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Abstract 

Background: The number of teats in pigs is related to a sow’s ability to rear piglets to weaning age. Several studies 
have identified genes and genomic regions that affect teat number in swine but few common results were reported. 
The objective of this study was to identify genetic factors that affect teat number in pigs, evaluate the accuracy of 
genomic prediction, and evaluate the contribution of significant genes and genomic regions to genomic broad-sense 
heritability and prediction accuracy using 41,108 autosomal single nucleotide polymorphisms (SNPs) from genotyp-
ing-by-sequencing on 2936 Duroc boars.

Results: Narrow-sense heritability and dominance heritability of teat number estimated by genomic restricted maxi-
mum likelihood were 0.365 ± 0.030 and 0.035 ± 0.019, respectively. The accuracy of genomic predictions, calculated 
as the average correlation between the genomic best linear unbiased prediction and phenotype in a tenfold valida-
tion study, was 0.437 ± 0.064 for the model with additive and dominance effects and 0.435 ± 0.064 for the model 
with additive effects only. Genome-wide association studies (GWAS) using three methods of analysis identified 85 
significant SNP effects for teat number on chromosomes 1, 6, 7, 10, 11, 12 and 14. The region between 102.9 and 
106.0 Mb on chromosome 7, which was reported in several studies, had the most significant SNP effects in or near the 
PTGR2, FAM161B, LIN52, VRTN, FCF1, AREL1 and LRRC74A genes. This region accounted for 10.0% of the genomic addi-
tive heritability and 8.0% of the accuracy of prediction. The second most significant chromosome region not reported 
by previous GWAS was the region between 77.7 and 79.7 Mb on chromosome 11, where SNPs in the FGF14 gene had 
the most significant effect and accounted for 5.1% of the genomic additive heritability and 5.2% of the accuracy of 
prediction. The 85 significant SNPs accounted for 28.5 to 28.8% of the genomic additive heritability and 35.8 to 36.8% 
of the accuracy of prediction.

Conclusions: The three methods used for the GWAS identified 85 significant SNPs with additive effects on teat 
number, including SNPs in a previously reported chromosomal region and SNPs in novel chromosomal regions. Most 
significant SNPs with larger estimated effects also had larger contributions to the total genomic heritability and accu-
racy of prediction than other SNPs.
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Background
A sufficient number of teats is necessary for a sow to rear 
its piglets to weaning age. Many putative QTL (quanti-
tative trait loci) for teat number have been reported on 
most of the porcine chromosomes, but most of these 
were detected using microsatellite markers and lacked 
specific gene targets [1]. Genome-wide association stud-
ies (GWAS) using single nucleotide polymorphisms 
(SNPs) and analyses of candidate genes have identified 
several specific gene targets that affect teat number in 
swine. A GWAS using 42,654 SNPs on 936 Large White 
pigs reported 39 QTL with 211 significant SNP effects 
on teat number [2]. Among those SNP effects, the region 
between 102.0 and 105.2 Mb on chromosome 7 had the 
most significant effects and the percentage of the genetic 
variance explained by SNPs in this region ranged from 
0.04 to 2.51%. Within this region, the VRTN and PROX2 
genes were identified as the most convincing candidate 
genes. The chromosomal locations of the significant SNPs 
that were detected in this GWAS differed from all previ-
ously reported QTL for teat number that have been com-
piled in the animal QTL database [1]. Another GWAS, 
using 32,911 SNPs on 1550 Large White pigs, reported 21 
QTL with additive effects on chromosomes 6, 7 and 12, 
one QTL with a dominant effect on chromosome 4, and 
identified VRTN as the most promising candidate gene 
for teat number [3]. A third GWAS using 41,647 SNPs 
on 1657 Large White pigs found 65 significant SNPs on 
chromosomes 1, 2, 7, 8, 12 and 14, including SNPs in the 
region 102.9 between 105.2 Mb on chromosome 7 [4]. A 
fourth GWAS using 39,778 SNPs identified the VRTN 
gene with pleiotropic and desirable effects on thoracic 
vertebral number, teat number and carcass (body) length 
across four pig populations, and showed that, of all SNPs 
on chromosome 7, a SNP within the VRTN gene had the 
most significant effect on teat number in Duroc pigs [5]. 
Among all significant SNPs that have been detected for 
teat number by GWAS, the significance of the VRTN 
gene on chromosome 7 achieved the widest consensus 
and has been identified as a strong candidate gene for teat 
number [2–5]. However, in the literature some discrep-
ancies regarding the most significant location and many 
SNP effects in other genomic regions have been reported. 
A GWAS using the porcine 60 K SNP chip on a F2 popu-
lation from a cross between Landrace and Korean pigs 
identified highly significant SNPs on chromosome 7 
that were more than 40  Mb away from the VRTN gene 
[6], and in another GWAS using 36,588 SNPs and 1024 
Duroc pigs, the most significant SNPs on chromosome 7 
were found 2  to 3 Mb downstream of the VRTN region 
[7]. However, other than for the VRTN region, there is 
little consensus among the GWAS results on genomic 
regions that affect teat number [2–4, 6, 7]. Therefore, 

additional studies are needed to identify the genetic fac-
tors that affect swine teat number. Furthermore, it is 
unclear what the impact of the highly significant SNPs is 
on the accuracy of genomic prediction for teat number.

The objective of this study was to identify genetic fac-
tors that affect teat number in pigs, evaluate the accuracy 
of genomic prediction, and evaluate the contribution of 
significant genes and genomic regions to the heritability 
and accuracy of genomic prediction using 41,108 auto-
somal SNPs from genotyping-by-sequencing (GBS) on 
2936 Duroc boars.

