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Abstract 

Background: The identification of signals left by recent positive selection provides a feasible approach for targeting 
genomic variants that underlie complex traits and fitness. A better understanding of the selection mechanisms that 
occurred during the evolution of species can also be gained. In this study, we simultaneously detected the genome‑
wide footprints of recent positive selection that occurred within and between Chinese Holstein and Simmental 
populations, which have been subjected to artificial selection for distinct purposes. We conducted analyses using 
various complementary approaches, including LRH, XP‑EHH and FST, based on the Illumina 770K high‑density single 
nucleotide polymorphism (SNP) array, to enable more comprehensive detection.

Results: We successfully constructed profiles of selective signals in both cattle populations. To further annotate these 
regions, we identified a set of novel functional genes related to growth, reproduction, immune response and milk 
production. There were no overlapping candidate windows between the two breeds. Finally, we investigated the dis‑
tribution of SNPs that had low FST values across five distinct functional regions in the genome. In the low‑minor allele 
frequency bin, we found a higher proportion of low‑FST SNPs in the exons of the bovine genome, which indicates 
strong purifying selection of the exons.

Conclusions: The selection signatures identified in these two populations demonstrated positive selection pressure 
on a set of important genes with potential functions that are involved in many biological processes. We also demon‑
strated that in the bovine genome, exons were under strong purifying selection. Our findings provide insight into the 
mechanisms of artificial selection and will facilitate follow‑up functional studies of potential candidate genes that are 
related to various economically important traits in cattle.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The patterns of genetic variation are essential for under-
standing the history and structure of populations and 
the relationship between genotype and phenotype [1–
3]. To date, many studies have focused on the genome-
wide scanning of signals that were left by recent positive 

selection in many species, such as humans [4–7], plants 
[8], and domestic animals [9, 10].

Signatures of selection in a genome usually involve 
three typical genomic features, i.e., high-frequency 
derived alleles, long-range haplotypes with strong linkage 
disequilibrium (LD) and highly differentiated allele fre-
quencies between populations [6]. Specifically, a selective 
sweep rapidly increases the frequency of the favorable 
causal variant, and strong LD persists between the causal 
variant and neighboring polymorphisms relative to neu-
tral regions, which results in an unusually long-range 
haplotype with a high level of homozygosity [4, 5]. When 
geographically variable selective forces or directional 
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selection with some economic purpose favor different 
variants in different regions, allele frequencies in such 
regions will differ greatly among populations [9].

To detect these genomic features that result from 
recent positive selection, various analytical methods have 
been proposed and successfully applied to many species. 
These approaches are largely considered as belonging to 
two different types. One type is based on LD patterns 
across genomes, such as the long-range haplotype (LRH) 
test [7], integrated haplotype homozygosity score (iHS) 
[5], cross population extended haplotype homozygosity 
(XP-EHH) test [4] and Rsb test [11]. The second type is 
based on allele frequency, such as FST [12] and heterozy-
gosity [13]. Among these detection approaches, the XP-
EHH and Rsb tests are more sensitive to a selective sweep 
in which the corresponding allele has approached or 
achieved fixation within one population [4, 11], whereas 
the LRH and iHS tests have advantages in exploring 
selective sweeps with variants at moderate frequencies 
[4]. Differentiation-based methods are more powerful for 
detecting complex events, such as selection on standing 
variation [14]. Hence, a composite method combining 
different detection approaches to provide complemen-
tary information was considered as an optimal strategy in 
searching for selection signatures with different features 
[6].

Identification of selective signatures in the bovine 
genome can provide information about biologically 
meaningful variants that underlie adaptation to specific 
environments as well as human-mediated selection [3]. 
The bovine genome has developed extensive LD due to 
domestication, breed formation and the implementation 
of breeding programs [15, 16]. Moreover, with the advent 
of high-throughput genotyping technologies such as 
the high-density single nucleotide polymorphism (SNP) 
BeadChip and next-generation sequencing, in addition 
to the well-established analytical methods, it is becoming 
feasible to explore the signals of selection present in the 
genomes of bovine populations. Recently, many studies 
have been conducted to explore signatures undergoing 
positive selection in cattle using different methods [9, 10, 
17–20].

Since the domestication of cattle 8000  to  10,000  years 
ago [21], strong selection through domestication and sub-
sequent artificial selection have resulted in much diversity 
among present-day cattle. Diversity includes variation in 
morphology, physiology, production and fertility traits. To 
characterize the response in genetic variation to domes-
tication and strong artificial selection, we first conducted 
the detection of selective signatures both within and 
between populations using two popular Chinese cattle 
breeds of European origin, i.e., Holstein and Simmen-
tal, which are typical dairy and beef/milk dual-purpose 

breeds with markedly different selection directions. Fur-
thermore, the detection of selection signatures can act as 
a complement to current gene mapping approaches, e.g. 
genome-wide association studies (GWAS). The detection 
of selection signatures and GWAS can provide comple-
mentary information for unraveling the genetic structure 
of complex traits. By comparing candidate regions found 
through the identification of selection signatures and 
GWAS, we can also test the contributions of genes under 
selection to the phenotype, which can subsequently be 
used in genomic selection.

In this study, we used the 770K BovineHD BeadChip 
instead of the most commonly used 54K SNP genotyp-
ing panel to enable detection of selection signatures with 
higher accuracies. Furthermore, we adopted a composite 
strategy instead of a single detection method to explore 
potential selective footprints left within and between 
populations. This approach can avoid the limitations of 
each individual approach and achieve power gain in the 
detection of selection signatures. Specifically, we first 
conducted an LRH test to pinpoint alleles that carry 
unusually long haplotypes and then to identify selection 
signals within each breed. Subsequently, both XP-EHH 
and FST statistics were calculated to examine the diver-
gent genetic variation affected by the strong directional 
selection between these two populations. Although 
the detection of a selection sweep near fixation by XP-
EHH has little value for the population itself, it can still 
facilitate marker-assisted selection for other dairy cat-
tle breeds and hybrids, in which the causal gene has 
not been selected or is still under selection. Our study 
aimed at identifying novel selection signals in two popu-
lar Chinese cattle populations. Our results will comple-
ment existing findings and facilitate follow-up functional 
genomics studies as well as marker-assisted selection in 
cattle breeding.

