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Abstract 

Background: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and 
northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed 
characterization of the current phylogeographic differentiation.

Results: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found 
near the major Neolithic point of entry into Europe, and combined these data with published genotypes from south‑
west‑Asian, Mediterranean, central‑European and north‑European sheep and from Asian and European mouflons. We 
detected clines, ancestral components and admixture by using variants of common analysis tools: geography‑inform‑
ative supervised principal component analysis (PCA), breed‑specific admixture analysis, across‑breed f4 profiles and 
phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic 
overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the dif‑
ferentiation of the European domestic sheep and is only distantly related to present‑day sheep, including those from 
Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a 
continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed 
to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy 
served as post‑domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent 
migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been 
part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into 
several central‑European breeds.
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Background
The domestic sheep descends from the wild Asian mou-
flon in southwest Asia and was, ca. 10.000 BCE (before 
the common era) together with goat, the first domestic 
livestock species [1]. As source of meat and milk, sheep 
has never reached the productivity of cattle and pigs, but 
has become the principal source of wool for textiles [2]. 
During the Roman era and the Middle Ages, the wool 
trade played a foremost role in the European economy 
[3–5]. By their toleration of extensive management, 
sheep have retained an important role in local economies 
of both the developing countries and the western world 
[6].

As for other livestock species, the post-domestication 
dispersal introduced sheep from southwest Asia to all 
inhabited continents [7, 8]. According to archaeological 
evidence, agriculture was introduced into Europe during 
the Neolithic Revolution following two routes, along the 
Mediterranean coasts and via the valley of the Danube 
[9–13], respectively. However, the resulting genetic clines 
may very well have been superseded by later events. For 
instance, a subsequent wave of migration is thought to 
have introduced into Europe the wool-type sheep, replac-
ing most of the original hair-type sheep from which 
today’s feral European mouflon [14, 15] descends. A simi-
lar event has been the expansion around 3000 BCE of fat-
tailed and fat-rumped sheep over central and southwest 
Asia and east Africa [16]. Roman written sources distin-
guish sheep producing coarse wool for carpets and fine 
wool sheep. The best wool sheep originated in south Italy 
and Greece [17, 18] and were exported to other parts of 
the Empire. In the late Middle Ages, the Spanish Merino 
breed was developed as producer of high-quality wool. 
Since the 16th century, it has been crossed into several 
French [19] and central-European breeds [20–22]. The 
use of several British breeds for upgrading northwest-
European breeds, primarily as meat producers [14, 19], 
probably started later. In addition, it is plausible that 
wars, famines and epidemics have led to several, mostly 
undocumented mass eradications, after which flocks 
and herds had to be replenished by importations from 
elsewhere.

Differentiation of local sheep populations into breeds 
became more pronounced from the 18th century by the 
use of systematic breeding with well-defined objectives. 
The current sheep populations display a large diversity of 

local as well as transboundary breeds adapted to differ-
ent environments and with different breeding objectives. 
A representative survey of sheep populations using the 
Illumina Ovine 50 K genome-wide single nucleotide pol-
ymorphism (SNP) panel [22] revealed a clear geographic 
differentiation, but also a high degree of historic admix-
ture. Especially for Spanish breeds [22], this has been 
stimulated by seasonal transhumant migrations [23]. 
Current patterns of genetic diversity have been inter-
preted in historic and environmental terms, for example 
in Switzerland [24], mainland Italy [25, 26], Sicily [27], 
Belgium [28], France [19], the Pyrenean region [29], 
Spain [30], Greece [31], Wales [32], Russia [33], Nepal 
[34], China [35, 36], Iran [37], north Africa [38, 39], 
South Africa [40], Ethiopia [41, 42], New-Zealand [43] 
and the Carribean region [44] and Merino sheep gener-
ally [20]. Recurring observations and themes are the con-
trast between sheep with fat and normal tails [26, 33, 35, 
41, 42], the influence of Merino sheep [19, 20, 33, 39] or 
other breeds [25, 44], the level of breed separation [27, 
30, 32, 38, 39, 43] and the adaptation to the environment 
[34, 36, 37, 41, 45]. A comparison of European sheep with 
Asian and European mouflons [46] indicated an influence 
of European mouflons on domesticated sheep that has 
been relevant for adaptation.

In the above-mentioned studies, the authentic breeds 
from the Balkan countries, the major entry point of 
the Neolithic sheep into Europe [12], have been under-
represented. The Zackel type sheep with Pramenka and 
Ruda as subvarieties [47] are hardy sheep well adapted to 
extensive management in marginal areas.

In order to define more completely the historic rela-
tionships of European and southwest-Asian sheep and 
their phylogenetic relationships with the wild and feral 
populations, we generated 50  K SNP genotypes from a 
representative collection of Balkan sheep. These data 
were combined with available genotypes of south-, cen-
tral- and north-European sheep and southwest Asian 
sheep  (Fig.  1). By using variants of the most common 
modes of analysis, we identified the influence of the Euro-
pean mouflon and detected genetic clines, which could 
be historical witnesses of migration events. We have also 
used genotype data to test the historic evidence for the 
influence of the Spanish Merino sheep on several central 
European breeds.