Methods
Animals, phenotyping, and genotyping‑by‑sequencing
Animal and phenotype data used for this study were pro-
vided by Guangdong Wen’s Foodstuff Group (Guang-
dong, China). The study population included 2936 Duroc 
boars born from September 2011 to September 2013 in 
1456 litters from 79 sires with one to three piglets per lit-
ter, and all pigs were managed at a single nucleus farm. 
The left and right teats were counted separately within 
48 h after birth and only normal teats were recorded. In 
this study, the phenotype used for ‘teat number’ was the 
total number of teats that was equal to the sum of the left 
and right normal teats. The ‘mean ± (standard deviation)’ 
of teat number was 10.72 ± 1.72. The phenotypic values 
followed a near bell-shaped distribution (Fig.  1), which 
was similar to the leptokurtic distribution of teat num-
ber that is observed for Landrace and Large White pigs 
[8], with most animals (1992 out of 2936) having 10 or 11 
teats.

Genomic DNA was extracted from ear tissue of all 
2936 Duroc boars and quantified using a Qubit 2.0 Fluo-
rometer. DNA concentrations were normalized to 50 ng/
ml in 96-well plates. A two-enzyme i.e. EcoRI and MspI 

Fig. 1 Phenotypic distribution of total teat number in Duroc boars 
(N = 2936)
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genotyping-by-sequencing (GBS) was used. A set of 96 
forward barcoded adapters with an EcoRI overhang were 
designed by the GBS Barcode Generator (http://www.
deenabio.com/services/gbs-adapters), and the reverse 
adapter with a MspI overhang was designed according to 
[9]. DNA samples (150 ng each) were digested with EcoRI 
and MspI, then ligated to the designed adapters. Follow-
ing adapter ligation, samples were pooled in 96-plex and 
size-selected using two cycles of purification with Agen-
court AMPure XP Beads (Beckman Coulter, Pasadena, 
CA). The purified libraries were amplified by PCR and 
then sequenced on Illumina NextSeq500 by a 90-bp sin-
gle-end sequencing. SNP genotypes were called accord-
ing to the pipeline implemented in Tassel 5.0 with default 
parameters [10], and Beagle 4.0 was used to impute miss-
ing SNP genotypes. A total of 90,051 SNPs were identi-
fied for the population used in this study. SNP filtering 
was based on the following criteria: only SNPs that had a 
minor allele frequency higher than 5%, for which the fre-
quency of the least frequent homozygous genotype was 
at least 0.01, and passed the Hardy–Weinberg equilib-
rium test (p ≥ 10−6) were retained. Among the autosomal 
SNPs, 41,108 SNPs satisfied these requirements and were 
used for analyses.

GWAS analysis
Three single-SNP methods were used for the GWAS 
analysis: a t test of additive and dominance SNP effects 
using a generalized least squares (GLS) analysis that takes 
intraclass correlation of sibs into account and is imple-
mented in the EPISNP2 program [11, 12], and the least 
squares (LS) analyses of additive effects by PLINK [13] 
and EPISNP1 [11] with population stratification correc-
tion using the first 50 dimensions from multidimensional 
scaling (MDS) as covariates. We report the PLINK and 
EPISNP1 results using the first 35 MDS dimensions for 
stratification correction because the genomic inflation 
factor [14] and the patterns of Manhattan plots of SNP 
significance stabilized when fitting the first 35 MDS 
dimensions (Fig. 2).

The statistical model for the EPISNP2 analysis was:

where y is the vector of phenotypic values, b is the vec-
tor of fixed year-month effects, Xb is the incidence matrix 
for b, g is the vector of the effects of SNP genotypes, X 
is the incidence matrix of g, f  is the vector of random 
family effects with a common variance σ2f  for sibs in 
the same family, and Z is the incidence matrix of f . The 
variance–covariance matrix of the family effects was 
assumed to be G = Var(f) = Iσ2f , where I is an identity 
matrix, and the phenotypic variance–covariance matrix 
is Var

(
y
)
= V = ZGZ′ + Iσ2e [12].

y = Xbb+ Xg + Zf + e,

The statistical model for the PLINK analysis was:

where b1 is the vector of fixed effect(s) of the MDS 
dimension(s), X1 is the matrix of the MDS dimension(s) 
as calculated by PLINK from the SNP matrix of identity-
by-state [13], α is the additive SNP effect, and x is a col-
umn vector of genotype codes for α created by PLINK.

The statistical model for EPISNP1 analysis was:

where the matrices have the same definitions as in the 
previous two models. Significance tests for additive and 
dominance SNP effects by EPISNP1 and EPISNP2 were 
implemented by t tests for the additive and dominance 
contrasts of the estimated SNP genotypic values [11, 12, 
15].

Genomic heritability and accuracy of genomic prediction
Genomic heritability and genomic prediction were esti-
mated by using a mixed model with additive and domi-
nance effects as described previously [16–18]. Briefly, the 
mixed model for heritability estimation and genomic pre-
diction was:

with Var
(
y
)
= V = ZAgZ

′
σ
2
α
+ ZDgZ

′
σ
2
δ
+ Iσ2e, where Z 

is an incidence matrix allocating phenotypic observations 
to each individual, a is the vector of genomic additive 
(breeding) values, d is the vector of genomic dominance 
values or dominance deviations, Ag is a genomic addi-
tive relationship matrix calculated from the SNPs, Dg is a 
genomic dominance relationship matrix calculated from 
the SNPs, σ2

α
 is the additive variance, σ2

δ
 is the dominance 

variance, and σ2e is the residual variance. The Ag and Dg 
matrices were calculated using Definition II of genomic 
relationships implemented by the GVCBLUP pack-
age, and variance components of additive, dominance 
and random residual values were estimated by genomic 
restricted maximum likelihood estimation (GREML) 
using the GREML_CE program in the GVCBLUP pack-
age [18]. The genomic heritability was defined as: 
h2
α
= σ

2
α
/σ2y, i.e. the narrow-sense heritability, h2

δ
= σ

2
δ
/σ2y , 

i.e. the dominance heritability, and h2t = h2
α
/h2

δ
, i.e. the 

broad-sense heritability, where σ2y = σ
2
α
+ σ

2
δ
+ σ

2
e is the 

phenotypic variance. The genomic best linear unbiased 
prediction (GBLUP) of additive, dominance and genetic 
values of individuals in the training and validation sam-
ples were calculated at the last iteration of the GREML.

