and famSKAT was also greater 
than that of the linear mixed models when the p-values 
were adjusted by multiple-testing correction for total 
number of SNPs (see Additional file 4: Figure S4). This 
was unexpected since rare variant mapping assumes an 
incorrect architecture for the locus when there is only 
one causal rare variant. Less power in the LMM analy-
sis for scenarios with a single rare causal variant could 
result from the association signal being masked under 
stringent multiple-testing correction. When we used 
the effective number of independent SNPs to correct 
for multiple-testing, the powers for scenarios with sin-
gle causal rare variants were similar to those of other 
specialized rare variant mapping methods (Figs. 2, 3, 4). 
However, in GWAS, pvalues are generally adjusted by 
Bonferroni correction i.e. by dividing the p values by the 
total number of SNPs. However, the false positive rate 
also increased when the p values were not divided by 
the total number of SNPs (Figs. 2, 3, 4).

Our findings across different scenarios probably reflect 
the overall power for the detection of rare variants based 
on QTL variance, genetic architecture and sample size 
for populations with family relationships as observed in 
cattle and other livestock species. However, when the 
QTL effect is small (0.1  % of the additive genetic vari-
ance), no method had more than 5  % power (i.e. type I 
error threshold) for the detection of rare variants with 
a sample size of 1000 individuals (Fig.  4). As expected, 
increasing the number of individuals increased the power 
to detect rare variants with small effects (Fig. 4).

The power of rare variant association mapping meth-
ods (MONSTER, famBT and famSKAT) depends on 
the genetic architecture of the trait because they dif-
fer in their assumption about the underlying variants, 
direction of their effects as well as the correlation struc-
ture between rare variants. This was also shown by the 
simulation on the ENSBTAG00000035858 gene in the 
main scenarios (see Additional file 7: Figure S7). Specifi-
cally, famBT had the greatest power when multiple rare 
variants in the test SNP set were simulated as QTL while 
famSKAT had the greatest power when only one rare 
variant in the test SNP set was simulated as a QTL. The 
correlation between rare variants in the test SNP set (ρ) 
was very low when only one rare variant was simulated as 
the QTL. Therefore, the power of famSKAT (ρ = 0) was 
greatest while that of famBT (ρ = 1) was greatest when 
the statistical method’s assumptions matched the genetic 
architecture of the trait. However, the differences in 
power between MONSTER, famBT and famSKAT were 
very small across all scenarios. Therefore, when apply-
ing these methods on real data for mapping rare vari-
ants, it is reasonable to consider all three methods since 
the genetic architecture of the trait under study is usu-
ally unknown. In summary, in cattle, it is recommended 
to use rare variant association mapping methods to iden-
tify low frequency genetic variants especially when mul-
tiple rare variants are causal and contribute to the trait. 
Once identified, these rare variants could be exploited 
for whole-genome prediction of breeding values in the 
future.

Imputation accuracies of rare variants are lower than 
those of common variants and this could have a large 
impact in association analyses for rare variants on real 
data [42]. We used imputed rare sequence variants in 
this study instead of simulated genotypes. However, we 
used simulated phenotypes, assuming that the imputed 
variants were true. Therefore, imputation errors did not 
distort the individuals’ phenotypes in our study. By using 
imputed genotypes, the LD structure and allele frequency 
spectrum are maintained as observed in our population. 
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Therefore, we expect that using imputed genotypes did 
not affect the conclusions of our study. In real situa-
tions, high-coverage exome sequencing or low-coverage 
whole-genome sequencing of large number of samples 
may improve the accuracy of genotype call for the rare 
variants.

Mutations that change the protein structure or lead to 
a non-functional protein can have a strong phenotypic 
impact and may therefore be detectable. However, rare 
variants with subtle effects may be difficult to identify, 
even if the sample size is large. Therefore, the gene-based 
approaches used in our study should be considered for 
genome-wide mapping of rare variants. Besides, com-
putational cost is an important factor to consider when 
performing genome-wide rare variant mapping. In our 
analyses, it took ~11  min to perform rare variant map-
ping for a sample size of 1000 and ~52 min for a sample 
size of 5000. Considering that there are ~22,000 anno-
tated genes in the bovine genome, this still implies a huge 
computational effort when considering all the genes. 
Therefore, it is important that the algorithms for gene-
based mapping are further optimized, but it may also be 
useful to target rare variants in candidate genes only to 
save computational time.

Conclusions
Our findings showed that combining rare variants in 
a test SNP set with MONSTER, famBT and famSKAT 
yielded more power to map QTL than linear mixed mod-
els for bovine data. We also found that these methods 
could overcome the confounding of extreme phenotypes 
in the family mean when mapping rare variants com-
pared to a one-step linear mixed model approach [43]. 
In fact, linear mixed models were prone to yield large 
numbers of type I errors for loci with extremely low MAF 
(MAF  <  0.001), while they were not able to correctly 
detect causal loci with extremely low MAF. However, 
EMMAX was robust to extremely low MAF. It is recom-
mended to use methods such as the burden test or vari-
ance component tests for mapping rare variants in cattle 
and other livestock with a similar family structure.

Data availability
The data used in this study originated from the 1000 Bull 
Genome Project (Daetwyler et  al. [30] Nature Genet. 
46:858-865). Whole-genome sequence data of individual 
bulls of the 1000 Bull Genomes Project are already availa-
ble at NCBI using SRA No. SRP039339 (http://www.ncbi.
nlm.nih.gov/bioproject/PRJNA238491).
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one rare variant simulated as a QTL (f ). (S4 g and S4 h) Heritability = 0.5; 
0.001 ≤ MAF < 0.005; proportion of additive genetic variance explained 
by the QTL = 0.01, 0.005, 0.001; sample size in the test = 1000; with mul-
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a QTL (h). (S4i and S4j) Heritability = 0.5; 0.001 ≤ MAF < 0.005; proportion 
of additive genetic variance explained by the QTL = 0.005; sample size 
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and one rare variant simulated as QTL (j). (S4 k and S4 l) Heritability = 0.5; 
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Additional file 6: Figure S6. Comparison of the variances explained by 
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values with calculation of independent tests for linear mixed models). 
(S7a and S7b) Heritability = 0.5; 0.01 ≤ MAF < 0.02, 0.005 ≤ MAF < 0.01, 
0.001 ≤ MAF < 0.005, MAF < 0.001; proportion of additive genetic vari-
ance explained by the QTL = 0.01; sample size in the test = 1000; with 
multiple rare variants simulated as QTL (a) and one rare variant simu-
lated as a QTL (b). (S7c and S7d) Heritability = 0.3; 0.01 ≤ MAF < 0.02, 
0.005 ≤ MAF < 0.01, 0.001 ≤ MAF < 0.005, MAF < 0.001; proportion 
of additive genetic variance explained by the QTL = 0.01; sample size 
in the test = 1000; with multiple rare variants simulated as a QTL (c) 
and one rare variant simulated as a QTL (d). (S7e and S7f ) Heritabil-
ity = 0.8; 0.01 ≤ MAF < 0.02, 0.005 ≤ MAF < 0.01, 0.001 ≤ MAF < 0.005, 
MAF < 0.001; proportion of additive genetic variance explained by the 
QTL = 0.01; sample size in the test = 1000; with multiple rare variants 
simulated as QTL (e) and one rare variant simulated as a QTL (f ).
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