Methods
Animal resources and control of data quality
Data were obtained from 96 Holstein cattle, including 10 
cows and 86 bulls, and 447 Simmental bulls. Genotyping 
was performed using the Illumina BovineHD BeadChip 
that includes 777, 962 SNPs. To ensure the high quality 
of the SNP data, a series of quality control measures was 
performed. The following criteria were applied for qual-
ity control: (1) an individual sample was removed when 
the missing genotype rate per individual was higher than 
0.05; SNPs were removed (2) when the minor allele fre-
quency (MAF) was lower than 0.05, (3) when there was 
no known autosomal genomic location (UMD 3.1), (4) 
when the SNP genotypes were not in Hardy–Weinberg 
equilibrium (P  >  10−6). However, for the XP-EHH and 
FST tests, loci with a MAF lower than 0.05 were also 
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included. Beagle (version 3.3.2) [22] was used to impute 
missing genotypes and infer the haplotype phase. To 
ensure independence among the individuals collected in 
both populations, a relatedness test was performed using 
PLINK [23]. A set of approximately independent SNPs 
was extracted using the PLINK option: indep-pairwise 50 
5 0.2, i.e., removal of one SNP of a pair of SNPs that have 
a pairwise r2 higher than 0.2 within a window of 50 SNPs, 
and shifting the window by steps of five SNPs. The pair-
wise IBD was estimated for pairs of individuals within 
each population. Individuals of a pair of individuals that 
had a pi-hat value greater than 0.2 were considered to 
be closely related, and thus, one individual was removed 
from the analysis.

Population structure
To characterize the origins of the Chinese Holstein and 
Simmental populations, we conducted a principal com-
ponent analysis (PCA) using EIGENSOFT 6.0.1 [24] 
and breed assignment analyses using WIDDE [25]. For 
each population, 15 individuals were randomly selected 
to conduct analyses. In breed assignment analyses, the 
allele sharing distance (ASD) was calculated between test 
individuals and individuals in the world reference dataset 
included in WIDDE. For each test individual, the aver-
age ASD with all the individuals of each reference popu-
lation was calculated and the top five genetically closest 
populations were summarized. As only populations with 
at least 15 individuals are included in the world reference 
dataset in WIDDE, the Simmental reference population, 
which included 10 individuals genotyped on the Illu-
mina BovineHD BeadChip, although present in WIDDE 
was not included in the world reference dataset. There-
fore we downloaded the world reference dataset and the 
Simmental reference population from WIDDE, and con-
ducted PCA using EIGENSOFT rather than WIDDE. 
The downloaded dataset included 2513 individuals geno-
typed by either the Illumina BovineHD BeadChip or Illu-
mina BovineSNP50 BeadChip. Before conducting PCA, 
the data was filtered. To merge our dataset and the data-
set downloaded from WIDDE, we retained only common 
SNPs. Then, PLINK [23] was used to exclude individuals 
with a missing genotype rate higher than 0.05, SNPs with 
a missing genotype rate higher than 0.25, and SNPs with 
a MAF lower than 0.01.

Haplotype‑block partitioning
For the purpose of this study, we used the algorithm sug-
gested by Gabriel et al. [26], which defines a pair of SNPs 
to be in ‘strong LD’ if the one-sided upper 95  % con-
fidence bound on D’ is higher than 0.98, and the lower 
bound is higher than 0.7. A haplotype block is defined as 
a region across which 95 % of the informative SNP pairs 

show strong LD. LD statistics were estimated, and hap-
lotype blocks were constructed using HAPLOVIEW [27] 
v4.2 based on the reconstructed haplotypes.

Detection of selection signatures within populations
The LRH test statistics were calculated in both directions 
and for all SNPs using Sweep 1.1 [4], for the Holstein and 
Simmental populations, separately. The extended haplo-
type homozygosity (EHH) for each core SNP was calcu-
lated at a marker with all EHH values of 0.04, which is 
roughly equivalent to a genetic distance of 0.25  cM [4]. 
To correct for local variation in recombination rates, 
the EHH of the tested core allele was compared with the 
EHH of all other core alleles combined, and resulted in 
a relative EHH (REHH). Then, REHH scores were log-
transformed (ln(REHH)) and split into 20 bins with 
equally-spaced allele frequencies, i.e., with allele fre-
quencies ranging from 0 to 5, 5 to 10 %, and so on. The 
ln(REHH) scores were then normalized in each bin to 
obtain a zero mean and unit variance. The single-SNP 
scores were further used for analysis of non-overlap-
ping 500-kb windows. To define candidate regions, we 
used the SNPs that had an LRH greater than 2.6 in each 
window as test statistic, following a previously reported 
method [28]. We clustered windows with an increment 
of 20 SNPs (i.e., windows with less than 20 SNPs were 
clustered as one group; windows with 20 to 40 SNPs were 
clustered as one group, and so on) and groups with few 
windows were excluded. Thus, for both the Holstein and 
Simmental populations, all windows with less than 40 
SNPs or more than 200 SNPs were excluded (see Addi-
tional file 1: Figure S1). For each window, we defined the 
proportion of SNPs with an LRH greater than 2.6 as the f 
value. Within each group, for each window i, the P value 
was defined as the fraction of the windows with a higher 
f value than that of window i. Windows with P values less 
than 1 % were considered as candidate regions.

Detection of selection signatures between populations
Highly differentiated genomic regions between these 
two breeds were detected using two between-population 
methods, FST and XP-EHH tests. A Bayesian algorithm 
proposed by Gianola et al. [29] was used to estimate FST. 
This method consists of two steps. The first step uses a 
simple Bayesian model to draw samples from the pos-
terior distribution of θ-parameters, i.e., FST. This step 
assigns a weakly informative prior (Beta
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s = 1, 2, . . . , S be a sample from the posterior distribu-
tion of pr,l the frequency of allele Al at locus l in group r,  
r = 1, 2, …, R. A draw from the posterior distribution of 
θl s given by:

Then, from S samples, the mean of the posterior distribu-
tion of θ1 can be calculated and taken as the point esti-
mate of θ1. In the second step, the distribution of the θ 
values across the loci was used to explore the underlying 
structure, presumably caused by different evolutionary 
forces, e.g., neutral, balancing or directional selection. 
By using the FlexMix package [30] in the R project, a 
sequence of finite mixture models was implemented to 
fit to θ values, and we were able to observe a mixture of 
distributions that resulted in clusters representing the 
different types of acting mechanisms. Model parameters 
were estimated by maximum likelihood via the expecta-
tion–maximization algorithm. The locus was assigned 
to the component with the largest conditional probabil-
ity. Models with different numbers of components were 
compared using Akaike’s information criterion (AIC), 
and the one with the smallest AIC was preferred. The 
components with the highest and lowest means of θ val-
ues were supposed to be possible signals left by direc-
tional and balancing selection, respectively.