A tenfold validation study was conducted to evalu-
ate the prediction accuracy. The 2936 Duroc boars 
were randomly divided into 10 validation datasets of 
293 individuals except the 10th sample, which included 

y = Xbb+ X1b1 + αx + e,

y = Xbb+ X1b1 + Xg + e,

y = Xbb+ Za + Zd + e,

http://www.deenabio.com/services/gbs-adapters
http://www.deenabio.com/services/gbs-adapters
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299 individuals. For each of the 10 validation analyses, 
phenotypic observations in the validation dataset were 
omitted in the GBLUP calculation. Three measures of 
prediction accuracy were calculated and compared: 
R̂0jp = corr

(
ĝ0j, y0

)
 , which is the observed accuracy of 

predicting the phenotypic values in the validation popu-
lation and is calculated as the correlation between the 
estimated genetic values (ĝ0j) and the phenotypic obser-
vations (y0) of validation individuals, averaged across 
all validation datasets; R0j = corr

(
ĝ0j, g0j

)
, which is the 

expected accuracy of predicting the true genetic val-
ues (g0j) of individuals in the validation population and 
is calculated as the square root of the reliability esti-
mate for each individual from the GVCBLUP package 
[18], where ‘j = α’ indicates additive prediction, ‘j = δ’  
indicates dominance prediction, and ‘j = t’ indicates 
prediction of total genetic value; and R0jp = R0j

√
h2j ,  

which is the expected accuracy of predicting the phe-
notypic values, where h2j  is the genomic narrow-sense 

(j = α), dominance (j = δ), or broad-sense (j = t) herit-
ability. The accuracy of predicting phenotypic values 
was previously termed as ‘predictive ability’ [19] to dis-
tinguish it from ‘expected prediction accuracy’ of pre-
dicting genetic values (R0j in this study). The formula of 
the expected accuracy of predicting phenotypic values, 
R0jp = R0j

√
h2j , is a slightly different form of the rela-

tionship between ‘predictive ability’ and ‘prediction 
accuracy’ [19]. The mathematical difference between 
R0jp and R0j is in the denominators of these two meas-
ures: the denominator of R0jp is the phenotypic standard 
deviation, whereas the denominator of R0j is the genetic 
standard deviation, which is necessarily smaller than the 
phenotypic standard deviation in the presence of non-
zero residual variance. Therefore, R0j is the upper limit 
of R0jp but this upper limit may not hold for the observed 
accuracy of predicting phenotypic values (R̂0jp) due to 
unknown variations in the data or genetic mechanisms 
that are not explained by the statistical model. The 

Fig. 2 Effect of the multidimensional scaling (MDS) dimensions on the genomic inflation factor and on Manhattan plots of SNP significance. a 
Genomic inflation factor remained relatively unchanged as the number of MDS dimensions increased beyond the first 35 dimensions. b–e GWAS 
significance from PLINK using the first 35 to 50 MDS dimensions, showing that the significance patterns were virtually unchanged, with the excep-
tion of those for chromosome 12, which displayed decreasing significance as the number of MDS dimensions increased. All p values in the figures 
are on the log(1/p) scale
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observed accuracy of predicting genetic values can only 
be defined when the true genetic values such as simu-
lated genetic values are known [16] but they could not 
be defined in this study because the true genetic values 
were unknown.

Contribution of significant SNPs and genomic regions 
to total heritability and prediction accuracy
The contributions of each SNP to additive, dominance 
and total heritability can be estimated [18]. However, as 
shown by the results of this study, the contribution of 
each SNP is affected by the number of SNPs in the mixed 
model: the larger is the number of SNPs, the smaller is 
the contribution of each SNP. To avoid this dependency 
in the mixed model for GREML and to estimate each 
SNP’s independent contribution to genomic heritability 
and prediction accuracy, we used the approach of ‘partial 
heritability’ and ‘partial accuracy’ based on differences 
in heritability and prediction accuracy between a full 
model and a reduced model. The full model fits all SNPs 
as random effects and the reduced model fits the tar-
get SNP or SNPs as fixed effects to remove their effects 
from the phenotypic values. The reduced model was as 
follows:

where s is a column vector of fixed SNP effects 
and X is the incidence matrix of s. The phe-
notypic variance–covariance matrix was 
assumed to be the same as in the full model, i.e., 
Var

(
y
)
= V = ZAgZ

′
σ
2
α
+ ZDgZ

′
σ
2
δ
+ Iσ2e , but variance 

components were estimated under the reduced model. 
Let ĥ

2 (ĥ
2

i ) be the estimated heritability from the full 
(reduced) model, and R0 (R0i) a measure of prediction 
accuracy for the full (reduced) model. Then, the relative 
contribution of the ith SNP or the ith set of SNPs to the 
total heritability was calculated as c2hi = 1− ĥ

2

i /ĥ
2
, and 

y = Xfb+ Xs+ Za + Zd + e,

the relative contribution of the ith SNP or the ith set of 
SNPs to the prediction accuracy as cri = 1− R0i/R0.

Results
Genomic heritability and prediction accuracy
The estimate of genomic narrow-sense heritability 
(ĥ

2

α
 ) was 0.365  ±  0.030, of dominance heritability (ĥ

2

δ
 ) 

was 0.035 ±  0.019, of broad-sense heritability (h2t ) was 
0.400 ±  0.034, and the estimate of narrow-sense herit-
ability for the mixed model with additive effects only, 
was 0.368 ± 0.030, which is slightly higher than the cor-
responding estimate for the mixed model with additive 
and dominance effects (Table 1). The observed accuracy 
of predicting phenotypic values from the tenfold valida-
tion study was 0.437 ±  0.064 for the mixed model with 
additive and dominance SNP effects (R̂0tp, Model 1A in 
Table 2), and was 0.435 ± 0.064 for the mixed model with 
additive effects only (R̂0αp, Model 2A in Table 2), which is 
only 0.46% lower than that from the mixed model with 
additive and dominance effects. These slight differences 
in both heritability and accuracy of prediction between 
the additive model and the model with additive and dom-
inance effects indicates that additive SNP effects were the 
primary genetic effects that affect teat number and that 
dominance SNP effects only had a negligible contribution 
to the prediction accuracy for teat number. 

