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Abstract 

Background: DNA‑based predictions for hard‑to‑measure production traits hold great promise for selective breed‑
ing programs. DNA pooling might provide a cheap genomic approach to use phenotype data from commercial flocks 
which are commonly group‑mated with parentage unknown. This study on sheep explores if genomic breeding 
values for stud sires can be estimated from genomic relationships that were obtained from pooled DNA in combina‑
tion with phenotypes from commercial progeny.

Methods: Phenotypes used in this study were categorical data. Blood was pooled strategically aiming at even pool 
sizes and within sex and phenotype category. A hybrid genomic relationship matrix was constructed relating pools 
to sires. This matrix was used to determine the contribution of sires to each of the pools and therefore phenotype 
category by using a simple regression approach. Genomic breeding values were also estimated using the hybrid 
genomic relationship matrix.

Results: We demonstrated that, using pooled DNA, the genetic performance of sires can be illustrated as their 
contribution to phenotype categories and can be expressed as a regression coefficient. Genomic estimated breeding 
values for sires were equivalent to the regression coefficients and are a commonly used industry tool.

Conclusions: Genotyping of DNA from pooled biological samples offers a cheap method to link phenotypic infor‑
mation from commercial production animals to the breeding population and can be turned into information on the 
genetic value of stud sires for traits that cannot be measured in the stud environment.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic predictions have had a significant impact on 
livestock breeding systems for which large reference 
populations with genotypic and phenotypic information 
exist [1]. The opportunity to develop genomic predic-
tions has been addressed by forming specialized nucleus 
herds or flocks that are extensively phenotyped for the 
beef and sheep industries [2, 3]. Commercial flocks pro-
vide an unmined resource of abundant phenotypes that 
are assessed or measured during routine commercial 
husbandry procedures. Using commercial phenotypes 

for genetic evaluation has been hindered by the fact 
that performance records are not usually captured, ani-
mals are often not individually identified and/or no par-
entage information exists because flocks or herds are 
group-mated. However, in combination with affordable 
genotyping, commercial phenotypes could add genetic 
information on sire performance under commercial con-
ditions. In spite of the decreasing cost of genotyping, it 
would still be a substantial expense to assess the perfor-
mance of sires in a commercial environment, based on 
individual genotypes. Commercial phenotypes can be 
exploited in a cost-effective manner without needing to 
capture individual records by strategically pooling DNA 
and using it in a genetic evaluation approach [4].
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Allele frequencies can be estimated from pooled geno-
type data and subsequently estimated effects of single 
nucleotide polymorphisms (SNPs) from a genome-wide 
association study (GWAS) have been demonstrated to be 
equivalent to effects of SNPs from individual genotyping 
[4, 5]. This approach reduces the cost of GWAS [6–8]. It 
has also been demonstrated that the genetic merit of sires 
can be estimated from pooled DNA in combination with 
phenotype information collected on commercial proper-
ties during routine husbandry procedures [5, 9].

The objective of this study was to determine whether, 
in the absence of individual genotypes, pooled DNA 
genotypes can be used in combination with commer-
cial progeny records on a categorical phenotype to esti-
mate genomic breeding values and to illustrate these in 
a regression approach as a sire’s genetic contribution to 
a particular phenotype. This approach could be a cost-
effective commercial progeny test to inform stud breed-
ers and commercial producers on the genetic suitability 
of sires for specific environments.

Methods
Animals
Approval was granted (AEC approval number 1582) to 
use the animals in this study by the Animal Ethics Com-
mittee of the Australian Animal Health Laboratory, Vic-
toria. Two thousand six hundred 13  to  14  months old 
Merino sheep were available for the trial. The sires of the 
sheep in the study were obtained from a stud in south-
ern New South Wales which had been the sole provider 
of rams to the commercial property for many years. For 
management purposes, the sheep were maintained in 
two groups according to sex, ewes (female) and wethers 
(castrated males).

The phenotype of interest in this study is called “dag 
score” and describes the amount of faecal soiling in the 
breech area of the sheep. Breech soiling devalues the wool 
harvested from the sheep, increases time and management 
costs of routine husbandry practices and can predispose 
the animal to increased risk of flystrike. Dag score is a her-
itable trait with a heritability of about 0.35, depending on 

the age of the animal at the time of phenotype assessment 
[10], but is not expressed in all environments. Dags were a 
problem for this specific commercial property, but the stud 
from which this commercial property sourced rams was 
located in an environment where dags do not occur and no 
information existed for the sires’ propensity for dag forma-
tion. The dag score phenotype was assessed on a scale of 
1 (no soiling) to 5 (heavy soiling) based on Visual Sheep 
Scores, a commercial guide for visually assessed traits 
developed by Australian Wool Innovation Limited (AWI) 
and Meat and Livestock Australia (MLA) [11]. Dag score 
is a visual assessment and a large number of animals can 
be phenotyped in a short period of time. All sheep were 
moved through the sampling race for scoring and bleeding 
until a maximum of 80 individuals per sex and dag score 
was reached, resulting in a subset of 400 males and 386 
females as outlined in Table 1.