To identify highly differentiated regions, we divided 
the genome into non-overlapping 500-kb windows. The 
FST value was calculated for each SNP and then averaged 
over the SNPs located in each window. The averaged FST 
value was used as the test statistic. Windows that were 
located at the extreme 2.5 % of the empirical distribution 
were considered as candidate regions for positive selec-
tion, as described by Qanbari et al. [9].

Furthermore, to clarify how natural and artificial selec-
tion have shaped population differentiation, we employed 
the approach proposed by Barreiro et  al. [31]. SNPs 
were classified into the following five classes: non-genic, 
intronic, exonic, 5′ UTR and 3′ UTR. Since demography 
shapes genome-wide genetic variation, any difference 
in the degree of differentiation between SNP classes is 
expected to result from the process of selection, rather 
than demography. The number of low-FST SNPs among 
non-genic SNPs was compared with the number of each 
of the last four SNP classes using the Chi square test of 
independence. In this analysis, non-genic SNPs were 
assumed to be neutral. Therefore, an excess of low-FST 
SNPs in one SNP class indicates potential balancing or 
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negative selection, and an excess of high FST SNPs sug-
gests potential positive selection.

For the XP-EHH test [4], the statistics were calculated 
in both directions and for all SNPs using the software 
package coded by Joseph Pickrell [28]. The definition of 
candidate windows was the same as in the method for the 
LRH test, except that the maximum |XP-EHH| value was 
used as the test statistic for each 500-kb non-overlapping 
window. We clustered windows by the number of SNPs 
in increments of 20 SNPs, and all windows with less than 
80 SNPs or more than 220 SNPs were excluded to remove 
the groups with few windows (see Additional file 2: Fig-
ure S2). Within each group, for each window i, the frac-
tion of the windows with a maximum |XP-EHH| value 
greater than that of window i was used as the empirical 
P value for window i. Windows with P values less than 
1 % were considered as candidate regions. According to 
the sign of the maximum XP-EHH score in each window, 
candidate windows could be classified into two groups. 
Since the Holstein and Simmental populations were 
treated as populations A and B, windows with a positive 
maximum XP-EHH score were collected in one group, 
suggesting potential selection in the Holstein population; 
the other group, suggesting potential selection in the 
Simmental population, contains the remaining windows.

Enrichment analyses
Gene contents in the candidate regions were retrieved 
from the UCSC Table Brower [32]. Before conducting 
functional annotation, we selected candidate genes within 
windows that presented selection signals according to 
the LRH and XP-EHH tests. For the LRH test, each gene 
overlapping with a candidate window was given a score 
corresponding to the FST average of SNPs localized within 
the boundary positions of the gene extended by 1  kb 
upstream and downstream; the gene with the maximum 
score in each window was selected for functional anno-
tation. For the XP-EHH test, we considered only genes 
within the 100 kb region around the SNP with the maxi-
mum |XP-EHH| score, since XP-EHH peaked more nar-
rowly around the candidate variant than other methods, 
to detect selection signals [6]. Given that a limited num-
ber of genes have been annotated in the bovine genome, 
first we converted the cattle RefSeq mRNA IDs to orthol-
ogous human Ensembl gene IDs from the Ensembl Genes 
84 Database by BioMart [33]. Gene Ontology (GO) and 
KEGG pathway analyses were performed in the Holstein 
and Simmental populations separately using DAVID 6.8 
[34]. The candidate genes were classified into categories 
by cellular component, molecular function, biological 
process and pathway and were compared to the human 
genome background supplied by DAVID.
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Results
Data quality control
In the Holstein population, a total of 574,166 autosomal 
SNPs with an average distance of 4.37 ± 6.92 kb between 
adjacent SNPs were retained, and all 96 individuals 
passed quality control. The Simmental population dataset 
after quality control comprised 612,148 autosomal SNPs 
(with an average distance of 4.10 ± 6.08 kb between adja-
cent SNPs) for 374 of the 447 individuals. The remaining 
73 Simmental individuals were removed because of high 
rates of missing genotypes (i.e., missing rate per indi-
vidual >0.05). In the next step of relatedness testing, 40 
Holstein and 278 Simmental individuals were excluded 
because of close relationships, which resulted in 56 and 
96 unrelated individuals in the Holstein and Simmental 
populations, respectively.

Population structure
In the PCA analyses, after merging the Chinese Holstein 
population and the dataset downloaded from WIDDE, 
2252 individuals with 34,533 SNPs remained; after merg-
ing the Chinese Simmental population and the dataset 
downloaded from WIDDE, 2252 individuals with 35,508 
SNPs remained. The Chinese Holstein population clus-
tered together with the European Holstein population 
(see Additional file  3: Figure S3), and the Chinese Sim-
mental population was located close to the European 
Simmental population (see Additional file  4: Figure S4). 
Although a few Simmental individuals were weakly 
admixed with indicine breeds, we assumed that this weak 
admixture had a limited effect on the detection of selec-
tion signatures in this study. The results of breed assign-
ment analyses (see Additional file  5: Table S1) showed 
that all Chinese Holstein individuals were assigned to 
the European Holstein population, and all Chinese Sim-
mental individuals were assigned to the Montbéliarde 
and Abondance populations. Because the world refer-
ence dataset in WIDDE only included populations with 
at least 15 individuals, the Simmental population, which 
was present in WIDDE but not included in the world ref-
erence dataset, was not involved in the breed assignment 
analyses. As a result, the Chinese Simmental individu-
als were assigned to the closest populations, i.e., Mont-
béliarde and Abondance. Therefore, both the PCA and 
breed assignment analyses confirmed that the Chinese 
Holstein and Simmental populations originated from 
Europe.