Conclusions: Our results contribute to a better understanding of the events that have created the present diver‑
sity pattern, which is relevant for the management of the genetic resources represented by the European sheep 
population.
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Methods
Samples, genotypes, datasets
DNA was extracted from blood samples (see Additional 
file 1: Table S1) and used for genotyping on the Illumina 
Ovine 50 K SNP bead array as described previously [22, 
25]. We used the Plink 1.9 program (http://www.cog-
genom ics.org/plink 2) for data management and qual-
ity checks. Samples and markers with more than 10% 

missing genotypes were removed. The resulting data were 
combined with published genotypes for other breeds (see 
Additional file 1: Table S1). We used the Splitstree v4.14.6 
software (https ://softw are-ab.infor matik .uni-tuebi ngen.
de/downl oad/split stree 4/welco me.html [48]) to con-
struct Neighbour-Joining trees on the basis of allele-shar-
ing distances (ASD) between individuals. We detected 
seven duplicate samples, whereas deviations from the 

Fig. 1 Breeds analyzed in this study. Breed codes: AFS, Afshari; ALP, Alpagota; ALT, Altamurana; AMF, Asian Mouflon; APP, Appenninica; BAG, 
Bagnolese; BEN, Bentheimer; BER, Bergamasca; BHM, Black‑Headed Mutton; BIE, Biellese; BKR, Bela Krajina; BOS, Bundner Oberländer; BOV, Bovec; 
CAS, Castellana; CFT, Cyprus Fat‑Tail; CHI, Chios; CIK, Cikta; COM, Comisana; CRI, Croatian Isles; DAL, Dalmatian; DEL, Delle Langhe; DRH, Drenthe 
Heath; DUB, Dubska; EBI, Egyptian Barki; EFB, East‑Friesian Brown; EMF, European Mouflon; ERS, Engadine Red; FAB, Fabrianese; FIN, Finnsheep; GEN, 
Gentile di Puglia; GHS, German Heath; GOR, Polish Mountain; IST, Istrian; JSO, Jezersko‑Solčava; KAM, Kamieniec; KAR, Karakul; KCH, Karakachanska; 
KRS, Karakas; KYM, Kymi; LAR, Lara; LAT, Laticauda; LAW, Local Awassi; LBA, Lori‑Bakhtiari; LEC, Leccese; LES, Lesvos; LIK, Lika; LIP, Lipska; LTX, Latxa; 
MAS, Massese; MEE, Merino Estremadura; MER, Australian Merino; MOG, Moghani; NDZ, Norduz; NSO, Old Norwegian Spael; NSP, Spael‑white; NWI, 
Norwegian White; OJA, Ojalada; OSS, Ossimi; OVC, Ovchepolean; PIN, Pinzirita; PIV, Pivska; PVO, Privorska; QEZ, Qezel; RAA, Rasa Aragonesa; RAC, 
Racka; REC, Recka; RHO, Rhön; RIP, Ripollesa; RUD, Ruda; SAA, Sasi‑Ardi; SAM, Sambucana; SAW, Sardinian White; SBS, Swiss Black‑Brown Mountain; 
SCH, Schoonebeker; SEG, Segurena; SKO, Shkodrane; SKZ, Sakiz; SMF, Sardinian Mouflon; SMS, Swiss Mirror; SOP, Sopravissana; SOR, Sora; SUM, 
Sumavska; SWA, Swiss White Alpine; TSIH, HungarianTsigaia; TSIR, RomanianTsigaia; VAL, Valachian; VBE, Valle del Belice; VBS, Valais Blacknose; VEH, 
Veluwe Heath; VRS, Valais Red Sheep; XIS, Xisqueta; ZEL, Zel; ZUJ, Zuja

http://www.cog-genomics.org/plink2
http://www.cog-genomics.org/plink2
https://software-ab.informatik.uni-tuebingen.de/download/splitstree4/welcome.html
https://software-ab.informatik.uni-tuebingen.de/download/splitstree4/welcome.html
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expected clustering per breed in both novel and pub-
lished data identified 16 outliers, i.e. samples for which 
the pure breed origin is questionable, presumably due to 
recent crossbreeding (AFS26, ALT15-18, BIE42, CAS03, 
IST38, LBA759571, LEC1, LEC2, LEC33, OJA10, SAM24, 
SAM49 and ZEL759420, all breed abbreviations are 
explained in the legend of Fig. 1). These samples together 
with those of declared F1 animals were discarded. In 
order to balance the composition of the dataset, we 
retained only the Australian Merino and the Spanish 
Estremadura populations from the available Merino sam-
ples. For most analyses, we used 25 or less individuals per 
breed. We retained 21,960 SNPs after linkage disequilib-
rium (LD)-pruning (Plink–indep-pairwise 50 50 0.03), 
which alleviates the ascertainment bias [49]. Additional 
file 2: Table S2 shows how datasets were tailored to the 
mode of analysis. From the dataset of [46], we retrieved 
genotypes from European mouflons sampled in Corsica, 
Sardinia and Hungary. For supervised admixture (v1.3.0) 
analysis [50], we assembled, based on the ASD NJ tree 
topology, a representive metapopulation (mEMF), con-
sisting of 42 European mouflons sampled in Spain (2), 
Corsica (2), Hungary (8) and Sardinia (22 SMF-1 and 8 
SMF-2 animals), respectively.