Pooling design
Pool formation within contemporary groups or fixed 
effects has been suggested as the most effective pooling 
design [12]. Generally no fixed effects or contemporary 
group information is recorded on commercial properties. 
For this property, sex was the only known fixed effect. 
Within the two sexes and five dag scores, with 80 indi-
viduals each, samples were randomly split into two rep-
licates, with 40 individuals per pool, with the exception 
of the pools of females with dag score 5, for which only 
66 samples were available, and which formed two pools 
of 33 samples each. This resulted in a total of 20 pools. 
Although parentage of individual sheep was unknown, 33 
of the 45 sires used to produce the flock of sheep sampled 
were still present for DNA sample collection.

Once samples were assigned to pools, samples of 20 μL 
of whole blood from each individual sample within each 
pool were combined to create a pooled blood sample. 
200  μL of the pooled blood was then used for genomic 
DNA extraction following manufacturer’s instructions 
(Qiagen DNeasy® Blood and Tissue Kit).

For genotyping, each of the pooled DNA samples and 
the 33 individual sires were assayed with the Illumina 

Table 1 Description of phenotypic values for dag scores [11] and pool sizes (number of pools × number of  individuals 
in the pool)

Dag score Description Male pools Female pools

1 No dags 2 × 40 2 × 40

2 Some dags around the breech area 2 × 40 2 × 40

3 Dags around the breech area, some dags reaching down the inner hind leg to above the hock 2 × 40 2 × 40

4 Dags around the breech area, reaching down the inner hind legs to the hock and extend out 2 × 40 2 × 40

5 Extensive dags around breech and extending down the hind legs to the pasterns, covering extensive 
amount of the hind legs

2 × 40 2 × 33
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Ovine SNP 50 chip [13]. To obtain the relevant data, 
the Illumina GenomeStudio™ software was formatted 
to export a variable called “B-allele frequency” [14, 15]. 
These are quantitative estimates of the proportion of the 
alternative SNP allele. For an individual genotype, the 
B-allele frequency is 0 or 1 for homozygous individuals 
and 0.5 for heterozygous individuals. For a pooled sam-
ple, the B-allele frequency for a SNP can range from 0 to 
1. Genotypes for pooled DNA were generated based on 
the diploid clustering algorithm [14]. Pooled DNA pre-
sents like polyploidy data, which consequently, renders 
some of the routine quality control parameters, such as 
GenCall and HetExcess [15], which are not meaningful 
since they aim to eliminate rare alleles, whereas they are 
informative for this study. Other classic quality control 
steps such as thresholds for minor allele frequencies are 
not applicable either. The aim of the approach presented 
here is to relate allele frequencies from the pooled prog-
eny data to the individual sire data and rare alleles pro-
vide useful information to this process.

Statistical analysis
Hybrid genomic relationship matrix based on pooled DNA
Sire relationships with pools were estimated through a 
genomic relationship matrix. The method described here 
has previously been termed “hybrid genomic relation-
ship matrix” (h-GRM) because it consists of three blocks 
of relationships, i.e. (1) between pools, (2) between indi-
vidual sires, and (3) between pools and sires [5]. The 
first method of VanRaden was applied [16], but instead 
of discrete genotype calls, B-allele frequencies were used 
which describe the allele frequency of the second allele at 
each locus.

VanRaden uses matrix M which specifies which SNP 
alleles each individual inherited, and the dimensions 
of M are the number of individuals (n) by the num-
ber of loci (i), containing values −1 and 1 for individu-
als that are homozygous for the respective allele of the 
locus and 0 for heterozygous individuals. For this study, 
matrix M∗ was used, which is equivalent to M. Let 
M∗

= (Bfreq − 0.5) ∗ 2, with Bfreq being a matrix of 
the dimension of number of sires (s) plus the number of 
pools (p) by the number of loci (i), containing B-allele 
frequencies. The B-allele frequencies for sires were 0.0, 
0.5, and 1.0 for the homozygote, heterozygote and other 
homozygote, respectively, and for pools these were 
expressed as a real number between 0 and 1. For vector 
P∗ of size (1 ×  (s + p)), the same formula is used as for 
P by VanRaden, but P is of size I [16]. Let vector P∗ be 
P∗

= (freq − 0.5) ∗ 2 with freq being a vector of B-allele 
frequencies for sires and pools.