Pattern of haplotype blocks
The definition of haplotype blocks for two breeds was 
determined via Haploview [27]. The distribution of hap-
lotype block sizes is in Fig. 1. In the Holstein population, 
504,049 SNPs formed 60,283 blocks that included more 

than two SNPs for all individuals, with an average of 8.36 
SNPs and a mean size of 28.0 ±  38.8  kb per block. In 
the Simmental population, 514,803 SNPs formed 82,619 
blocks that included at least two SNPs for all individuals, 
with an average of 6.23 SNPs per block. The mean length 
of the blocks was 18.1 ± 23.7 kb.

Detection of selection signatures within populations
A total of 1,325,248 and 2,409,830 LRH tests were per-
formed for the Holstein and Simmental populations. The 
distributions of the LRH statistics in the two popula-
tions are in Figure S5 (see Additional file  6: Figure S5). 
0.57 and 0.55 % of the LRH values were higher than 2.6 in 
the Holstein and Simmental data, respectively. The LRH 
tests resulted in 54 candidate windows for each popula-
tion. However, none of them overlapped between the 
two populations, which suggests that selection may have 
affected different loci in these two breeds. Figure 2 shows 
a plot diagram that visualizes the distribution of selection 
signatures across the genome. Corresponding statistics 
and genes of interest in the genomic regions that exhib-
ited extreme peaks across breeds are in Table  1. These 
genes were mainly related to reproduction and produc-
tion traits, i.e., milk production and growth traits.

Selection signatures between populations
Overall, FST values for SNPs ranged from 0.02 to 0.05 
with an average of 0.039, which was similar to the results 
observed by Qanbari et al. [9]. These low FST indicate the 
close relationship between these two breeds although 
they were selected for different breeding goals. The 
genome-wide distributions of the average FST and maxi-
mum XP-EHH values for each 500-kb window are in 
Additional file  7: Figure S6. The FST test identified 127 
candidate windows and the XP-EHH test identified 52 
candidate windows, with respectively 48 and 4 of them 
including selection signals in the Holstein and Simmental 
populations, respectively.

Overall comparison of selection signals between methods
As expected, each individual test can detect regions that 
display selection signals according to the features of the 
genetic polymorphism data. Distributions of overlapping 
candidate windows among the three methods, i.e., LRH, 
FST, and XP-EHH, are summarized in Table 2 and Addi-
tional file 8: Table S2.

Clearly, only a small proportion of signals overlapped 
between these tests. For example, the signals obtained 
by the FST test and XP-EHH for the Holstein popula-
tion displayed the largest number of overlapping win-
dows (n = 12), while for the Simmental population there 
were only six overlapping windows. However, no can-
didate region was found by all three methods, which is 
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attributed to the different characteristics of these meth-
ods and further confirms that the integration of various 
detection methods should increase the sensitivity of the 
detection of selection signatures.

Gene content analyses within genomic regions 
with selection signals
The annotation of candidate regions that were detected 
by LRH, XP-EHH and FST revealed a panel of function-
ally important genes, such as growth hormone receptor 
(GHR), AE binding protein 1 (AEBP1), chondroitin sul-
fate synthase 1 (CHSY1), ubiquitin protein ligase E3A 
(UBE3A) and myosin IIIB (MYO3B), which are involved 
in growth, milk production, reproduction and immune 
response. For example, GHR is a well-known gene related 
to milk production. Several association studies [35–37] 
have confirmed its major effect on milk yield and com-
position. The LRH test revealed a selection signal for the 
MYO3B gene in the Holstein population. This gene was 
previously identified as a quantitative trait locus (QTL) 
related to resistance to bovine tuberculosis [38].

For enrichment analysis, we selected genes within the 
candidate windows that were detected by the LRH and 
XP-EHH tests. Seventy-seven genes (37 genes identi-
fied by the LRH test and 40 genes by the XP-EHH test) 
and 43 genes (38 genes by the LRH test and 5 genes by 

the XP-EHH test) remained for the Holstein and Sim-
mental data, respectively, as shown in Additional 
file  9: Table S3. Additional file  10: Table S4 shows the 
enriched terms based on these two sets of genes. How-
ever, none of them reached the level of significance after 
Benjamini-Hochberg FDR correction [39]. For the Hol-
stein data, enrichments were found for ubiquitin con-
jugation (ubiquitin-conjugating enzyme activity and 
ubiquitin-mediated proteolysis), embryo development 
(embryonic hindlimb morphogenesis) and the immune 
system (response to lipopolysaccharide) and for the Sim-
mental data, the enriched terms were related to repro-
duction (spermatid nucleus differentiation, acrosome 
assembly), protein binding, blood coagulation and meta-
bolic process.

Impact of selection on population differentiation
By comparing the degree of population differentiation 
among different classes of SNPs (non-genic, intronic, 
exonic, 5′ UTR, 3′ UTR), we found that the estimated 
mean FST values were similar for different classes of SNPs 
and concordant with the genome-wide estimate, with the 
highest mean FST value reaching 0.039 in the 3′ UTR and 
5′ UTR regions. Therefore, we investigated the distribu-
tion of SNPs with high or low FST values among differ-
ent classes. By fitting the distribution of FST values over 
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loci into a sequence of finite mixture models, SNPs were 
classified into six clusters (see Additional file  11: Figure 
S7; Additional file  12: Table S5). Among these clusters, 

Component 2, including 28,979 SNPs with a high FST, was 
representative of potential directional selection, whereas 
the 180,959 SNPs in Component 4 were assumed under 
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Fig. 2 Distribution of selection signatures across the genomes of Holstein and Simmental cattle

Table 1 Summary of the most interesting candidate genes within extreme signals

Chr Position (Mb) Methods Candidate gene Function or full name

1 61.5–62.0 XP‑EHH (Hol) R3HDM1 Feed efficiency

4 50.5–51.0 LRH (Sim), FST CAV1, CAV2 Lipolytic enzymes

4 77.5–78.0 FST AEBP1 Adipogenesis

4 93.0–93.5 LRH (Hol) LEP Milk production

5 44.0–45.0 FST LYZ cluster Immune stress; Rumen digestion

7 5.0–5.5 LRH (Hol) MYO3B Resistance to bovine tuberculosis

16 42.5–43.0 FST AGTRAP Mammary gland

18 14.5–15.0 FST MC1R Coloration

20 31.5–32.0 FST GHR Milk production

21 5.0–5.5 FST CHSY1 Bone development
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potential purifying or balancing selection. Compared to 
non-genic SNPs, the exon, intron and 3′ UTR classes all 
presented a significant excess of low-FST SNPs, which 
was particularly marked in introns (Fig. 3). To determine 
why the proportion of low-FST SNPs was higher in the 
exons, we split the different SNP classes into 10 equally-
sized bins based on the unweighted means of minor allele 
frequencies in these two populations. As shown in Fig. 4, 
in the low-MAF bin (MAF ranging from 0 to 0.05), the 
proportion of low-FST SNPs was significantly higher in 
exons than in non-genic regions. This result is consistent 
with the stronger purifying selection on exons.