GWAS results
The GWAS that was done with EPISNP2, which 
accounted for the sib intraclass correlation and was 
implemented by a GLS analysis [11, 12], identified 73 
SNPs on chromosomes 1, 6, 7, 10, 11, 12 and 14 with addi-
tive effects but no SNP with dominance effects reached 
genome-wide significance with the Bonferroni multiple 
testing correction (p < 10−5.91) (Fig. 3a, b; Table 3; Addi-
tional file  1: Table S1). LS analysis of PLINK [13] and 
EPISNP1 [11] with stratification correction using the first 

Table 1 Estimates of genomic heritabilities for teat number using 41,108 autosomal SNPs on 2936 Duroc boars

h2
α
 = narrow-sense heritability. h2

δ
 = dominance heritability. h2t  = broad-sense heritability = h2

α
+ h2

δ
. −c2hi = decrease in heritability relative to the heritability estimated 

by using all SNPs fitted as random effects

Model All SNPs as random effects 85 significant SNPs removed 85 significant SNPs as fixed effects

Additive and dominance effects
ĥ
2

α
= 0.365± 0.030 ĥ

2

α
= 0.346± 0.030

−c2hi = −5.20%

ĥ
2

α
= 0.260± 0.030

−c2hi = −28.77%

ĥ
2

δ
= 0.035± 0.019 ĥ

2

δ
= 0.036± 0.020

−c2hi = +2.86%

ĥ
2

δ
= 0.037± 0.022

−c2hi = +5.71%

ĥ
2

t = 0.400± 0.034 ĥ
2

t = 0.382± 0.034

−c2hi = −4.50%

ĥ
2

t = 0.297± 0.036

−c2hi = −25.75%

Additive effects only
ĥ
2

α
= 0.368± 0.030 ĥ

2

α
= 0.350± 0.030

−c2hi = −4.89%

ĥ
2

α
= 0.263± 0.030

−c2hi = −28.53%
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35 dimensions of MDS as fixed covariates, identified 54 
and 21 significant SNPs, respectively (Fig.  3c, d; Addi-
tional file  1: Table S1). Twelve SNPs detected by PLINK 
and two SNPs detected by EPISNP1 did not overlap with 
the SNPs detected by EPISNP2. Eighteen SNPs detected 
by EPISNP1 overlapped with those detected by EPISNP2 
and PLINK. For this dataset, EPISNP1 was the most 
conservative for declaring significance. We report SNPs 
detected by EPISNP2 because they all had a substantial 
contribution to the broad-sense genomic heritability (see 
Additional file 1: Table S1). A graphical view of the GWAS 
results obtained by EPISNP2, PLINK and EPISNP1 for all 
autosomes is in Additional file 2: Figure S1.

To evaluate the impact of the significant SNPs on 
the phenotypic variance, we estimated the decreases in 
observed genomic narrow-sense heritability and predic-
tion accuracy when the phenotypic values were adjusted 
for the estimated genotypic values of the significant SNPs. 
The results showed that the 85 significant SNPs identified 
by the three methods, i.e. EPISNP2, PLINK and EPISNP1, 
accounted for 28.5  to  28.8% of the genomic narrow-
sense heritability (Table  1) and for 36.2  to  36.8% of the 
observed prediction accuracy (Model 1A and Model 2A 
in Table 2). These results show that many SNPs that were 
deemed insignificant by the GWAS analysis were relevant 
for genomic prediction of teat number. Each of the 85 
SNPs had a relatively large contribution to the genomic 
heritability and prediction accuracy, with the contribu-
tion of each SNP to the observed genomic narrow-sense 

heritability ranging from 0.7 to 7.3% and relative contri-
bution of each SNP to the observed prediction accuracy 
ranging from 0.5 to 5.6% (see Additional file 1: Table S1).

Analysis of the region between 102.9 and 106.0 Mb 
on chromosome 7
A cluster of 14 SNPs within or near the PTGR2, FAM161B, 
LIN52, VRTN, FCF1, AREL1 and LRRC74A genes in the 
region between 102.9 and 106.0 Mb on chromosome 7 had 
the most significant effects on teat number with genome-
wide significance (Fig.  4a). Based on the GLS analysis of 
EPISNP2, the two SNPs upstream of PTGR2 had the most 
significant additive effects, followed by the three SNPs 
within and upstream of AREL1, whereas the LS analysis of 
PLINK and EPISNP1 with stratification correction ranked 
the three AREL1 SNPs as the most significant and the two 
SNPs upstream of PTGR2 in the 6th and 7th positions (see 
Additional file 1: Table S1). The six most significant SNPs 
in the region between 102.9 and 103.8 Mb on chromosome 
7 accounted for 7.4% of the genomic additive heritability 
and 7.0% of the observed prediction accuracy in the ten-
fold validation study (Table 3), and all the 14 SNPs in this 
region with genome-wide significance accounted for 10.0% 
of the genomic narrow-sense heritability and 8.0% of the 
observed prediction accuracy. Removal of the genotypic 
effects of the 14 SNPs by fitting these SNPs as fixed effects 
in the model for EPISNP2 removed all significant effects in 
the region between 102.9 and 103.8 Mb on chromosome 
7 and also removed the significant effects of seven SNPs 

Table 2 Accuracies of genomic prediction for the phenotypic values and true genetic values of teat number using 41,108 
autosomal SNPs on 2936 Duroc boars in a tenfold validation study