Let matrix Z∗ be the difference between M∗ and P∗, 
equivalent to Z = M − P [16].

Matrix G∗ was calculated in the same way as G by Van-
Raden with G∗

=
Z∗Z∗

′

2
∑

pi(1−pi)
, with pi the frequency at 

locus i [16]. For this study, we re-scaled the B-allele fre-
quencies as described above for P∗ to obtain p, but with 
missing values set to 0.5.

Then, the distribution of pool phenotypes is not nec-
essarily a scaled equivalent of the distribution of pheno-
types in the population. In our sheep data, pool sizes were 
fairly even. Although not necessary in this case, matrix 
H∗ was used to scale h-GRM elements to account for 
potential differences in pool sizes. Therefore, to account 
for differences in pool sizes, we scaled the elements of 
G∗ by the square roots of the product of the diagonals to 
produce a matrix H with elements Hij =

G∗

ij
√

G∗

ii×G∗

ij

. This is 
similar to multiplying the relationships by the number of 
individuals (n) in the pool. The problem is that n is not 
known with certainty, because the “effective n” depends 
on the variations in the concentration of DNA in the 
blood samples and on the accuracy of mixing the sam-
ples. Since this is impossible to determine, the scaling of 
G∗ into H provides an analytical solution to the technical 
problem.

Regression analysis of sire relationship with pool on dag 
score
The relationship of the sires with pools was regressed 
on the dag score. The DNA pooling strategy was based 
on phenotype category, therefore, the linear relationship 
between genetic contribution of a sire and phenotype 
categories is expressed in the regression coefficient. In 
this study, a positive regression slope indicates a higher 
degree of relatedness of the sire to the pools with higher 
dag scores. Conversely, a negative slope indicates higher 
relatedness of the sire to the pools with low dag score. 
Therefore, the latter would characterize sires that are 
genetically favorable for dag score.

For the regression approach, we fitted the following 
model:

where Yi is the vector of the GRM relationships of sire i 
with the pools, β0 is the intercept, β1 and β2 are regres-
sion coefficients, Xi1 is a vector of the fixed effect of sex of 
contributors to the pools, to account for any stratification 
due to sex, Xi2 is a vector of the fixed effect of dag pheno-
type of contributors to the pools, and εi is a random error 
term.
P values of the regression coefficient were empirically 

validated through permutation testing. Sires’ phenotype 
data were permuted 100 times within sex. The distribu-
tion of counts for the real data compared to the distribu-
tion of counts for the permuted data using a Pearson’s 
Chi squared test with simulation was used to derive the 

Yi = β0 + β1Xi1 + β2Xi2 + εi,



Page 4 of 7Bell et al. Genet Sel Evol  (2017) 49:28 

significance level. Results were tabulated, and means 
were calculated for each sire’s genomic relationship to a 
pool and for the slope of the relationship between each 
sire and each pool calculated.

Genomic breeding values from pooled data
Genomic breeding values were estimated using h-GRM 
in a genomic best linear unbiased prediction (gBLUP) 
approach in ASReml [17]. The following model was fitted:

where y is a vector of dag phenotypes for pools and miss-
ing values for sires, X is a design matrix relating the fixed 
effect of sex to each pool and sire, b is a vector of sex for 
each pool and sire, Z is a design matrix allocating records 
to genetic values to each pool and sire, g is a vector of 
genetic effects for each pool and sire, e is a vector of ran-
dom normal deviates with variance σ2e.

It was assumed that var
(

g
)

= G ∗ σ2g, where g is the 
h-GRM and σ2g is the genetic variance in this model. As 
outlined above, the gBLUP model fits the dag phenotype 
of the pool as the dependent variable and includes sex as 
the only known fixed effect. The previously constructed 
h-GRM was used in the model instead of the numerator 
relationship matrix.