Discussion
In this study, we implemented three tests based on allele 
frequency and LD to detect the genome-wide footprints 
left by artificial selection in Holstein and Simmental 
populations. Our results revealed a series of well-known 
and novel genes, such as the GHR and LEP (leptin) genes 
that are related to milk production, MC1R (melanocortin 
1 receptor), which is involved in coat color, and MYO3B 

and FCRL4 (Fc receptor like 4), which are involved in the 
regulation of immune response. We also provided insight 
into the process of population differentiation between the 
Holstein and Simmental breeds and identified divergent 
artificial selection and strong purifying selection. Distin-
guishing recent positive selection from the confounding 
effect of population demographic history continues to be 
a major challenge. Studies using new and powerful tests 
are needed to confirm and refine our results.

In this study, we focused mainly on detecting the foot-
prints of artificial selection left in the Holstein and Sim-
mental populations after the process of domestication. 
These two breeds were selected because they had distinct 
phenotypes but close genetic relationships. On the one 
hand, Holstein, as a dairy breed, is distinguished for its 
high milk production, whereas Simmental is a dual-pur-
pose breed. The different breeding goals are expected to 
intensify the differentiation between these two breeds. 
On the other hand, the FST value between these two 
breeds was reported to be very low (FST = 0.04) by Qan-
bari et  al. [9], which indicates a very close relationship. 
Our results confirm these previous findings. One expla-
nation for the unexpectedly close relationship is that 
artificial selection is the primary cause of the distinct 
phenotypic traits between Holstein and Simmental cattle. 
The genome-wide scan for selection signatures by com-
paring relatively close populations, such as Holstein and 
Simmental, is unlikely to be confounded by demographic 
history and ascertainment bias.

Compared with previous studies using the Bovine 50K 
SNP chip, the high-density SNP panel is expected to 

Table 2 Summary of  overlapping windows with  the high-
est score

LRH (Sim) FST XP‑EHH (Hol) XP‑EHH (Sim)

LRH (Hol) 0 1 1 0

LRH (Sim) 6 0 0

FST 12 0
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offer additional accuracy. Since false positives may occur 
at any one site by chance, regions with a set of positive 
SNPs are more likely to be true signals [40]. Thus, win-
dow-based approaches incorporating signals across mul-
tiple sites can improve the power and reduce the rate of 
false positives. However, in the Bovine 50K SNP chip, 
there are only approximately six SNPs per 500-kb win-
dow [9], which is unlikely to efficiently reduce false dis-
covery rate, whereas the average size of windows that 
contain more than 110 SNPs should be reasonably large 
in our study. In addition, for haplotype-based tests, the 
high-density SNP panel is expected to provide more reli-
able and comprehensive LD information. Furthermore, 
the low-density SNP panel is very poor for implement-
ing the LRH test based on haplotype blocks defined by 
Gabriel et al. [26], which is widely used for the detection 
of selection signatures [17, 19, 41]. The low SNP den-
sity may lead to two biases in the detection of haplotype 
blocks, as noted by Gabriel et al. [26]. First, small blocks 
are less likely to be discovered in regions with few SNPs. 
Conversely, identified blocks tend to extend beyond the 
boundaries of the blocks. Thus, Villa-Angulo et  al. [42] 
suggested that at least 574,000 SNPs would be necessary 
to characterize the haplotype block structure across the 
entire genome. As shown in Fig. 1, although most of the 
SNPs were located within large blocks in both Holsteins 
and Simmentals, the majority of the blocks were less 
than 50 kb. We found a mean block size of approximately 
20  kb, which is less than the average distance between 
adjacent markers in the Illumina Bovine 54K SNP chip. 
Accordingly, most blocks would be missed or enlarged in 
low-density SNP panels, which would weaken the power 
of the LRH test using core haplotype blocks.

In comparison to the human haplotype map [1], the 
average block size observed in this study is slightly larger 
than that observed within the human ENCODE regions 
which range from 7.3  kb in YRI (Yoruba from Ibadan, 
Nigeria) to 16.3 kb in CEU (Utah residents with ancestry 
from northern and western Europe). This difference can 
be partially attributed to the smaller effective population 
size of cattle, which is due to the significant population 
bottlenecks that occurred during the process of domes-
tication and the establishment of modern breeds [43]. 
However, it must be noted that this difference could also 
be due to other factors, such as SNP density, sample size 
and population structure.

To detect selection signals, we implemented three com-
plementary methods, i.e. LRH, XP-EHH and FST, which 
each have their own features. Both the FST and XP-EHH 
tests are based on population differentiation, but they are 
complementary in time scale. The FST test compares the 
variation of allele frequencies within and between popu-
lations, and the locus that shows the largest differences 

in allele frequencies between populations is assumed 
to be a signal of selection. The XP-EHH test compares 
the extended haplotype homozygosity between popu-
lations. Compared to allele frequency difference, long-
range haplotypes persist for relatively short periods of 
time before being broken down by recombination [44]. 
Thus, the FST test is more efficient for detecting ancient 
positive selection than the XP-EHH test. Moreover, as 
mentioned above, FST exploits the different patterns of 
polymorphism between recently diverged populations 
and thus is powerful for detecting selection on standing 
variation [14]. Both LRH and XP-EHH tests are designed 
to detect recent selection signatures, whereas LRH has 
more power to detect incomplete sweeps, and XP-EHH 
is efficient for detecting selected alleles that are near or 
at fixation [4]. Since the domestication of cattle occurred 
~10,000 years ago, these three methods are expected to 
detect the signals of selection during different periods 
of cattle domestication and breeding. Notably, although 
there is a difference in sample size between the two pop-
ulations, its impact on these three methods is expected 
to be small. For the FST test, the posterior density of the 
allelic frequency is generated by Beta

(

nA +
1
2 , na +

1
2

)

 to 
account for the sample size effect [29]. For the LRH and 
XP-EHH tests, few samples are required to maintain the 
power of iHS and XP-EHH [28]. Accounting for the simi-
lar power of LRH and iHS, the difference in sample size 
is not expected to influence markedly the power of LRH.