Diversity and differentiation of breeds
Observed heterozygosities averaged per breed (Ho) were 
calculated via Plink. Runs of homozygosity (ROH) longer 
than 1  Mb and containing more than 30 SNPs with an 
average density of more than one SNP/100  kb, a maxi-
mum gap between consecutive SNPs of 250  kb, and at 
most one missing and one heterozygous SNP, were calcu-
lated by using Plink as described previously [51]. We ana-
lyzed the differentiation of the Pramenka populations by 
means of the ASD Neighbour-Joining tree as described 
in the previous section. For the same purpose, data were 
filtered and phased haplotypes were inferred using the 
Shapeit v2.r900 software [52]. Shared haplotypes were 
identified by the program Chromopainter v2 and poste-
rior distribution of clusters were visualized via the associ-
ated fineStructure v2 tree-building algorithm [53].

Detection of clines
Principal component analysis (PCA) was performed with 
Plink, using a balanced dataset of less than six samples 
per breed for detection of genetic clines. To prevent bias 
arising from the large genetic distances between the 
most inbred sheep (East-Friesian Brown, Karakachanska 
and Valais Black-Nose) or the mouflons (AMF, EMF and 
SMF) and the other samples, we used the Plink option to 
calculate PCs for a subset of the individuals that are to be 
plotted, in this case all sheep except the EFB, KCH,VBS, 

AMF, EMF and SMF outliers. We refer to this procedure 
as supervised PCA (svPCA).

For the detection of geographic clines, we carried out 
a ‘geographic svPCA’ by calculating the PC  only for the 
breeds living at the geographic extremes in the north 
(Norway, Finland), southwest (Spain) and southeast 
(southwest Asia, Egypt). We compared the performance 
of this method with the results of spatial PCA (sPCA 
[54]), which also has been designed for the detection of 
genetic clines, while using all three available triangu-
lations (Delaunay, Gabriel and Nearest Neighbor) for 
alternative approximations of geographic inter-breed 
distances.

Neighbor-net graphs of Reynolds’ distances between 
breeds or regional groups of breeds were constructed as 
described previously [22].

Ancestry and introgression
Model-based clustering using genome-wide SNPs was 
performed as implemented in the software Admixture 
v. 1.22 [50]. Admixture was further analyzed by three 
methods: model-based clustering with ancestry-inform-
ative markers (AIM [55]); calculation of f4 statistics; 
and TreeMix tree constructions. The first two methods 
were used for detecting the influence of AMF, EMF and 
Merino, respectively. For this purpose, we assembled four 
metapopulations:

• mEMF, consisting of 42 mouflons that were less 
inbred than our Spanish EMF sample (2 Corsican, 
8 Hungarian and 30 Sardinian mouflons [46] and 
2 Spanish mouflons (EMF) with similar degree of 
inbreeding);

• PRMS, consisting of 28 southern Pramenka sheep 
(5 LAR, 5 OVC, 6 PIV, 2 REC, 5 RUD and 5 SOR) 
as proxy of the phylogenetic root of the European 
sheep;

• mMER, 26 Merino sheep (13 MER + 13 MEE);
• nMER, consisting of 127 non-Merino Iberian sam-

ples (21 CAS, 23 OJA, 27 RAA, 22 RIP, 12 RAA and 
22 XIS).

The use of panels of AIM for model-based clustering 
as implemented in Structure [56] has been demonstrated 
in [35] for fat-tailed sheep and is denoted here as breed-
specific admixture analysis (BSAA). AIM were selected 
based on their FST values calculated via Plink. Specifically, 
we selected 358 AMF-specific AIM while avoiding AMF-
mEMF cross-specificity (see Additional file 3: Table S3A) 
by using the following thresholds: FST (AMF-PRMS) > 0.5, 
FST (mEMF-AMF) > 0.5 and FST (mEMF-PRMS) < 0.1. 
Likewise, 334 EMF-specific SNPs (see Additional file  3: 
Table  S3B) were selected by using the thresholds: FST 



Page 5 of 14Ciani et al. Genet Sel Evol           (2020) 52:25  

(mEMF-PRMS) > 0.6, FST (mEMF-AMF) > 0.6 and FST 
(AMF-PRMS < 0.1). For testing Merino admixture, 606 
SNPs (see Additional file 3: Table S3C) were selected by 
using the threshold FST (mMER-MER) > 0.13. Thus, the 
AIM panels defined were used for Structure analysis with 
15,000 burn-in steps and 35,000 iterations at different 
k values. Q-values from the run with the lowest k value 
showing a breed-specific signal were plotted.