Model 1A has additive and dominance effects and uses all 41,108 autosome SNPs. Model 1B is a modification of Model 1A by using the 85 significant SNPs as fixed 
non-genetic effects. Model 2A has additive effects only and uses all 41,108 autosome SNPs. Model 2B is a modification of Model 2A by using the 85 significant SNPs 
as fixed non-genetic effects. Model 3A has additive and dominance effects and uses 41,023 autosomal SNPs after removing the 85 significant SNPs. Model 4A has 
additive effects only and uses 41,023 autosomal SNPs after removing the 85 significant SNPs. R̂0jp is the observed accuracy of predicting phenotypic values from 
tenfold validations. R0jp is the expected accuracy of predicting phenotypic values. R0j is the expected accuracy of predicting genetic values calculated by GVCBLUP 
from tenfold validations, j = t or α. h2t  = 0.400 for Model 1A, = 0.297 for Model 1B, = 0.382 for Model 3. ĥ

2

α
 = 0.368 for Model 2A, 0.263 for Model 2B, = 0.350 for 

Model 4. −cri is the decrease in accuracy

Model and accuracy change R̂0tp = corr
(̂
g0j, y0

)
R0jp = R0j

√
h2j

R0j = corr
(̂
g0j, g0j

)

Model 1A R̂0tp = 0.437 ± 0.064 R0tp = 0.460 R0t = 0.728 ± 0.004

Model 1B R̂0tp = 0.279 ± 0.076 R0tp = 0.360 R0t = 0.661 ± 0.007

−cri of 1B relative to 1A −36.16% −21.74% −9.20%

Model 2A R̂0αp = 0.435 ± 0.064 R0αp = 0.425 R0α = 0.700 ± 0.007

Model 2B R̂0αp = 0.275 ± 0.074 R0αp = 0.320 R0α = 0.624 ± 0.009

−cri of 2B relative to 2A −36.78% −24.70% −10.86%

Model 3A R̂0tp = 0.426 ± 0.066 R0tp = 0.446 R0t = 0.721 ± 0.004

−cri of 3A relative to 1A −2.52% −3.04% −0.96%

Model 4A R̂0αp = 0.424± 0.066 R0αp = 0.409 R0α = 0.691± 0.007

−cri of 4A relative to 2A −2.53% −3.76% −1.28%
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in the region between 116.1 and 117.4  Mb on chromo-
some 7 (Fig. 4b). SNPs within or near the AREL1, PTGR2, 
FMA161B, LIN52 and LRRC74A genes also had the larg-
est contributions to the genomic narrow-sense heritability 

and prediction accuracy (Fig. 4c). We did not detect SNPs 
within the VRTN gene but a SNP upstream of and near-
est to VRTN (S7_103355294) was highly significant, rank-
ing 6th based on EPISNP2 and 5th based on PLINK and 

Fig. 3 Manhattan plots from three methods of genome-wide association analysis. a Manhattan plot of p values for testing additive SNP effects 
using the generalized least squares (GLS) analysis of EPISNP2. b Manhattan plot of p values for testing dominance SNP effects using the generalized 
least squares (GLS) analysis of EPISNP2. c Manhattan plot of p values for testing additive SNP effects using the least squares (LS) analysis of PLINK 
with the first 35 dimensions of multidimensional scaling (MDS) as fixed effects. d Manhattan plot of p values for testing additive SNP effects using 
the LS analysis of EPISNP1 with the first 35 MDS dimensions as fixed effects. The horizontal green line indicates the genome-wide significance with 
the Bonferroni correction (p < 10−5.91). All p values in the figures are in log(1/p) scale
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EPISNP1. Linkage disequilibrium (LD) analysis using Hap-
loview [20] showed that the two SNPs flanking VRTN were 
in strong LD (D′ = 0.90, Fig. 4d), implying that either of 
these two SNPs could also be in strong LD with VRTN. 
Therefore, assuming that VRTN is a causal gene, the sig-
nificant effect of S7_103355294 could be a linked effect of 
VRTN. The LD analysis showed that the significant effects 
of the region between 116.1 and 117.4  Mb on chromo-
some 7 could also be due to LD with the region between 
102.9 and 106.0 Mb since three of the seven SNPs in the 
former region were in low LD with five significant SNPs in 
the latter region (D′ = 0.13 to 0.24, Fig. 4d). This did not 
consider the possibility of multilocus LD between the two 
regions. The low LD was the only known reason that could 
explain the disappearance of the significant QTL effects of 
the region between 116.1 and 117.4 Mb when the 14 SNPs 
in the region between 102.9 and 106.0 Mb were fitted as 
fixed effects.

Other chromosomes with significant SNPs
In addition to chromosome 7, SNPs on chromosomes 
1, 6, 10, 11, 12 and 14 also had significant effects with 
genome-wide significance (Table  3; Additional file  1: 
Table S1). Among these chromosomes, the region 
between 77.3 and 79.7  Mb on chromosome 11 had 
the most significant additive effects. The top six SNPs 
within or near the FGF14, BIVM, LOC10216759, and 
LOC102167785 genes accounted for 5.1% of the genomic 
narrow-sense heritability and 5.2% of the observed pre-
diction accuracy (Table  3). The remaining regions on 
chromosomes 1, 7, 11 and 12 each with at least six SNPs 
accounted for 0.6 to 3.1% of the genomic narrow-sense 
heritability and accounted for 1.2 to 2.6% of the observed 
prediction accuracy (Table 3).

Discussion
Comparison with previous GWAS results
The region between 102.9 and 106.0  Mb on chromo-
some 7 that was identified in the current study was also 
reported in several previous GWAS but with varying 
lengths, e.g., between 102.1 and 105.2 Mb [2], 102.9 and 
105.2 Mb [4], 103.0 and 103.6 Mb [3], the VRTN gene [5], 
the VRTN–PROX2–FOS region that is equivalent to the 
region between 103.4 and 104.3  Mb based on a micros-
atellite study [21], and the region between 106.7 and 
106.9  Mb [7]. Five significant SNPs on chromosome 10 
were located close to some previously reported significant 
regions on this chromosome [2], and a significant SNP 
at 51.6  Mb on chromosome 12 was close to the previ-
ously reported chromosome 12 region between 52.9 and 
52.6 Mb [2, 4]. In the current study, the region between 
77.7 and 79.7 Mb on chromosome 11 was the second most 
significant chromosome region, which, to our knowledge, 
has not been reported in previous GWAS. However, the 
Animal QTLdb [1] has one entry for pig teat number in 
the region between 79.2 and 85.7  Mb on chromosome 
11, which partially overlaps the region between 77.7 and 
79.7  Mb that we detected in this study, and this Animal 
QTLdb result was based on a QTL mapping study using 
137 microsatellite markers on 573 F2 females and 530 F2 
males from a Meishan × Large White cross [22].