We identified 102 and 58 windows that displayed evi-
dence of selection for the Holstein and Simmental popu-
lations, respectively. There were no overlapping windows 
between these two populations. The follow-up enrich-
ment analyses also resulted in terms that are related to 
different biological functions, although none of them 
reached the level of significance after Benjamini–Hoch-
berg FDR correction [39]. For example, terms associ-
ated with proteolysis, embryo development and immune 
response were found for the Holstein population and 
terms involved in reproduction and metabolism were 
found for the Simmental population. Our findings sug-
gest that these two populations may have been diver-
gently selected for different loci.

Comparing the overlapping windows that were detected 
between methods (see Additional file  8: Table S2) with 
the core selective sweep (CSS) regions reported in [45], 
we found a list of common candidate windows and inter-
esting genes. For example, in our study the FST and LRH 
tests on the Holstein population suggested that selection 
occurred in the window between 93.5 and 94 Mb on chro-
mosome 5. This window is located within CSS-113 that 
spans the region between 91.8 and 94.4 Mb and was iden-
tified in three breeds [45]. This window was annotated as 
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harboring the MGST1 (microsomal glutathione S-trans-
ferase 1) gene, which was identified as a candidate gene 
for milk composition (including fat yield and percentage) 
in a multibreed genome-wide association study [46]. Two 
sequence-based association tests [47, 48] further con-
firmed the association between MGST1 variants and milk 
composition. Moreover, eQTL mapping with a high-depth 
mammary RNA sequence dataset revealed that the expres-
sion of MGST1was associated with a QTL genotype for fat 
percentage [48]. Therefore, taken together, these studies 
confirm MGST1 as the causal gene affecting milk compo-
sition. Another window (between 50.5 and 51 Mb on chro-
mosome 4), in which signals of selection were detected by 
the FST and LRH tests for the Simmental population, con-
tained CSS-88 that is part of the only selection signature 
identified in Fleckvieh cattle [49], which is a dual-purpose 
breed like the Simmental breed. This window encompasses 
the CAV1 and CAV2 (caveolin 1 and 2) genes, which play 
an important role in the control of lipolysis [50, 51].

It is worth noting that the LRH test failed to detect 
strong signals of selection in the regions that contain 
genes that are known to be related to milk production, 
such as DGAT1 and GHR, in the Holstein population. 
Thus, we examined the windows that include these two 
genes, i.e., window 1.5–2.0 Mb on BTA14 for the DGAT1 
gene and windows 31.5–32.0 and 32.0–32.5 Mb on BTA20 

which are crossed by the GHR gene. We found 40, 109 
and 78 SNPs in these three windows, respectively, but no 
EHH or REHH value was calculated from these SNPs. We 
hypothesize that this might be due to the extensive LD in 
the vicinity of the DGAT1 and GHR genes (see Additional 
file 13: Figure S8), which prevents the LRH test to identify 
any SNP with an EHH between 0.03 and 0.05 in a 1-Mb 
area from the core SNP. For these two genes, we chose the 
closest SNP near the causal mutation, and calculated its 
REHH at a 1-Mb distance instead of the marker H 0.04. 
As shown in Fig. 5, each of these genes had one allele that 
displayed more extended haplotype homozygosity than 
the other, which is a clear signal of recent selection. This 
analysis showed that the extensive LD present in the cat-
tle genome may result in our single-SNP LRH test missing 
some recent selection signatures.

Finally, in the analysis of the impact of human-medi-
ated selection on population differentiation, we found 
that low-FST SNPs were enriched in the low-MAF bin 
(MAF: 0–0.05) in exons compared to non-genic regions. 
The enrichment is most likely caused by purifying selec-
tion on exons. Moreover, there was little difference in 
MAF distributions between non-genic regions and exons 
(see Additional file  14: Figure S9), which excluded the 
possibility that MAF distribution within the low-MAF 
bin might influence the proportion of low-FST SNPs.

Fig. 5 EHH versus distance charts and haplotype bifurcation diagrams for DGAT1 (a) and GHR (b). EHH versus distance charts (1) and haplotype 
bifurcation diagrams (2) were plotted with Sweep 1.1. The closest markers (ARS‑BFGL‑NGS‑4939 for DGAT1 and BovineHD2000009188 for GHR) to 
causal mutations were used as core SNPs. The haplotype bifurcation diagram is bi‑directional with the root representing a core SNP. The thickness of 
the lines corresponds to the frequency of the indicated haplotype
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Conclusions
Using a complementary analysis based on the 770K high-
density SNP chip, we constructed a high-resolution map 
of selection signatures for Chinese cattle populations, 
which increases the spectrum of selective signals in the 
cattle genome. In addition, the selective signals identified 
in this study clearly reflected the stronger purifying selec-
tion that occurred in the exons of the bovine genome. 
This result provides further insight into the genome evo-
lution and selection mechanisms in cattle.

Authors’ contributions
JFL designed the study. MC, DP, and JFL conducted the data analyses. MC 
drafted the manuscript. MC, JFL, HR, JF and GS contributed to revising and 
editing the manuscript. AW, JL, LJ and QZ provided study material and data. 
All authors read and approved the manuscript.

Author details
1 Department of Animal Genetics, Breeding and Reproduction, China Agri‑
cultural University, Beijing 100193, China. 2 Center for Quantitative Genetics 
and Genomics, Department of Molecular Biology and Genetics, Aarhus 
University, AU‑Foulum, 8830 Tjele, Denmark. 3 National Natural Science Foun‑
dation of China, Beijing 100085, China. 4 Institute of Animal Science, Chinese 
Academy of Agricultural Science, Beijing 100193, China. 

Additional files

Additional file 1: Figure S1. Number of SNPs in 500‑kb windows for the 
LRH test.

Additional file 2. Figure S2. Number of SNPs in 500‑kb windows for the 
XP‑EHH test.