The f4 statistic uses allele frequencies from four pop-
ulations: a source and a recipient of ancestry (often via 
introgression) to be tested and for each a related control 
population free of the ancestry to be tested. The ancestry 
of the source in the recipient generates a significant cor-
relation between the shifts in allele frequency between 
the source and its control (for instance, an outgroup) and 
between the recipient and its control, respectively [57]. 
The influence of Asian and European mouflons, respec-
tively, relative to PRMS was detected by:

f4 =

(

fAMF − fmEMF

)(

fPRMS − fX
)

 , averaged across 
21,960 SNPs, where f  is the allele frequency of one of the 
two SNP alleles in the indicated breed and X is the recipi-
ent test breed. The results were normalized by the ratio:

f4n = f4/
(

fAMF − fmEMF

)(

fPRMS − fX
)

, with the nomi-
nator and denominator averaged over 21,960 SNPs.

Positive and negative values indicate that, relative to 
PRMS, the influence of European mouflon is larger and 
smaller, respectively, than the influence of Asian mou-
flon. The confidence interval of f4n has been calculated 
as f4n plus 2 × its standard deviation parallel to f4n minus 
2 × its standard deviation, corresponding to a P < 0.05 for 
f4n > 0 or < 0.

Likewise, the influence of Merino sheep on other 
breeds was inferred from positive values of 

with the nominator and denominator averaged over 
21,960 SNPs.

Values are close to 1.0 for the Merino  as test breed 
(1.05 for MEE and 0.94 for MER) and yield for the other 
breeds estimators of the degree of Merino introgression 
relative to PRMS.

TreeMix [58] was used to construct a maximum likeli-
hood tree of 78 breeds or regional groups of breeds, to 
which 1 to 20 edges were added as indicators of admix-
ture events. Likelihoods and proportions of variance 
explained were calculated by using the R Package OptM 
(B. Fitak, https ://cran.r-proje ct.org/web/packa ges/
OptM).

f4n =

(

fnMER − fmMER

)(

fPRMS − fX
)

/
(

fnMER − fmMER

)(

fPRMS − fmMER

)

,

Results
Breed diversity and differentiation
Our panel of sheep comprises several breeds from south-
east Europe and surrounding areas: southwest Asia, 
Egypt, Italy, Spain and central and north Europe (Fig. 1) 
and (see Additional file  1: Table  S1). The diversity as 
derived from the observed heterozygosity (Ho) is highest 
in most of the eastern, southeast-European and Iberian 
breeds. Ho values are lower in most Italian, Swiss, Greek 
and the Asian and African Fat-tailed sheep and decreased 
further in the north-European breeds. The extremely low 
values for East-Friesian Brown, Karakachanska, Valais 
Blacknose and the European Mouflon are likely reflect-
ing genetic isolation and/or population bottlenecks. 
However, whole-genome sequencing has shown that the 
nucleotide diversity of Asian mouflons is higher than that 
of domesticated sheep [59–61]. This indicates that the 
low Ho values for the mouflons reflect the ascertainment 
bias of the 50 K SNP panel, i.e. the diversity of the breeds 
that were not used to create the SNP panel is underes-
timated. This explanation is supported by a plot of Ho 
against the total ROH coverage (FROH, [see Additional 
file 4: Table S4]), in which the latter value is expected to 
be less affected by the ascertainment bias than Ho. For 
most breeds, this plot (see Additional file  5: Figure S1) 
shows the expected inverse linear relationship [62], but 
 Ho values for Asian mouflon and, to a lesser degree, Sar-
dinian mouflon, fat-tailed sheep and Balkan breeds are 
relatively low.

We tested the breed-level differentiation by visualiz-
ing ASD between individuals in Neighbour-Joining trees. 
Most breeds are well separated with only a nesting of 
Norwegian Spæl White within Original Norwegian Spæl 

and a good correlation of within-breed distances and Ho 
(not shown). However, there is a high degree of intermin-
gling of the Pramenka breeds (see Additional file 6: Fig-
ure S2).

A fineStructure plot based on haplotype sharing (see 
Additional file  7: Figure S3) confirms the incomplete 
breed differentiation of Pramenka sheep with the inter-
mingling of Dalmatian, Lara, Lipska, Ovchepolean and 
Romanian Tsigaia as also revealed by the ASD tree. Diag-
onal clusters of related sheep correspond to the most 
distinct breeds or to regional combinations of Pramenka 
breeds (Hungarian Racka, Slovenian Bela Krajina, Croa-
tian Lika, Bosnian Dubska and Privorska; Montenegrin 
Pivska and Sora; and Serbian Lipska and north-Macedo-
nian Ovchepolean, respectively).

https://cran.r-project.org/web/packages/OptM
https://cran.r-project.org/web/packages/OptM
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Coordination analysis
Figure  2a shows a PCA plot of domesticated sheep and 
European and Asian mouflons. PC1 shows an east–west 
cline of domesticated sheep between the Iranian fat-
tailed sheep and the north-European thin-tailed sheep. 