Results and discussion
Pooling strategy
An appropriate pooling strategy strikes a balance between 
cost effectiveness and accuracy. Here, we were not in a 
position to assess our pooling strategy on accuracy, but 
previous studies suggested that 64 pools of 46 individuals 
each estimated SNP effects equally well as individual gen-
otypes [12]. We used pools of 33  to 40 individuals each. 
Although cost and accuracy are considerations, the num-
bers and sizes of pools are mainly determined by the total 
number of animals, phenotype distribution and contem-
porary group structure. Here, pools were formed within 
fixed effects, as suggested by [12], with sex being the only 
known fixed effect. Pooling strategies based on contem-
porary group information and phenotype are likely to 
have uneven contributions of sires to each of the pools, in 
particular if it is a moderately heritable trait, such as dag 
score in this study. Since a larger number of smaller pools 
would estimate allele frequencies more accurately [12], in 
this study, groups of animals of the same sex and pheno-
type category were randomly split into smaller pools of 40 
because this was demonstrated to be an appropriate pool 
size [12]. In a study on beef cattle, 15  to  28 individuals 
were pooled, but again, the number of pools and resulting 
pool sizes were determined by the contemporary group 
structure and phenotype categories [5]. More comprehen-
sive knowledge on contemporary group effects, e.g. year 

y = Xb+ Zg + e,

of birth, might have added more objective information 
to the pooling strategy, but in a commercial setting, indi-
vidual records are not kept and ear tags only indicate year 
of birth. Therefore, pooling strategies for commercial data 
might often have to take a pragmatic approach. However, 
one of the attractive characteristics of a pooling approach 
is the ease of the logistics of phenotype collection, which 
should slot into commercial husbandry procedures with-
out major additional workload for the producer.

Genomic relationships
The interpretation of the genomic relationships between 
sires provides some insights into the choice of sires for the 
commercial flock. Genomic relationships between sires, 
which are the off-diagonal values of the sire-by-sire block 
of the h-GRM, ranged between 0 and 0.5, with the major-
ity around 0.1 (Fig. 1a). The commercial property is a pure-
bred, self-replacing Merino flock where the replacement 
rams are sourced from one stud and have been for a num-
ber of years. The distribution of genomic relationships sug-
gests that the sires of the commercial property, in spite of 
being from the same stud, had a low degree of relatedness. 
Only a small number of sires were highly related.

As a consequence of the low sire-by-sire relationships, 
we would expect the relationships between sires and ani-
mals that contributed to a pool and which are not prog-
eny of the sire to be also low. Multiple sires contribute 
to a pool, therefore the sire-by-pool relationships can 
be expected to reflect a wider range of expected values 
than the sire-by-sire relationships. For a heritable trait, 
this may be enhanced through the pooling by phenotype 
strategy, if more related sires contribute more often to 
pools with the same phenotype. The frequencies of the 
genomic relationship estimates between sires and pools 
are plotted in Fig.  1b. The majority of the estimates 
ranged from −0.02 to 0.02. Within breed one might 
expect to see only positive relationship values, but since 
the relationships are estimated based on identity-by-
state, the range of relationship values depends on the 
population of genotypes that are being used. Therefore, 
it is not unusual to see negative relationships for the 
lower relationship values between sires and pools. How-
ever, the variation in the genomic relationships between 
sires and pools indicates that sire contributions to pools 
vary and it was demonstrated that this variation can be 
exploited to obtain information on the genetic merit of 
sires.

Sire genetic merit from pooled DNA
To determine whether the relationships between sires 
and pools were associated with the phenotypes of the 
pools, for each sire we regressed the genomic relation-
ships on the pool dag scores. Departure from the null 
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hypothesis, assuming no association between sire-pool 
relationship and pool phenotype, was assessed by exam-
ining the distribution of the significance levels of the 
regressions. The regressions of sire relationship on dag 
score were more often significant than would be expected 
by chance. For example, 10 of 33 sires (30%) were signif-
icant at the 5% level (Table  2), far more than would be 
expected by chance, and this trend was also observed at 
other significance levels. To check that this result was not 
due to our small sample size, we performed the analyses 
again after permuting the pool phenotypes. When P val-
ues were allocated to significance level classes and the 
counts compared for the observed and permuted data, 
the Chi square test was significant (P  =  0.015), which 
indicates that the variation observed between sires in the 
contributions to pools of different dag scores is likely to 
be real, as one would expect for a heritable trait.

The “best” and “worst” sires with respect to the regres-
sion coefficients for dag score are illustrated in Fig. 2a, b. 
The best sire had the strongest relationship with lower 
dag score phenotypes, and therefore the most significant 
negative slope of the regression line (Fig. 2a). The worst 
sire had the most significant positive slope of the regres-
sion line and therefore a stronger relationship with the 

higher dag score phenotype. This suggests that the slope 
of the regression can be used to obtain information on 
genetic sire performance for the categorical phenotype of 
dag score.