Additional file 3: Figure S3. PCA analysis on Chinese Holstein popula‑
tion (HOL_CHI) with the world reference dataset and the Simmental 
reference population included in WIDDE.

Additional file 4: Figure S4. PCA analysis on Chinese Simmental 
population (SIM_CHI) with the world reference dataset and the Simmental 
reference population included in WIDDE.

Additional file 5: Table S1. The top 5 genetically closest populations to 
Chinese Holstein and Simmental individuals in breed assignment analyses.

Additional file 6: Figure S5. Genome‑wide distribution of SNP‑based 
LRH values for Holstein and Simmental. The dash line indicates the thresh‑
old for the LRH test (LRH > 2.6).

Additional file 7: Figure S6. Genome‑wide distribution of 500‑kb 
window‑based maximum |XP‑EHH| and average FST. The dash line indi‑
cates the threshold for the FST test.

Additional file 8: Table S2. Overlapping windows between LRH, XP‑EHH 
and FST tests.

Additional file 9: Table S3. Candidate genes used for functional 
annotation.

Additional file 10: Table S4. DAVID analyses on candidate genes.

Additional file 11: Figure S7. Rootgrams of the posterior class prob‑
ability for FST values.

Additional file 12: Table S5. Distribution of six components inferred by 
FlexMix analysis and number of SNPs in each component.

Additional file 13: Figure S8. A graphical representation of pairwise D’ 
for the DGAT1 region (A) and GHR region (B).

Additional file 14: Figure S9. Distribution of unweighted means of 
minor allele frequencies for non‑genic and exonic SNPs in the low‑MAF 
bin (0‑0.05).

Acknowledgements
This work was supported by the National High Technology Research 
and Development Program of China [863 Program 2011AA100302, 
2013AA102503]; the National Natural Science Foundations of China 
[31272419]; and the Program for Changjiang Scholar and Innovation Research 
Team in University [IRT1191].

Competing interests
The authors declare that they have no competing interests.

Data archiving statement
The data for this study will be available for download at GenBank after the 
manuscript is accepted for publication.

Received: 25 November 2015   Accepted: 26 September 2016

References
 1. The International HapMap Consortium. A haplotype map of the human 

genome. Nature. 2005;437:1299–320.
 2. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, 

Brooks LD, Durbin RM, et al. A map of human genome variation from 
population‑scale sequencing. Nature. 2010;467:1061–73.

 3. Bovine HapMap Consortium, Gibbs RA, Taylor JF, Van Tassell CP, Barendse 
W, Eversole KA, et al. Genome‑wide survey of SNP variation uncovers the 
genetic structure of cattle breeds. Science. 2009;324:528–32.

 4. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. 
Genome‑wide detection and characterization of positive selection in 
human populations. Nature. 2007;449:913–8.

 5. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive 
selection in the human genome. PLoS Biol. 2006;4:e72.

 6. Grossman SR, Shlyakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, 
et al. A composite of multiple signals distinguishes causal variants in 
regions of positive selection. Science. 2010;327:883–6.

 7. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, et al. 
Detecting recent positive selection in the human genome from haplo‑
type structure. Nature. 2002;419:832–7.

 8. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, et al. Resequencing 50 accessions 
of cultivated and wild rice yields markers for identifying agronomically 
important genes. Nat Biotechnol. 2011;30:105–11.

 9. Qanbari S, Gianola D, Hayes B, Schenkel F, Miller S, Moore S, et al. Applica‑
tion of site and haplotype‑frequency based approaches for detecting 
selection signatures in cattle. BMC Genomics. 2011;12:318.

 10. Flori L, Fritz S, Jaffrezic F, Boussaha M, Gut I, Heath S, et al. The genome 
response to artificial selection: a case study in dairy cattle. PLoS One. 
2009;4:e6595.

 11. Tang K, Thornton KR, Stoneking M. A new approach for using genome 
scans to detect recent positive selection in the human genome. PLoS 
Biol. 2007;5:e171.

 12. Weir BS, Cockerham CC. Estimating F‑statistics for the analysis of 
population‑structure. Evolution. 1984;38:1358–70.

 13. Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, 
et al. Whole‑genome resequencing reveals loci under selection during 
chicken domestication. Nature. 2010;464:587–91.

 14. Innan H, Kim Y. Detecting local adaptation using the joint sampling of 
polymorphism data in the parental and derived populations. Genetics. 
2008;179:1713–20.

 15. Gautier M, Faraut T, Moazami‑Goudarzi K, Navratil V, Foglio M, Grohs C, 
et al. Genetic and haplotypic structure in 14 European and African cattle 
breeds. Genetics. 2007;177:1059–70.

 16. MacEachern S, Hayes B, McEwan J, Goddard M. An examination of posi‑
tive selection and changing effective population size in Angus and Hol‑
stein cattle populations (Bos taurus) using a high density SNP genotyping 
platform and the contribution of ancient polymorphism to genomic 
diversity in Domestic cattle. BMC Genomics. 2009;10:181.

 17. Qanbari S, Pimentel EC, Tetens J, Thaller G, Lichtner P, Sharifi AR, et al. A 
genome‑wide scan for signatures of recent selection in Holstein cattle. 
Anim Genet. 2010;41:377–89.

http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5
http://dx.doi.org/10.1186/s12711-016-0254-5


Page 12 of 12Chen et al. Genet Sel Evol  (2016) 48:76 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 18. Hayes BJ, Chamberlain AJ, Maceachern S, Savin K, McPartlan H, MacLeod 
I, et al. A genome map of divergent artificial selection between Bos taurus 
dairy cattle and Bos taurus beef cattle. Anim Genet. 2009;40:176–84.

 19. Pan D, Zhang S, Jiang J, Jiang L, Zhang Q, Liu J. Genome‑wide detection 
of selective signature in Chinese Holstein. PLoS One. 2013;8:e60440.

 20. Boitard S, Boussaha M, Capitan A, Rocha D, Servin B. Uncovering adapta‑
tion from sequence data: lessons from genome resequencing of four 
cattle breeds. Genetics. 2016;203:433–50.

 21. Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. Evidence 
for two independent domestications of cattle. Proc Natl Acad Sci USA. 
1994;91:2757–61.

 22. Browning SR, Browning BL. Rapid and accurate haplotype phasing and 
missing‑data inference for whole‑genome association studies by use of 
localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.