Remarkably, this trend is at the west end extrapolated 
towards the European mouflon. PC2 separates mouflons 
and domestic sheep. Asian mouflons are almost equidis-
tant to all other sheep, including the northwest-Iranian 

a

c

b

Fig. 2 PCA analysis (breed codes are as in Fig. 1). a Plots of 546 domestic sheep (≤ 6 animals per breed). We checked that removal of either 
European or Asian mouflons did not change the pattern of the other individuals. Finn sheep are relative to other Nordic breeds shifted toward the 
fat‑tailed sheep. b Supervised PCA of 1477 animals in which the PC values were calculated based on 507 domestic animals (≤ 6 animals per breed; 
without EFB, KCH, VBN, AMF, EMF or SMF) and have been averaged per breed. See Additional file 9: Figure S5 for svPC3 vs. svPV1 and see Additional 
file 8: Figure S4 right panels, for the corresponding plots of individuals. c Left panel: supervised PCA of 1477 animals in which the PC values (svPC1, 
svPC2), averaged per breed, were calculated based on the indicated fat‑tailed, Nordic and Spanish sheeps. Right panel: magnification of the area 
indicated by the dotted line in the left panel. See Additional file 11: Figure S7 for the corresponding plot of individuals
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domestic sheep from the region where the Asian mou-
flons were sampled.

In a PCA of domesticated sheep (see Additional file 8: 
Figure S4 left panels), PC1 again shows the east-to-west 
cline, whereas PC2 and PC3 are disproportionally influ-
enced by East-Friesian Brown (EFB), Karakachanska 
(KCH) and Valais Blacknose (VBS), the three breeds with 
low Ho. This is remedied by supervised PCA (svPCA) 
in which we computed the principal components for 
the domesticated sheep without these three breeds (see 
Additional file  8: Figure S4 right panels). The svPCA 
interpolates these breeds close to other sheep from the 
same region, demonstrating that this approach extends 
the usefulness of PCA to populations with extremely low 
diversity.

In Fig. 2b, the svPC values have been averaged over the 
breeds. In this plot, svPC1 shows an east–west cline that 
is particularly strong for the Greek breeds. SvPC2 values 
show a cline from the Balkan region along the Mediter-
ranean coast and as well as a cline south to north. SvPC3 
emphasizes the contrast of northern and southwest 
Europe (see Additional file 9: Figure S5).

Spatial PCA (sPCA) combines genetic and geographic 
information in order to optimize the detection of geo-
graphical trends [54], with a choice of three methods 
of triangulation to calculate spatial distances between 
breeds. However, with our dataset, the three methods of 
triangulation in sPCA (see Additional file 10: Figure S6) 
generated essentially the same pattern as PCA (see Addi-
tional file 8: Figure S4 right panels).

Additional file  11: Figure S7 shows an alternative way 
to introduce geographical information: supervised PCA 
in which the components are controlled by the geo-
graphical extremes: the fat-tailed breeds from south-
west Asia, the southwest-European breeds from Spain 
and the northernmost breeds from Norway and Fin-
land. Then, the other sheep and the mouflons are inter-
polated between these extremes without using their 
mutual distances. Compared to Fig.  2 and Additional 
file  8: Figure S4, averaging the geographic svPC values 
per breed (Fig. 2c) emphasizes a central position of north 
Italy between the Balkans, central and south Italy, Spain 
and central Europe, indicating both an east–west and a 
north–south cline. The plot of individuals (see Additional 
file  11: Figure S7) may suggest direct contact between 
the Balkan and south-Italian sheep, but this is mediated 
by the Bagnolese and Laticauda sheep, which are known 
to have been influenced by north-African fat-tailed Bar-
bary sheep [26]. In Fig. 2c, Asian mouflons are interpo-
lated within the Balkan sheep, whereas in agreement 
with Fig.  2a, European mouflons are extrapolated to an 
extreme left position.

Phylogenetic analysis
Because of the incomplete genetic differentiation of the 
Pramenka breeds and their small sample size, we com-
bined neighboring populations and other closely related 
breeds in regional clusters, as indicated in Additional 
file 12: Table S5A. Visualization of Reynolds’ genetic dis-
tances in a Neighbor-network phylogenetic graph (see 
Additional file 13: Figure S8) generates an east–west axis 
with a separate branching-off of fat-tailed, Balkan and 
the other European breeds, following closely the cline 
highlighted by the geographical svPC1 in Fig.  2c. The 
long terminal distances of several Balkan breeds reflect 
the increase of the Reynolds’ distances by small samples 
sizes, but also the low heterozygosity of Cypriotic fat-
tailed (CFT), East-Aegean Chios and Sakiz (CHI, SKZ), 
Karakachanska (KCH) and Valachian (VAL). Among the 
Pramenka breeds, Hungarian Cikta, Istrian and Croatian 
Isles (CIK, IST, CRI) are the closest to the other Euro-
pean breeds. Breeds from the same country are in the 
same area of the network, but Polish Kamieniec (KAM) 
clusters with the Swiss Alpine and Swiss Black-Brown 
Mountain (SWA, SBS).