Heritabilities and factors that affect teat number
The genomic narrow-sense heritability estimates 
reported in the current study are the only ones available 
for teat number. Estimated narrow-sense heritabilities 
ranged from 0.346 to 0.350 (Table 1) and were within the 
range of recently published heritability estimates based 
on pedigree relationships, e.g., 0.39 in a study using 

Table 3 Chromosome regions with significant SNP effects on teat number

Chr = chromosome; MAF = minor allele frequency. h2
α
 is the additive heritability. R̂0 is the observed accuracy of prediction. U indicate the significant SNP is located 

upstream of the gene. D indicates the significant SNP is located downstream of the gene. Contribution was calculated for the six most significant SNPs in each region. 
* This region has three significant SNPs 

Chr Region (Mb) Size (Mb) Most significant SNP Contribution Gene region

Name MAF p value % of h2
α

% of R̂0

1 29.63–30.18 0.55 S1_29635241 0.499 2.68  (10−07) 2.25 1.51 TNFAIP3, OLIG3

7 102.91–103.80 0.89 S7_102911357 0.438 2.49  (10−16) 7.35 6.98 PTGR2 (U), FAM161B, LIN52, VRTN (U, D), FCF1, AREL1 
(16 genes)

7 116.07–117.43 1.36 S7_116899295 0.342 2.97  (10−08) 3.07 2.13 GALC, KCNK10, SPATA7, PTPN21, ZC3H14, EML5, TTC8

11 56.56–58.58* 2.21 S11_58558301 0.422 7.14  (10−7) 1.64 2.27 SPRY2, SNORA70

11 77.75–79.69 1.94 S11_79009219 0.226 9.16  (10−10) 5.07 5.23 FGF14, BIVM (U, D), LOC102167592, LOC102167785 (U)

12 4.53–6.26* 1.73 S12_5615207 0.335 3.16  (10−07) 2.59 2.63 MFSD11-KCTD2 (49 genes)

12 50.54–51.74 1.20 S12_51574540 0.138 1.06  (10−07) 0.64 1.16 OR3A2, ASPA, TRPV3, TRPV1, CTNS, TAX1BP3, EMC6, 
CAMKK1
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57,000 Yorkshire pigs [23], and 0.37 in a study using 1550 
Landrace pigs [3]. The above genomic and pedigree-
based heritability estimates indicate that swine teat num-
ber has a strong genetic component, and also that a large 
portion of the phenotypic variation is not explained by 
additive genetic effects. Only one GWAS reported domi-
nance effects on chromosome 4 in Landrace pigs [3]. 
Our GWAS results differ from the reported dominance 
effects on chromosome 4 because we found that many 
other chromosomes had more significant dominance 
effects than chromosome 4, although none of the domi-
nance effects that we observed reached the genome-wide 

significance threshold of p  <  10−5.91 (Fig.  3b). The esti-
mated dominance heritability was low (0.036) and 
inclusion of dominance effects in the prediction model 
only had negligible effects on the observed prediction 
accuracy. Removing dominance effects from the mixed 
model resulted only in a 0.5% reduction in the observed 
accuracy of predicting phenotypic values, although the 
reductions in the expected accuracy of predicting phe-
notypic values (7.6%) and in the expected accuracy of 
predicting genetic values (3.9%) were considerably larger 
for unknown reasons (Table  2). Previously, a maternal 
effect on teat number was reported [24] but has not been 

Fig. 4 Analysis of the region between 102.9 and 106.0 Mb on chromosome 7. a Additive SNP effects by the generalized least squares analysis of 
EPISNP2 and by the least squares analysis of PLINK and EPISNP1, with stratification correction using the first 35 dimensions of multidimensional 
scaling. b Removal of the genotypic effects of the 14 SNPs with genome-wide significance by fitting these SNPs as fixed effects in the model 
completely removed all significant effects in this region and also removed the significant effects in the 116-Mb region on chromosome 7. c SNP 
contribution to genomic heritability and prediction accuracy of the 70 SNPs that are located within the region between 102.9 and 106.0 Mb, show-
ing that the largest contributions originated from SNPs that were within or near the AREL1 and PTGR2 genes. d Linkage disequilibrium between the 
21 significant SNPs in the region between 102.9 and 106.0 Mb on chromosome 7 by Haploview
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studied by GWAS or genomic prediction. Data error is a 
source of phenotypic variation, but teat number is easy 
to measure and any data errors that might have occurred 
would only be minor, given that our GWAS results on 
chromosome 7 agreed with those of other studies [2, 3] 
and that our genomic heritability estimates are consistent 
with those based on pedigree data [3, 23].

SNP contributions to genomic heritability and prediction 
accuracy
We analyzed three methods (Methods I, II and III) of 
estimating the contribution of a set of SNPs to genomic 
heritability and compared Methods II and III for estimat-
ing the contributions of SNPs to both genomic heritabil-
ity and prediction accuracy. Method I for estimating the 
contribution of SNPs to genomic heritability consisted of 
summing together the heritability estimates of the target 
set of SNPs because the narrow-sense, dominance and 
broad-sense heritabilities for each SNP can be estimated 
individually by the GVCBLUP package [18]. However, 
this method was inappropriate for estimating SNP con-
tributions to the phenotypic variance because the herit-
ability estimate for each SNP decreases as the number of 
SNPs in the mixed model increases and is approximately 
proportional to 1/m, where m is the number of SNPs in 
the mixed model (see “Appendix” for an approximate 
proof).