 23. Purcell S, Neale B, Todd‑Brown K, Thomas L, Ferreira MA, Bender D, et al. 
PLINK: a tool set for whole‑genome association and population‑based 
linkage analyses. Am J Hum Genet. 2007;81:559–75.

 24. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. 
PLoS Genet. 2006;2:e190.

 25. Sempéré G, Moazami‑Goudarzi K, Eggen A, Laloë D, Gautier M, Flori L. 
WIDDE: a web‑Interfaced next generation database for genetic diversity 
exploration, with a first application in cattle. BMC Genomics. 2015;16:940.

 26. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, 
et al. The structure of haplotype blocks in the human genome. Science. 
2002;296:2225–9.

 27. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of 
LD and haplotype maps. Bioinformatics. 2005;21:263–5.

 28. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, et al. 
Signals of recent positive selection in a worldwide sample of human 
populations. Genome Res. 2009;19:826–37.

 29. Gianola D, Simianer H, Qanbari S. A two‑step method for detect‑
ing selection signatures using genetic markers. Genet Res (Camb). 
2010;92:141–55.

 30. Leish F. FlexMix: a general framework for finite mixture models and latent 
class regression in R. J Stat Softw. 2004;11:1–18.

 31. Barreiro LB, Laval G, Quach H, Patin E, Quintana‑Murci L. Natural selection 
has driven population differentiation in modern humans. Nat Genet. 
2008;40:340–5.

 32. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, 
et al. The UCSC table browser data retrieval tool. Nucleic Acids Res. 
2004;32:D493–6.

 33. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. 
Ensembl BioMarts: a hub for data retrieval across taxonomic space. Data‑
base (Oxford). 2011;2011:bar030.

 34. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: 
paths toward the comprehensive functional analysis of large gene lists. 
Nucleic Acids Res. 2009;37:1–13.

 35. Blott S, Kim J, Moisio S, Schmidt‑Kuntzel A, Cornet A, Berzi P, et al. Molecu‑
lar dissection of a quantitative trait locus: a phenylalanine‑to‑tyrosine 
substitution in the transmembrane domain of the bovine growth 
hormone receptor is associated with a major effect on milk yield and 
composition. Genetics. 2003;163:253–66.

 36. Waters SM, McCabe MS, Howard DJ, Giblin L, Magee DA, MacHugh DE, 
et al. Associations between newly discovered polymorphisms in the 
Bos taurus growth hormone receptor gene and performance traits in 
Holstein‑Friesian dairy cattle. Anim Genet. 2011;42:39–49.

 37. Signorelli F, Orrù L, Napolitano F, De Matteis G, Scatà MC, Catillo G, et al. 
Exploring polymorphisms and effects on milk traits of the DGAT1, SCD1 
and GHR genes in four cattle breeds. Livest Sci. 2009;125:74–9.

 38. Bermingham ML, Bishop SC, Woolliams JA, Pong‑Wong R, Allen AR, 
McBride SH, et al. Genome‑wide association study identifies novel loci 
associated with resistance to bovine tuberculosis. Heredity (Edinb). 
2014;112:543–51.

 39. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical 
and powerful approach to multiple testing. J R Stat Soc Ser B Stat Meth‑
odol. 1995;57:289–300.

 40. Vitti JJ, Grossman SR, Sabeti PC. Detecting natural selection in genomic 
data. Annu Rev Genet. 2013;47:97–120.

 41. Fan H, Wu Y, Qi X, Zhang J, Li J, Gao X, et al. Genome‑wide detection of 
selective signatures in Simmental cattle. J Appl Genet. 2014;55:343–51.

 42. Villa‑Angulo R, Matukumalli LK, Gill CA, Choi J, Van Tassell CP, Grefenstette 
JJ. High‑resolution haplotype block structure in the cattle genome. BMC 
Genet. 2009;10:19.

 43. McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppiet‑
ers W, et al. Whole genome linkage disequilibrium maps in cattle. BMC 
Genet. 2007;8:74.

 44. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky 
O, et al. Positive natural selection in the human lineage. Science. 
2006;312:1614–20.

 45. Gutierrez‑Gil B, Arranz JJ, Wiener P. An interpretive review of selective 
sweep studies in Bos taurus cattle populations: identification of unique 
and shared selection signals across breeds. Front Genet. 2015;6:167.

 46. Raven LA, Cocks BG, Hayes BJ. Multibreed genome wide association can 
improve precision of mapping causative variants underlying milk produc‑
tion in dairy cattle. BMC Genomics. 2014;15:62.

 47. Raven LA, Cocks BG, Kemper KE, Chamberlain AJ, Vander Jagt CJ, God‑
dard ME, et al. Targeted imputation of sequence variants and gene 
expression profiling identifies twelve candidate genes associated with 
lactation volume, composition and calving interval in dairy cattle. Mamm 
Genome. 2016;27:81–97.

 48. Littlejohn MD, Tiplady K, Fink TA, Lehnert K, Lopdell T, Johnson T, et al. 
Sequence‑based association analysis reveals an MGST1 eQTL with pleio‑
tropic effects on bovine milk composition. Sci Rep. 2016;6:25376.

 49. Qanbari S, Pausch H, Jansen S, Somel M, Strom TM, Fries R, et al. Classic 
selective sweeps revealed by massive sequencing in cattle. PLoS Genet. 
2014;10:e1004148.

 50. Cohen AW, Razani B, Schubert W, Williams TM, Wang XB, Iyengar P, et al. 
Role of caveolin‑1 in the modulation of lipolysis and lipid droplet forma‑
tion. Diabetes. 2004;53:1261–70.

 51. Sumner‑Thomson JM, Vierck JL, McNamara JP. Differential expression 
of genes in adipose tissue of first‑lactation dairy cattle. J Dairy Sci. 
2011;94:361–9.


	Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Animal resources and control of data quality
	Population structure
	Haplotype-block partitioning
	Detection of selection signatures within populations
	Detection of selection signatures between populations
	Enrichment analyses

	Results
	Data quality control
	Population structure
	Pattern of haplotype blocks
	Detection of selection signatures within populations
	Selection signatures between populations
	Overall comparison of selection signals between methods
	Gene content analyses within genomic regions with selection signals
	Impact of selection on population differentiation

	Discussion
	Conclusions
	Authors’ contributions
	References