A further grouping of breeds according to their relat-
edness and geography (see Additional file 12: Table S5B) 
improves the resolution of the European sheep (Fig. 3a). 
In agreement with the PCA, the topology of the tree sug-
gests that gene flow from the Balkan region was followed 
by a radiation to Spain and central and north Europe. 
Adding Asian Mouflon (AMF, Fig.  3b) and European 
Mouflon (EMF, Fig.  3c) to this network suggests their 
affinity to southeast- and north-European sheep, respec-
tively, which is in agreement with the PCA plot of Fig. 2a. 
As shown in Additional file 14: Figure S9, the differential 
affinities of AMF and EMF to domesticated sheep can 
also be visualized in the same network after resolving the 
reticulation caused by the affinity of AMF and EMF.

Model‑based clustering
As observed previously [20, 63], clustering by the admix-
ture program (Fig.  4) did not reproduce the differen-
tiation of sheep from different regions observed with 
coordination or phylogenetic analysis, which is in con-
trast to the admixture patterns for European goats or 
cattle [64, 65]. With the number of clusters (k) set at 2, 
3 or 4, one cluster consistently corresponds to the fat-
tailed sheep. At k = 3, another cluster corresponds to the 
mouflons, and k = 4 generates an incomplete split-off of 
northern Europe. Higher k values (not shown) generated 
clusters corresponding to one or two breeds.

These patterns suggest a fat-tailed influence on Finn 
sheep and on several Mediterranean and Balkan breeds. 
The strongest signals were observed for the Italian fat-
tailed Laticauda and Bagnolese and for the Sicilian, 
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Hungarian and most of the Pramenka breeds. In addi-
tion, a low but consistent signal of mouflon ancestry 
shows an increase from southeast to north Europe. This 
is consistent with Fig. 1 and becomes more pronounced 
if the Admixture program is run in the supervised mode 
(Fig.  4). This plot also suggests introgression of domes-
ticated into the Sardinian mouflon (SMF) population as 
reported previously [46].

Admixture
The signal of mouflon ancestry in the admixture patterns 
does not differentiate between European and Asian mou-
flons. Therefore, following the breed-specific admixture 
analysis (BSAA) procedure as detailed in Methods, we 
selected ancestry-informative markers (AIM) that dif-
ferentiate between AMF and EMF ancestry. Model based 
clustering by using the Structure program (Fig. 4, 5th and 

6th bar plot, Fig.  5, top panel) highlights different pat-
terns for Asian and European mouflon ancestry. AMF 
ancestry is weak and is observed only in northern and 
fat-tailed breeds. EMF ancestry was inferred for most 
European breeds with the highest signals in north Euro-
pean, Swiss and Basque sheep.

Figure  4 (last two plots) and Fig.  5 (top panel) show 
a BSAA for Merino introgression. In addition to the 
expected introgression in the Italian Merino breeds 
Sopravissana and Gentile di Puglia, there are clear 
signals in Czech Sumavska, Polish Kamieniec, Swiss 
Bundner Oberländer, Mirror and Alpine, Slovenian 
Jezersko-Solčava, Hungarian Cikta and Tsigaia, Albanian 
Ruda and north-Macedonian Ovchepolean.

The BSAA signals for AMF, EMF and Merino are con-
firmed by a normalized f4 analysis, which detects intro-
gression via correlation of allele frequencies (Fig.  5, 

Fig. 3 a Neighbor‑net graph of Reynolds’ distances between regional groups of breeds (see Additional file 12: Table S5B). b, c Patterns obtained by 
including AMF and EMF, respectively (see Additional file 14: Figure S9)
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bottom panel). This generates weaker signals, but yields 
plausible quantitative estimates of the degree of admix-
ture, which for the AMF and EMF ancestries are calcu-
lated relative to the southern Pramenka (PRMS) sheep.

The TreeMix program offers a sophisticated and cur-
rently favored approach to combine phylogenetic trees 
with identification of admixture events [58]. The tree 
generated without assuming migrations (m = 0) (see 
Additional file 15: Figure S10) agrees with the Neighbor-
net graph (see Additional file  14: Figure S9), but joins 
the feral EMF and SMF mouflons to the Nordic and 
Dutch-German Heath breeds as in Additional file  14: 
Figures S9D and S9E. Several but not all gene flows indi-
cated by the colored line in the m = 6, 10 or 20 patterns 
are consistent with the admixtures found by BSAA and 

f4 analysis. A more extensive description of theTreeMix 
pattern is in Additional file 15: Figure S10.