The results in Table 4 show the dependency of the size 
of the heritability estimate on the number of SNPs fit-
ted as random effects in the mixed model. When drop-
ping every other SNP from the model (i.e. reducing 
from 41,108 to 20,554 SNPs), the average h2

αi (narrow-
sense heritability of the ith SNP) of each SNP for the 
same 20,554 SNPs when all 41,108 SNPs were fitted in 
the model nearly doubled (h̄2α1/h̄

2

α2 = 1.960), while the 
total narrow-sense heritability was nearly unaffected 
(ĥ

2

α1 = 0.360 and ĥ
2

α3 = 0.368), showing that the size of 
the heritability estimate for each SNP was approximately 
divided by 2 when the model had twice as many SNPs. 
Therefore, the heritabilities of the significant SNPs are 

not suitable for measuring their contributions to the phe-
notypic variance due to the dependency of the size of the 
heritability estimate for each SNP on the number of SNPs 
fitted as random effects in the mixed model.

Method II for estimating the contribution of a set of 
target SNPs to genomic heritability and prediction accu-
racy consisted in calculating the difference between the 
model with all SNPs and the model without the target 
SNPs. However, removing the target SNPs from the sta-
tistical model may not completely remove their effects 
because some of them could be explained by other SNPs 
in LD with the target SNPs. The results in Table 4 sup-
ported this expectation, i.e., the total narrow-sense her-
itability when halving the number of SNPs fitted was 
nearly unaffected. Using Method II, the 85 significant 
SNPs accounted for 4.5% of the total genomic heritabil-
ity (Table  1) and 2.5% of the observed prediction accu-
racy (Model 3A, Table 2). Due to the partial effects of the 
removed SNPs that could have been explained by other 
SNPs, the contributions of SNPs to genomic heritability 
and observed prediction accuracy using Method II can be 
considered as the lower bound of the SNP contributions.

Method III for estimating SNP contribution to genomic 
heritability and to prediction accuracy calculated the dif-
ference between the model with all SNPs fitted as ran-
dom effects and the model with the target SNPs fitted 
as fixed effects, an approach that we refer to as ‘partial 
heritability’ and ‘partial accuracy’. The example of the 
region between 102.9 and 106.3  Mb on chromosome 7 
showed that fitting significant SNPs as fixed effects com-
pletely removed the significant effects of those SNPs and 
also removed the effects of the SNPs that are still fitted 
in the statistical model as random effects but are in LD 
with the SNPs fitted as fixed effects (Fig. 4b). Figure 5 is 
a graphical view of a specific chromosome region, show-
ing that the contributions of SNPs to the total narrow-
sense heritability from the two models with 41,108 SNPs 
and 20,554 SNPs estimated using Method III were nearly 
the same for the region between 102.9 and 106.0 Mb on 
chromosome 7, i.e., partial heritability estimates were 

Table 4 Estimates of  SNP additive heritabilities of  teat number when  using 41,108 autosomal SNPs or every other 
(20,554) of the 41,108 SNPs

ĥ
2

kα is the heritability of the kth SNP. h̄
2

αi =
∑mi

k=1 ĥ
2

ka/mi is the average of SNP additive heritability of the i th SNP set, ĥ
2

αi =
∑mi

k=1 ĥ
2

ka is the total additive heritability of 
all SNPs in the i th SNP set, where mi is the number of SNPs in the i th SNP set

SNP set
Average ĥ

2

kα per SNP
Ratio

Total ĥ
2

αi

20,554 SNPs h̄
2

α1 = 1.75
(
10−5

)
h̄
2

α1/h̄
2

α2 = 1.960 ĥ
2

α1 = 0.360

20,554 SNPs with all 41,108 SNPs in the mixed model h̄
2

α2 = 8.93
(
10−6

)
h̄
2

α2/h̄
2

α3 = 0.998 ĥ
2

α2 = 0.184

41,108 SNPs h̄
2

α3 = 8.95
(
10−6

)
h̄
2

α1/h̄
2

α3 = 1.955 ĥ
2

α3 = 0.368
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nearly unaffected by the number of SNPs in the model. 
Using this method, the 85 significant SNPs accounted for 
28.5  to  28.8% of the genomic narrow-sense heritability 
(Table 1) and for 36.2 to 36.8% of the observed prediction 
accuracy (Table 2). In general, contributions of SNPs to 
genomic heritability and to the observed prediction accu-
racy were consistent, i.e., most SNPs with higher contri-
butions to heritability also had greater contributions to 
prediction accuracies. On average, the contributions of 
SNPs obtained with Method III were larger than those 
with Method II by 24.0% (4.6 to 28.6%) for the genomic 
additive heritability and by 33.3% (2.3  to  35.6%) for the 
observed prediction accuracy (Table  2). Such large dif-
ferences could be due to two reasons: overestimation by 
Method III and underestimation by Method II. Overesti-
mation by Method III is expected since some effects that 
do not come from the target SNPs that are fitted as fixed 
effects could also be removed, in addition to removing 
the effects of the target SNPs. e.g., fitting the 14 SNPs in 
the region between 102.9 and 106.0 Mb on chromosome 
7 as fixed effects also removed the significant effects of 
SNPs in the region between 116.1 and 117.4  Mb on 
chromosome 7 (Fig. 4b). Therefore, the contributions of 
SNPs estimated by Method III could be considered as 
the upper bound of the true SNP contributions. How-
ever, underestimation of Method II is likely the main rea-
son for the large differences between Methods II and III, 
because a large percentage of the effects of the removed 
SNPs could have been explained by other SNPs in the 

model. For the sample in Table 4, the effects of half of the 
41,108 SNPs were almost completely explained by the 
remaining half of the 41,108 SNPs because estimates of 
genomic heritabilities from those two sets of SNPs were 
almost the same, as we discussed above. Based on this 
analysis, we report contributions of SNPs by Method III 
in the abstract but also show the results obtained with 
Method II in the main body of the article (Tables 1, 2).