The replicate pools for each phenotype category, i.e. 
two male and two female pools (Fig. 2) show that a ran-
dom split of pools influenced the relationships of pools 
with sires. Figure  2 demonstrates that the random split 
resulted in the progeny from the same sire to be divided 
unevenly across the replicate pools. For example, the 
relationships of the replicates of female pools for the best 
and worst sire are in many cases different. As discussed 
earlier, more objective information on the formation of 
appropriate size pools might assist in devising a strategy 
that does not decrease the number of progeny of a sire to 
a particular pool.

The equivalence of the regression approach com-
pared to genomic estimated breeding values (GEBV) 
obtained with a gBLUP approach is shown in Fig. 3. Not 
only did we demonstrate that the contribution of a sire 
to a phenotype category can be estimated in a regres-
sion approach, but this can be translated into a breed-
ing value as it is commonly known and used in the stud 
industry.

Implications
A probability-based approach was suggested to estimate 
a numerator relationship matrix for multiple sire combi-
nations [18], but genomic information provides not only 
a more rigorous approach to identify parentage of an 
individual but also the representation of a sire’s genes to 
a pool of individuals [9]. There are likely to be tradeoffs 
in accuracy in genomic breeding values that are derived 
from pooling compared to individual genotypes, which 
could not be demonstrated from the data in this study. 

Fig. 1 Frequencies of the genomic relationships between a sires and other sires within the study and b sires and the pools within the study

Table 2 Proportions of  analyses that  were significant 
at  various levels for  the observed data and  for the data 
with phenotypes permuted

* 0.0303 is one out of 33 sires

Significance level

0.05 0.01 0.005 0.001 0.0005

Observed 0.300 0.120 0.061 0.030* 0.030*

Permuted 0.049 0.011 0.005 0.001 0.001
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However, assaying pooled DNA is cheap compared to 
individual genotypes and the resulting genomic breed-
ing values provide a ranking for commercial performance 
of the sires under evaluation, which fills a gap for which 
there was previously no available information.

In the hierarchical structure of most livestock indus-
tries, where genetic improvement is undertaken in the 
stud breeding sector, and the genetic gains flow to the 
commercial sector through the sale of sires and semen for 
artificial insemination, no performance information from 
the commercial sector returns to the stud. This is a lost 

opportunity to genetically characterize sires across envi-
ronments. The approach demonstrated in this study has 
multiple benefits for the stud and commercial sector. It 
provides an opportunity to apply cost-effective genomic 
technologies to harvest commercial performance data, 
which is either routinely measured or assessed during 
general husbandry procedures or could be obtained with 
only small additional labour investment. The resulting 
information on the sires provides the commercial pro-
ducer with the knowledge of which sires have contrib-
uted to particular phenotypes, which can inform future 
sire or stud selection. Although, in this study sires were 
evaluated retrospectively, individual genotypes of related 
current generation sires could be included in a pooling 
study to obtain information of their genetic merit in a 
commercial environment [5].

For studs, the proposed pooling approach offers 
genomic breeding values for their sires for traits that are 
impossible to obtain in the stud environment, e.g. dis-
ease or performance in a commercial environment. It 
has been demonstrated that significant genotype × envi-
ronment (G × E) interactions exist in the Merino indus-
try between the stud and commercial level [19] and the 
information generated from the DNA pooling approach 
could inform such G × E interactions.

The next step in defining the value proposition of 
DNA pooling for the livestock industries is to establish 
the loss in accuracy of pooling versus individual geno-
typing. Here, we demonstrated that the contribution 
of sires to phenotypes reflects their genetic merit and it 
can be translated into a breeding value which is a known 
industry tool. DNA pooling is a cheap approach that can 
inform a knowledge gap on commercial performance 

Fig. 2 An example of the best versus the worst sire when a sire’s genomic contribution is regressed on the dag score phenotype. The best sire has 
the most negative slope, indicating a greater contribution to lower dag score phenotypes. The worst sire has the more positive slope, contributing 
more to higher dag score phenotypes

Fig. 3 Relationship between sires’ genomic estimated breeding 
value (in dag score units) and the coefficient of the regression from 
sires’ genomic contribution on dag score
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of sires which can be exploited by stud breeders and 
producers.

Conclusion
Estimates of the genetic merit of sires using pooled DNA 
from progeny in a commercial production system can 
be determined using this technique, and it can provide 
a cost effective option to inform on the performance of 
sires for traits that cannot be measured in the stud envi-
ronment, but are important for commercial operations, 
and to ultimately increase the amount of data available to 
stud breeders to inform on the genetic value of sires for a 
range of traits.
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