Discussion
Scope of this study
In order to identify historic and prehistoric gene flows 
and admixture events, we analyzed genotypes of sev-
eral Balkan sheep breeds together with those from 
southwest-Asian, Mediterranean, central-European and 
north-European populations. Our samples cover the area 
through which sheep were originally introduced into 
Europe, and initiated their dispersal all over the conti-
nent. We have tested several variants of existing modes 
of analysis, which may have a more general applicabil-
ity. A geographically supervised PCA appeared to be 
more effective to detect genetic clines than the spatial 

Fig. 4 Model‑based clustering generated by the program Admixture (first four bar plots) or breed‑specific admixture analysis (BSAA) generated by 
Structure (other plots). Admixture has been run unsupervised (first three plots) or supervised by prior information for three clusters as shown by the 
thick colored bars. In this analysis, the dataset has been supplemented with additional mouflon samples [46]. For the selection of SNPs for BSAA, see 
Methods. Regions and countries have been indicated below the plots; in this plot ‘Balkan’ does not include Greek breeds
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PCA [54], while the admixtures identified consistently by 
breed-specific admixture analysis and f4 analysis could 
be only partially reproduced by the TreeMix algorithm. 
For more detailed methodological considerations, please 
refer to Additional file 16.

Mouflons and domestic sheep
The current Asian mouflons that were sampled in north-
west Iran near the putative southwest-Asian sites of 
domestication are only distantly related to present-day 
sheep (Figs.  2a, 3b) [19, 59, 66]. Thus, the genetic dis-
tances generated a network (Fig.  3) that places Asian 
mouflons close to the center of the network near the 
Pramenka, Greek and fat-tailed sheep, but without any 
affinity to any of the present-day breeds, including the 
fat-tailed breeds currently found in the area which was 
the original domestication centre. We tested whether this 
could be an artefact of the ascertainment bias, by which 
the diversity of Asian mouflons is known to be severely 
underestimated [59, 60]. However, we obtained the same 
topology when we selected SNPs with a high minor allele 
frequency (> 0.39) in the Asian mouflon [49]. This sug-
gests that a SNP panel with additional mouflon SNPs, 
for instance as obtained by whole-genome sequencing, 
would have revealed similar relative affinities of mouflon 
to the domesticated sheep [67].

A plausible explanation for the divergence of Asian 
mouflons and domestic sheep is provided by a recent 
analysis of Y-chromosomal variation (unpublished 
results), which showed for a panel of Asian mouflons, 
as our panel sampled in Iran, a Y-chromosomal haplo-
type that does not resemble any domestic haplotype, 
but is closely similar to the haplotype of the cross-fertile 

urial (Ovis vignei). This may indicate that at least these 
mouflons have diverged by urial introgression from the 
mouflon population that was the ancestral source of the 
domesticated sheep.

The earliest domesticated sheep in Europe were the 
ancestors of today’s feral European mouflons [16] and 
have been replaced in agriculture by wool sheep. Traces 
of European mouflons in domesticated sheep increase 
from southeast to northwest (Figs.  2a, 3, 4). This is in 
agreement with [15], but genome-wide markers now 
yield estimates of the relative degrees of mouflon ances-
try. Barbato et al. [46] proposed that this mouflon com-
ponent contributed to the environmental adaptation of 
domesticated sheep.

The origin of European sheep
The replacement of the first domesticated sheep by wool 
sheep may have already started by 4000 BCE [8, 14]. In 
a similar, rather later process, fat-tailed sheep became 
predominant in many locations of Asia [14]. Remark-
ably, the thin-tailed Zel sheep is found to be in the same 
genetic cluster as the fat-tailed Iranian sheep whereas the 
fat-tailed Italian Laticauda [25] is related to other breeds 
in central Italy. This implies that the tail phenotype is 
encoded by a limited number of genes [36, 68–72]. This is 
in sharp contrast to, for example, the deep-rooted split of 
taurine and zebu cattle.

In spite of the long history and economic importance 
of the production of wool, several sheep with a coarse 
fleece have been maintained over time. At the time of 
the Roman Empire, the best quality wool was that from 
the ‘Tarentine’ sheep, also known as ‘Greek’ sheep [18]. 
Sheep from Italy, presumably those with fine-wool, were 

Fig. 5 Top panel: Q values indicating ancestry of AMF, EMF and Merino (MER + MEE), respectively, as inferred from the corresponding BSAA runs 
shown in Fig. 4. Bottom panel: Scan of indicated f4n values over the 93‑breed panel. The metapopulation PRMS has been defined in Methods. The 
blue and black line below the axis labels indicate the (groups of ) breeds for which ancestry can be inferred from positive or negative f4n values
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exported to other parts of the Roman empire [3]. How-
ever, the process was not complete and European coarse 
and fine-wooled sheep still have overlapping and frag-
mented distributions. The present Iberian coarse-wool 
Churra and the fine-wool Merino are even close relatives 
[22]. We propose that this phenotypic differentiation 
reflects the opposing and varying effects of human selec-
tion for fine wool production and environmental adapta-
tion favoring the more natural coarse wool. As for the tail 
traits, wool quality is controlled by a restricted number of 
genes [59, 73, 74].