Observed and expected prediction accuracies
In the current study, we compared three measures of 
prediction accuracy: the observed prediction accuracy 
of predicting phenotypic values based on the correlation 
between predictions from GBLUP and phenotypic obser-
vations of the validation individuals (R̂0jp, j = α or t ), the 
expected accuracy of predicting phenotypic values (R0jp),  
and the expected accuracy of predicting genetic values 
(R0j). For the models using all 41,108 SNPs fitted as ran-
dom effects (Model 1A and Model 2A in Table  2), we 
found excellent consistency between the observed accu-
racies of predicting phenotypic values (R̂0tp = 0.437 
for Model 1A and R̂0αp = 0.435 for Model 2A) and the 
expected accuracies of predicting phenotypic values 
(R0tp = 0.460 for Model 1A and R0αp = 0.425 for Model 
2A). For the models using the 85 SNPs as fixed effects to 
remove the genetic values of those SNPs from the pheno-
typic values (Model 1B and Model 2B in Table 2), some 
differences between the observed accuracies of predict-
ing phenotypic values (R̂0tp = 0.279 for Model 1B and 

Fig. 5 SNP partial heritability in the region between 102.9 and 106.0 Mb on chromosome 7 from two models with 20.5 and 41 K SNPs. The results 
show that partial heritability estimates were nearly unaffected by the number of SNPs in the model
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R̂0αp = 0.275 for Model 2B) and between the expected 
accuracies of predicting phenotypic values (R0tp = 0.360 
for Model 1B and R0αp = 0.320 for Model 2B) were larger 
(Table  2), but those differences were mostly within one 
standard deviation of the observed accuracies and should 
be considered as acceptable. As expected, both observed 
and expected accuracies of predicting phenotypic values 
(R̂0jp and R0jp ) were lower than the expected accuracies 
of predicting genetic values (R0j).

Conclusions
Swine teat number has a strong genetic component with 
narrow-sense heritability estimates of about 0.365. The 
GWAS results confirmed the previously reported region 
on chromosome 7 and identified several new regions 
associated with swine teat number; they also indicated 
that the additive effects are the primary genetic effects for 
teat number and indicated consistency between statisti-
cal significance of SNP effects and SNP contribution to 
the genomic heritability. Most SNPs with higher statistical 
significance also had greater contributions to the genomic 
broad-sense heritability and prediction accuracy. The 85 
significant SNPs accounted for about 28% of the genomic 
heritability and 36% of the prediction accuracy.

Authors’ contributions
XH, YD, NL and CT designed the experiments. ZW, DL, RZ and XH performed 
data collection. CT, JR and ZH performed the experiments. CT and YD ana-
lyzed the data. DP developed some of the analysis software. YD, CT and XHu 
wrote the manuscript. All authors read and approved the final manuscript.

Author details
1 State Key Laboratory for Agrobiotechnology, China Agricultural University, 
Beijing 100193, China. 2 Department of Animal Science, University of Min-
nesota, Saint Paul, MN 55108, USA. 3 National Engineering Research Center 
for Breeding Swine Industry, South China Agricultural University, Guang-
dong 510642, China. 

Funding
This project was supported by the National Basic Research Program of China 
(2014CB138501), the 948 Program of the Ministry of Agriculture of China 
(2012-G1(4)), and the National High Technology Research and Development 
Program of China (2011AA100301).

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the results of this article are included within the 
article and its additional files. The phenotypic data and original SNP data are 
private property of Guangdong Wens Foodstuffs Group and are not for public 
distribution at the present time.

Additional files

Additional file 1: Table S1. Significant SNP effects with Bonferroni 
significance (p < 10−5.91) by three methods of GWAS analysis.

Additional file 2: Figure S1. Manhattan plots of additive SNP effects of 
all 18 autosomes by three methods of GWAS analysis. All p-values in the 
figures are in log(1/p) scale.

Ethics statement
All animal work was conducted according to the guidelines for the care 
and use of experimental animals established by the Ministry of Science and 
Technology of the People’s Republic of China (Approval Number: 2006-398). 
Ear tissues were collected using the standard method approved by the 
Animal Welfare Committee of China Agricultural University (Permit Number: 
SKLAB-2014-04-02).

Appendix: Approximate proof for the decrease 
in SNP heritability as the number of SNPs increases
The heritability estimate for each SNP decreases as the 
number of SNPs in the mixed model increases and is 
approximately proportional to 1/m, where m is the num-
ber of SNPs in the mixed model. An approximate math-
ematical proof for this result can be derived based on the 
invariance property of GBLUP and GREML to duplicat-
ing SNPs. Assuming a set of m SNPs is duplicated r times 
in the mixed model, GBLUP of genetic values (additive, 
dominance and genotypic values) of individuals and SNP 
genetic variance components, as well as the associated 
variance estimates by GREML are invariant to the duplica-
tion of SNPs, and GBLUP of SNP additive, dominance and 
genotypic effects differ from those without duplicate SNPs 
by the square root of r [25]. In the example of additive SNP 
effects, α̂ri = α̂i/

√
r, where α̂ri is the additive GBLUP esti-

mate of the ith SNP from the mixed model with m SNPs 
repeated r times, α̂i is the additive GBLUP estimate of the 
ith SNP from the model with m SNPs. The additive herit-
ability for the ith SNP from the mixed model with m SNPs 
(h2

αi) is: h2
αi =

(
α̂
2
i /

∑m
i=1 α̂

2
i

)
h2
α
 [18], where α̂i is the addi-

tive GBLUP of the ith SNP and h2
α
 is the total additive herit-

ability based on all SNPs. Since h2
α
 is unaffected by repeated 

SNPs, the additive heritability for the ith SNP from the 
mixed model with m SNPs repeated r times (h2

αri) is:

i.e., the heritability for the ith SNP from the model with 
r times of the m SNPs is 1/r of the SNP heritability with 
m SNPs in the model without repeat. This theoretical 
result under the simple assumption of repeated SNPs 
was almost the same as the results obtained with the real 
data in Table 4, i.e., when the number of SNPs is reduced 
by half, the heritability of each SNP as an average of all 
SNP heritability estimates nearly doubled.
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