As found previously for cattle and goats [64, 65], coor-
dination, phylogenetic and clustering analyses (Figs. 2, 3, 
and 4) consistently show that regional origin is the pri-
mary determinant of genetic differentiation. This has 
generated several clusters of related breeds. Greek breeds 
are intermediate between fat-tailed Asian and European 
sheep. The several incompletely differentiated Zackel 
breeds, most of which were kept in the former Otto-
man Empire, form one of the coherent breed clusters. In 
agreement with a history of mixed German (‘Zaupel’)-
Hungarian origin, Cikta is intermediate between the 
Zackel and central European sheep. Similarly, Delle 
Langhe of north Italy is not closely related to other north 
Italian breeds (see Additional file  13: Figure S8) and 
may have been influenced by breeds not included in our 
dataset.

Correlation of genetic distances of breeds or clusters 
with corresponding geographic distances indicate genetic 
clines. Plausibly, the clines detected by svPCA (Fig. 2b, c) 
correspond to the expansion of wool sheep, which may 
have overruled the earlier clines formed during the intro-
duction of farming along the Mediterranean and Danu-
bian routes [9–13]. If we assume that the maintenance of 
steep clines indicate a relatively slow gene flow, the PCA 
plots and networks indicate that Greek breeds acted as a 
barrier between Asian and European breeds. The spatial 
svPCA patterns (Fig. 2c) also suggest a gene flow from the 
Balkans into north Italy. This intersects with the direc-
tion of a gene flow from north Italy to central and south 
Italy and then to Spain and with a third gene flow from 
north Italy towards central and north Europe. Remark-
ably, there seems to have been no direct flow from the 
northernmost Zackel sheep, Czech Valachian and Polish 
Mountain, to sheep of north Europe.

In addition, the genetic proximity of Zackel, central and 
south-Italian and Spanish breeds (Figs. 2b and 3) suggests 
a migration route along the Mediterranean littoral from 
the Balkans to Spain via the Italian peninsula. This is not 
in contradiction with the geographic svPCA (Fig.  2c), 
because the gene flows corresponding to the Mediterra-
nean east–west movement may very well have influenced 
the allele frequencies in other SNP panels than those 

selected in the geographic svPCA. Plausibly, in addition 
to the Neolithic expansions of agriculture following the 
Mediterranean and Danubian routes [9–13], the expan-
sion of the Tarentine sheep over the Roman Empire con-
tributed to both the Mediterrenean migrations and to the 
northward migration from Italy into central and north 
Europe.

The Admixture and Structure pattern (Fig. 4) shows a 
minor fat-tail component in Finn sheep, which is consist-
ent with the PCA plots (Fig. 2a, b) and suggests an influ-
ence of Asian sheep.

A more recent event is the documented dispersal of 
Merino sheep since the 17th century [21]. As expected, 
there is a large Merino component in the Italian Merino-
type Sopravissana and Gentile di Puglia. In addition, we 
found clear Merino signals in several central-European 
breeds. Although these breeds do not have a Merino-
type wool, these introgressions are entirely in agreement 
with the documented upgrading in the 17th and 18th 
century. The strongest signal is found in the Swiss Alpine, 
whereas the genome of its close relative the Polish KAM 
also has a substantial  Merino component. The Swiss 
breeds SWA, SBS and SMS were putatively influenced 
by British sheep as well [22] as inferred from their high 
frequency of the Y-chromosomal oY1.1 G allele, which 
is fixed in several British breeds [75]. KAM is known to 
have been influenced by Romney and Texel influence 
[47]. Notably, breed histories of SWA and KAM do not 
mention their close relationship or their Merino ancestry 
[24, 47], which demonstrates the power of genome-wide 
DNA analysis for uncovering hidden relationships and 
admixture events.

Our breed panel did not include French or British 
breeds. Kijas et  al. [22] showed that English and Scot-
tish breeds are well differentiated from other European 
breeds. Rochus et al. [19] found, for north-French breeds 
an affinity to English breeds known to have been used for 
upgrading, and for south-French sheep affinities to Italian 
and Spanish breeds. A more complete sampling of Brit-
ish, north-continental and Nordic breeds would enable a 
dissection of gene flows in northern Europe and a docu-
mentation of the consequences of the frequent upgrading 
of north- and central-continental breeds by English rams.

Conclusions
Our study of the Balkan breeds is a crucial addition to 
the panel of breeds analyzed so far with the genome-wide 
SNP arrays. We propose that both the Balkans and Italy 
were hub regions from which sheep dispersed over the 
rest of Europe. We demonstrate that the use of various 
variants of PCA, phylogenetic analysis and model-based 
clustering, emphasizes combinations of SNPs that are 
informative for genetic events. Our results consistently 
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suggest a number of prehistoric and historic gene flows. 
All this contributes to a better understanding of the 
genetic background of cosmopolitan and local sheep 
breeds, serving as templates of environmental adaptation 
and human selection.
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